
Introduction to Databases
(Winter Term 2024/2025)

Deductive Databases
(Summer Term 2024)

(c) Prof Dr. Wolfgang May
Universität Göttingen, Germany

may@informatik.uni-goettingen.de

Introduction to Databases (BSc):

2+1/3+1 SWS, 5 ECTS: Ch. 1-3, 5; overview of 4+6

4+1 SWS: Ch. 1-6

4+2 SWS: Ch. 1-8

Database Theory/Deductive Databases (MSc): Ch. 8-12

1

Chapter 1
Basic Notions

CONTEXT AND OVERVIEW

• databases are used in ... economy, administration, research ...

• originally: storage of information
relational model, SQL

• evolution: information systems, combining databases and applications

• today: Web-based information systems, electronic data exchange
→ new challenges, semistructured data, XML

1

APPLICATION PROGRAMS VS. DATABASES

(Application) Programs Databases

Runtime Environment Persistent Storage + Access

• short-lived computation • long-lived model of an application domain

• schema

• data

• temporary connections/access by

application programs

2

APPLICATION PROGRAMS VS. DATABASES

(Application) Programs Databases

Runtime Environment Persistent Storage + Access

Programming Paradigms

value-oriented set-oriented,

large amounts of data

variables implicitly specified sets, iterators

procedural/imperative declarative

Pascal, C, C++, Java SQL

note: in both cases, object-orientation is added:

Java: OO + imperative core OQL: SQL + OO

3

APPLICATION PROGRAMS VS. DATABASES

(Application) Programs Databases

Runtime Environment Persistent Storage + Access

Operating Modes

single-user multiuser

• user accounts

one-thread concurrency

• transactions

• safety

• access control

• against physical failure

• consistency, integrity

4

APPLICATION PROGRAMS VS. DATABASES

(Application) Programs Databases

user-defined data structures fixed data model

user-defined schema

internal storage aspects

small runtime data large persistent data

program/algorithm query

algorithms internal algorithms

transactions & safety

• A database system is a specialized data structure, with specialized behavior and -in
contrast to most other data structures- specialized programming languages.

• (Note: the same holds for the XML data model.)

5

3-LEVEL ARCHITECTURE OF A DBMS (ANSI/SPARC STANDARD, 1975)

(blue: concrete languages for a relational database)

external
Level

View 1 View 2 View n

SQL views
PL/SQL procs
XML im-/export
HTML pages/forms
Web Services

logical
Level

Starting point:
conceptual

schema
logical schema SQL

internal
Level

physical schema

DB state
...

... Mappings

Mapping

Mapping

• global model of the application domain: conceptual schema

6

Schema Levels

Conceptual schema: The conceptual schema defines the model of the world as
represented in the database, using an abstract formalism: [intended to be stable]

• definition of all relevant object types and relationship types,

• including integrity constraints,

• independent from the implementation,

• changes only rarely after being defined once.

Logical schema: A mapping from the conceptual schema to a concrete data model.

Physical (internal) schema: Data structures for storing the data, and additional auxiliary
structures for more efficient data handling (e.g., indexes).
[can be changed for optimizations]

Views/external schema/subschemata: Depending on the needs of special users, required
object types and relationship types can be defined, derived from the ones that are defined
in the conceptual model. [easily adaptable to users’ needs]

Mappings:

• define how the objects of the logical level are mapped to the physical level.

• define how the objects of the external level are defined based on those of the logical
level.

7

Data Independence

Independence of the three levels:

• levels connected by mappings,

• every level may use a different data model,

• every level can be changed without affecting the others.

logical data independence: Changes and restructurings in the conceptual schema can be
hidden against the external schema (by appropriate redefinition of mappings).

physical data independence: Modifications in the internal schema (splitting a table, adding
an index, etc.) do not effect the conceptual schema (only redefinition of the mappings).

8

Schema and State

On each level, there exist the notions of schema and state:

Database schema: the schema contains the metadata of the database, i.e., describes the
concepts (e.g., object types and relationship types).

Database state: the state of a database (system) is given by the set of all data contained in
the system. It represents the objects and relationships that hold in the application domain
at a given timepoint.

With the time passing, a database passes through several database states.

• The admissible states are defined in terms of the conceptual schema (e.g., by integrity
constraints),

• the database state itself is represented in the physical schema,

• users may access it through their views, using the external schema.

Data Dictionary: contains the definitions and mappings of the schemas.

9

Chapter 2
Data Models

A data model defines modeling (specification-) constructs which can be used for modeling an
application domain (in general, both its (static) data structures and its (dynamic) behavior).

• definition of data structures (object types and relationship types),

• definition of integrity constraints,

• definition of operations and their effects.

A data model consists of

• a Data Definition Language (DDL) for defining the schema: object types, relationship
types, and integrity constraints.

• a Data Manipulation Language (DML) for processing database states (inserting and
modifying data)

Operations are generic operations (querying, inserting, modifying, and deleting objects or
relationships), or procedures that are constructed from basic operations.

10

DATA MODELS

Kinds of Modeling:

• conceptual modeling: abstract model of the semantics of an application

• logical modeling: more formal model, similar to an abstract datatype/API that has actual
implementations

Some prominent data models:

• Network Model (1964; CODASYL Standard 1971; “legacy”); Hierarchical Model

• Entity-Relationship-Model (1976, conceptual model, only static concepts) [this lecture]

• Unified Modeling Language – UML (∼1995, conceptual model) [Software Engineering]
comprehensive formalism for specifying processes, based on the object-oriented model.

• Relational Model (1970; simple, but clear logical model) [this lecture]

• XML (since 1996; popular since 1998) [Semistructured Data and XML lecture]

• RDF data model (since 1997; popular since 200X); even more basic – only a single
ternary relation – (subject, predicate, object) [Semantic Web]

11

2.1 Entity Relationship Model (ERM)

• purely conceptual model :
Abstract description of the application domain in a graphical framework, which is then
transformed into some logical data model (this lecture: relational model).

• This lecture uses the original “Chen Notation”, named after Peter Pin-Shan Chen (born
1947 in Taichung, Taiwan; 1970-73 Harvard, 1974-78 MIT) who published it in 1976 in
“The Entity-Relationship Model – Toward a Unified View of Data” in the ACM Transactions
on Database Systems journal with min..max-Notation for cardinalities.

• some textbooks/lectures [e.g. the IKS lecture in our “Wirtschaftsinformatik” studies] and
design tools use different notations (especially for the relationships and their cardinalities):

– influenced by the earlier “Bachman Diagrams”,

– influenced by the later UML language (1990s);

– most of them do not allow to model n-ary (n > 2) relationships directly.

– information about the min/max-cardinalities is crucial for the mapping to the relational
model.

• independent from what notation/tool you use: if you do it correctly, the result, i.e., the
relational model obtained from the subsequent mapping step, will be the same.

12

2.1.1 Main Structural Concepts

The main structural concepts for describing a schema in the ERM are Entities and
Relationships.

ENTITY TYPES

Entity type: An entity type represents a concept in the real world. It is given as a pair
(E, {A1, . . . , An}), where E is the name and {A1, . . . , An}, n ≥ 0 are the attributes
(literal-valued properties) of a type.

Attribute: a relevant property of entities of a given type. Each attribute can have (literal)
values from a given domain.

Example 2.1
(Continent, {name, area})
(Country, {name, code, population, area}),
(City, {name, population, latitude, longitude, elevation}),
(Province, {name, area, population}), ✷

13

ENTITIES

• An entity set e of an entity type E is a finite set of entities.

• each entity describes a real-world object. Thus, it must be of one of the defined entity
types E. It assigns a value to each attribute that is declared for the entity type E.

Example 2.2
Entity set of the entity type (City, {name, population, latitude, longitude}):

{(name: Aden, population: 250000, latitude: 13, longitude: 50),
(name: Kathmandu, population: 393494, latitude: 27.45, longitude: 85.25),
(name: Ulan Bator, population: 479500, latitude: 48, longitude: 107) } ✷

14

GRAPHICAL REPRESENTATION

• Entity types are represented as rectangles:

Continent

Country

Province

City

Organization

Language

Religion

Ethnic Grp.

River Lake

Sea Island

Desert Mountain

15

• Attributes are represented as ovals:

Country

name
codearea

population government

gross product
independence

inflation

Country

name

Germany

code
D

area
356910

population
83536115

government

federal republic

gross product

1,452,200,000 independence

18.01.1871

inflation

2%

16

RELATIONSHIP TYPES

Relationship type: describes a concept of relationships between entities. It is given as a
triple (B, {RO1 : E1, . . . , ROk : Ek}, {A1, . . . , An}), where B is the name,
{RO1, . . . , ROk}, k ≥ 2, is a list of roles, {E1, . . . , Ek} is a list of entity types associated to
the roles, and {A1, . . . , An}, n ≥ 0 is the set of attributes of the relationship type.

In case that k = 2, the relationship type is called binary, otherwise n-ary.

Roles are pairwise different – the associated entity types are not necessarily pairwise
distinct. In case that Ei = Ej for i 6= j, there is a recursive relationship.

As long as there are no disambiguities, a role may be identified with the corresponding
entity type. Roles are useful e.g. for annotating the semantic aspects of the reality.

Attributes describe relevant properties of relationships of a given type.

Example 2.3
(capital, {Country, City}, ∅),
(encompasses, {Continent, Country}, {percent}),
(belongsto, {Province, Country}, ∅),
(flowsinto, {tributary: River, main: River}, ∅) ✷

17

RELATIONSHIP TYPES AND RELATIONSHIP INSTANCES

• A relationship set b of a relationship type B is a finite set of relationships.

• A relationship (instance) of a relationship type B is defined by the entities that are
involved in the relationship, according to their associated roles. For each role, there is
exactly one entity involved in the relationship, and every attribute is assigned a value.

(see examples next slide)

18

RELATIONSHIPS

City Countryin

Freiburg Germany

recursive relationship type

River flows_into
main river

tributary riverRhein, Main

relationship type with attributes

Continent Countryencompasses

percent
Europe Russia

20

relationship type with roles

City Countrycapitalis of

Berlin Germany

19

Recursive Relationship Types

• Non-symmetric recursive relationship types require the use of roles:

River flows_into
main river

tributary riverRhein, Main

• Symmetric recursive relationship types are indicated by the absence of roles:

Country borders length

Aside – storage aspects:
For symmetric relationship types, it is sufficient to store them only in one direction:

– saves memory;

– define a “view” as symmetric hull over the relation;

– bidirectional storage: risk of inconsistencies, e.g. border(D,CH,334) and
border(CH,D,335).

20

Example: ER Model of a geographical database

Province City

Country Continent

inProv

capital

belongsTo capital

encompasses

borders

code

name

pop.

name

area

pop.

name

pop.

longitude
latitude

name

areapercent

length

21

DATABASE STATES

A (database) state associates the entity types and relationship types of a given schema with
an entity set and a relationship set, respectively.

(cf. examples above – can be represented graphical as a graph/network)

22

2.1.2 Integrity Constraints

There are additional constraints on the admissible database states.

Domains: Every attribute is assigned a domain which specifies the set of admissible values.

Keys: a key is a set of attributes of an entity type, whose values together allow for a unique
identification of an entity amongst all entities of a given type (cf. candidate keys, primary
keys).

Relationship Cardinalities: every relationship type is assigned a cardinality that specifies
the minimal and maximal number of relationships in which an entity of a given type/role
may be involved.

Referential Integrity: each entity which occurs in a relationship in any database state must
also exist in the entity set of this state
(condition is trivial when represented as a graph, but crucial later in the relational model)

... to be described in detail on the following slides

23

KEYS

A key is a set of attributes of an entity type, whose values together allow for a unique
identification of an entity amongst all entities of a given type (cf. candidate keys, primary
keys).

For an entity type (E, {A1, . . . , An}) and an entity set e of E, a set K ⊆ {A1, . . . , An} satisfies
the key constraint if:

• K uniquely identifies any element µ ∈ e, i.e., for all µ1, µ2 ∈ e, if µ1 and µ2 have the same
values for all attributes in K, then µ1 = µ2.

Declaring a set of attributes to be a key thus states a condition on all admissible database
states.

Graphically, key attributes are distinguished by underlining.

24

RELATIONSHIP CARDINALITIES

Every relationship type is assigned a cardinality that specifies the minimal and maximal
number of relationships in which an entity of a given type/role may be involved.

The cardinality of a relationship type B wrt. one of its roles RO is an expression of the form
(min,max) where 0 ≤ min ≤ max, and max = ∗ means “arbitrary many”.

A set b of relationships of relationship type B satisfies the cardinality (min,max) of a role RO
if for all entities µ of the corresponding entity type E the following holds: there exist at least
min and at most max relationships b in which µ is involved in the role RO.

E2

E1

...

Ek

B(min1,max1)

(min2,max2)

(mink,maxk)

25

Example: ER Model of a geographical database

Province City

Country Continent

inProv< 0, ∗ > < 1, 1 >

capital

< 1, 1 > < 0, 1 >

belongsTo

< 1, 1 >

< 1, ∗ >

capital

< 1, 1 >

< 0, 1 >

encompasses< 1, ∗ > < 1, ∗ >

borders

< 0, ∗ >< 0, ∗ >

code

name

pop.

name

area

pop.

name

pop.

longitude
latitude

name

areapercent

length

Footnote: the <1,1> cardinality for country-capital might actually not hold
in exceptional cases. The modeling here expresses the “normality” (will be
used on Slide 56). On the other hand, sometimes the cardinalities are also
used for pointing out the exceptional cases.

26

Comment on Minimal Cardinalities

• Conceptual modeling: minimal cardinality describes the allowed state of an
up-and-running database:

– 0 means the relationship is optional

– 1 means the relationship is mandatory

• during initialization, and when new items are added, these may be temporarily violated
(cf. country-capital <1,1>. How to add a new country?)

Additional Notions for Cardinalities

For binary relationships, the following notions are used:

• if max1 = max2 = 1, it is called a 1 : 1-relationship.
is_capital ⊆ Country × City is a 1:1-relationship

• if max1 > 1,max2 = 1, it is called a n : 1-relationship (functional relationship) from E2 to
E1, and a 1 : n-relationship from E1 to E2.
has_city ⊆ Country × City is a 1:n-relationship

• Otherwise, it is called an n : m-relationship.
borders ⊆ Country × Country is an n:m-relationship

27

ASIDE: AN ALTERNATIVE NOTATION FOR CARDINALITIES

Indicates only the maximum cardinality: 1,2,3, . . .N , M , ...
and is to be read the other way round:

• Each combination (e1, . . . , ei−1, ei+2, . . . , ek) (ej of type Ej) is in relation with at most ni
entities of type Ei:

E1 E2

B
Ek E3

n1 n2

n3nk

Mandatory relationships can be indicated by double lines:

• Each country is a member of arbitrary many organizations (maybe none); each
organization has at least 1, and arbitrary many countries as members (n:m):

Country Organizationis_memberN M

• Each country has at least one, and arbitrary many cities, each city belongs to exactly one
country (1:n):

Country Cityhas_City1 N

28

REFERENTIAL INTEGRITY

Each entity which occurs in a relationship in any database state must also exist in the entity
set of this state.

For a relationship type B with relationship set b, a role RO of B that is connected to an entity
type E with entity set e, b and e satisfy the referential integrity wrt. RO, if for every entity µ
that is associated with some ν ∈ b under the role RO, µ ∈ e holds.

Note:

• referential integrity is inherent to the ER Model, thus, it is not necessary to care for it.

• there are data models (e.g., the relational model (which is described later) where
referential integrity must be enforced explicitly).
(postpone the discussion to the relational model)

29

2.1.3 Further Concepts

WEAK ENTITY TYPES

A weak entity type is an entity type without a key.

Thus entities of such types must be identified by the help of another entity (see the following
figure).

• Weak entity types must be involved in at least one n : 1-relationship with a strong entity
type (where the strong entity type stands on the 1-side).

– such a relationship is called an identifying relationship,

– the corresponding entity type is called an identifying entity type.

• They usually have a local key, i.e., a set of attributes that can be extended by the primary
keys of the corresponding strong entity type to provide a key for the weak entity type (key
inheritance).
(cases where they do not have a local key are rare, but do exist; usually resulting from
reification, cf. Slide 38.)

• Note that weak entity types and their identifying relationship types have a special notation.

30

WEAK ENTITY TYPES

Province

name
area

pop.35751
10272069Baden-W.

City

name

pop.

longitudelatitude

198496

7.848

Freiburg

in Prov.

< 0, ∗ >

< 1, 1 >

Countryin < 1, ∗ >< 1, 1 >

name

code

areapop.

248678

D

61170500

Germany

belongsTo

< 1, 1 >

< 1, ∗ >

There is also a Freiburg/CH
and Freiburg/Elbe, LowerSaxony (Niedersachsen)
(Note: Province is also itself a weak entity type since several countries have provinces with
the same name (e.g., Western, Distrito Federal, Amazonas))

31

EXTENSIONS OF THE ERM: MULTIVALUED AND COMPLEX ATTRIBUTES

Attributes can be

• set-valued or multi-valued,

• structured

Country Mountainlanguage geo coord

latitude

longitude

32

EXTENSIONS OF THE ERM: GENERALIZATION/SPECIALIZATION

• covers the general idea of a class hierarchy between entity types.

E

E1 . . . Ek

E is called supertype, Ei are subtypes for 1 ≤ i ≤ k. Each entity of a subtype s also an
entity of the supertype.

• The common attributes and relationships are assigned to the more general type.

• The attributes and relationships of the supertype are also applicable to the subtypes
(which may define further attributes and relationships).

33

Generalization/Specialization

• Geographical things such as rivers, lakes, seas, mountains, deserts, and islands (no
lowlands, highlands, savannas, fens, etc). All such geographical things have in common
that they have names and theat they are involved in in-relationships with countries.

• Rivers, lakes, and seas are waters. These can e.g. be involved in located-at relationships
with cities.

Geo Country

g

Mountain Island Desert Water City

s g

Volcano River Lake Sea

in< 1, ∗ > < 0, ∗ >name

located_at< 0, ∗ > < 0, ∗ >

length depth area

elevation

depth area

34

Generalization/Specialization

Integrity Constraints (cf. UML)

• Common integrity constraints ISA: ISA is satisfied in a database state if the entity sets of
the subtypes are subsets of the entity sets of the supertype,

• optional integrity constraint Disjointness: if the entity sets of the subtypes are disjoint,

• optional integrity constraint Covering: if the union of the entity sets of the subtypes cover
the entity set of the supertype.

Intuition Annotations

• Generalization g

Bottom-up: from the subclasses, the superclass is “discovered” as a general concept.

• Specialization s

Top-Down: from the superclass, subclasses are “discovered” as restricted concepts.

• generalization usually leads to “covering”, and in most cases also to disjointness.

• specialization usually leads to non-covering.

35

EXTENSIONS OF THE ERM: AGGREGATION

The ERM does not allow to define relationship types that involve relationship types (note that
attributes of relationship types are allowed).

• This restriction can be overcome by defining artificial entity types for “the relationship”.

A river flows (finally) into a sea/lake/river; more detailed, such a relationship instance is
related to one or two countries:

River Waterflows into< 0, 2 > < 0, ∗ >

Country

< 0, ∗ >

latitude

longitude

This representation is ambiguous: A river could flow into two waters!?
(at different latitude/longitudes?)

36

Aggregation

• originally introduced in J. Smith, D. Smith: Database Abstractions: Aggregation.
In: Comm. of the ACM. Vol. 20, Nr. 6, 1977, pp. 405-413

Using an “aggregation entity type”, this information can be specified much clearer by
introducing an aggregate type estuary for the “river flows into another water” relationship:

Estuary

River Waterflows into< 0, 1 > < 0, ∗ >

Country

in

< 1, 2 >

< 0, ∗ >

latitude

longitude

The cardinalities allow for expressing a more detailed semantics than with the plain ternary
relationship type.

37

General Modeling Strategy: Reification

• Since the 1990s, this modeling strategy is called Reification (“turning something into a
thing”), and applied in several modeling approaches (ERM, UML, XML, RDF)
(UML: [Software Engineering Lecture] Association classes)

• Reification can replace ER-specific modeling concepts like n-ary relationship types or
aggregation entity types by introducing new (usually weak) entity types, and then using
binary relationships only.

River Estuary Water

Country

has Est.< 0, 1 > < 1, 1 > into< 1, 1 > < 0, ∗ >

in

< 1, 2 >

< 0, ∗ >

name
latitude

longitude

Estuary does not
have a local key,
river.name is
sufficient

Aside: in UML, associations (=relationships)
cannot have attributes⇒ reification needed.

• For country-isMember(type)-organization
the “reified thing” exists, as a contract.

• country-encompassed(percent)-continent:
the “reified thing” does not exist in reality.

38

2.1.4 Discussion ERM

• With the structuring concepts of the ERM and its extensions, the static aspects of a
relevant excerpt of the real world can be modeled semantically adequate in a natural way.

• The graphical representation is also understandable for non-computer-scientists.

• The ERM is useful

– in the early stages of the design of the database (i.e., when designing the conceptual
schema) when discussions with the potential users take place.

– for documentation (!)

• The ERM can easily be transformed into the data models of existing, real-world database
systems (especially, into the relational model – as will be shown in the sequel).

• There are no relevant DBMS that use the ERM directly. They are subsumed by
object-relational and object-oriented DBMS (and more recently also by RDF-DBMS).

39

DISCUSSION ERM (CONT’D)

• There is a more complex and more expressive language:
UML (Unified Modeling Language):

– static aspects are described in more detail than in the ERM, using notions of a fully
object-oriented model,

– dynamic aspects are also described graphically,

– coarser granularities for describing information systems and workflows are provided.

40

SUMMARY: GRAPHICAL NOTATION OF ER CONSTRUCTS

Entity Type weak entity type

relationship type identifying relationship type

scalar attribute key attribute

multivalued attribute complex attribute

g/s generalization,

specialization

“aggregation”

(=reification)

Convention: names of entity types start with a capital letter, names of relationship types and
attributes start with non-capital letters.

41

2.1.5 Some Exercises

Exercise 2.1
Consider a binary relationship type and the cardinalities (0, 1) and (1, ∗). Investigate all
possible ways how to assign these relationship cardinalities to the relationship type. For each
variant, give a nontrivial state that satisfies them, and a state that violates them. ✷

Exercise 2.2
Discuss ER schemata for the following scenario:

• All students work on projects. For this, they need tools. ✷

42

SOME EXERCISES (CONT’D)

Exercise 2.3
Consider a ternary relationship type between the entity types supplier, product, and part
(where suppliers deliver parts for a product).

Supplier

Product Part

delivers

• Check whether this situation can be represented by using only binary relationship types.

– Under which conditions is it possible?

– Can such situations be described by the relation cardinalities?

• Show that for an ER schema consisting of a ternary relationship there is always an
equivalent ER-Schema that consists of three binary relationship types and an additional
entity type. ✷

43

DEVELOPMENT OF A DATABASE APPLICATION

(cf. 3-Level-Architecture, Slide 6)

Conceptual Design: structuring of the requirements for the representation of the relevant
excerpt of the real world:

• independent from the database system to be used (phys. level),

• independent from the detailed views of the users (external schema).

results in the conceptual schema, in general an ER schema (or specified in UML).

... but this cannot be “used” in a real database.

Implementation Design: convert into the actual, logical schema of the logical level in a
logical model (Relational Model),

(process to be continued then on Slide 49)

44

2.2 Relational Model (RM)

• Relational Model by Codd (1970): mathematical foundation: set theory,

• only a single structural concept Relation,

• entity/object types and relationship types are uniformly modeled by relation schemata.

• properties of entities/objects and relationships are represented by attributes (in the
relation schemata).

• a relation schema consists of a name and a set of attributes,
Continent: name, area

• each attribute is associated with a domain that specifies the allowed values of the
attribute. Often, attributes also can have a null value.
Continent: name: VARCHAR(25), area: NUMBER

• “First Normal Form”: only domains of atomic datatypes, no records, lists, sets etc.

• A (relational) database schema R is given by a (finite) set of (relation) schemata.
Continent: . . . ; Country: . . . ; City: . . . ; encompasses: . . . ; isMember: . . .

• for every relation, a set of (primary) key attributes is distinguished

45

2.2.1 Relations

• A (database) state associates each relation schema to a relation.

• elements of a relation are called tuples.
Every tuple represents an entity or a relationship. (name: Asia, area: 4.5E7)

• relations are unordered. Columns are also unordered.

Example:
Continent

name area

VARCHAR(20) NUMBER

Europe 10523000

Africa 30221500

Asia 44614500

North America 24709000

South America 17840000

Australia 9000000

46

Relations: Example

Continent

name area

Europe 10523000

Africa 30221500

Asia 44614500

North America 24709000

South America 17840000

Australia 9000000

Country

name code population area ...

Germany D 83536115 356910

Sweden S 8900954 449964

Russia R 143666931 17075200

Poland PL 38642565 312683

Bolivia BOL 1098580 7165257

..

encompasses

country continent percent

VARCHAR(4) VARCHAR(20) NUMBER

R Europe 20

R Asia 80

D Europe 100

.

• with referential integrity constraints
(to be explained later)

• references to keys

47

Graphical representation of the relational schema of the MONDIAL database (excerpt):

Organization
name

✄ abbrev
city ✄
country ✄
province ✄
established

isMember
✁ organization
✁ country

type

Country
name

✄ code ✄
capital ✄
province ✄
area
population

borders
✁ country1
✁ country2

length

located
✁ city
✁ country
✁ province

river ✄
lake ✄
sea ✄

City
✄ name
✄ country ✄
✄ province ✄

population
latitude
longitude
elevation

Province
name ✁

✁ country ✁
area
population

✁ capital
✁ capprov

geo_lake
lake ✄

✁ country
✁ province

Lake
✄ name

area
elevation

geo_river
river ✄

✁ country
✁ province

River
✄ name

length
✁ river
✁ lake
✁ sea

geo_sea
sea ✄

✁ country
✁ province

Sea
✄ name

depth
area

48

DEVELOPMENT OF A DATABASE APPLICATION

(cf. 3-Level-Architecture, Slide 6 and Slide 44)

Conceptual Design: structuring of the requirements for the representation of the relevant
excerpt of the real world:

• independent from the database system to be used (phys. level),

• independent from the detailed views of the users (external schema),

results in the conceptual schema, in general an ER schema (or specified in UML).

Implementation Design: Mapping from the conceptual schema to the notions of the
database system to be used.
The result is the logical schema, usually a relational schema (or an object-oriented
schema, or – in earlier times – a network database schema).

• this mapping is described next,

• then realize it in the database (SQL) ...

49

DEVELOPMENT OF A DATABASE APPLICATION (CONT’D)

Physical Design: definition of the actual storage and appropriate auxiliary data structures
(for enhanced efficiency).

• don’t worry: creating the logical schema in an SQL database automatically creates a
structure on the physical level
(this is the advantage of having the relational model as a kind of an abstract datatype that
is implemented in a standardized way by relational databases).

Detailed Physical Design: optionally/later: finetuning of the physical level.

Implementation of the External Level:

• clarify the requirements on the external level by using the conceptual model, adapt to daily
users’ needs (forms, presentations, reports, data exchange interfaces, ...),

• implement the external level based on the logical model.

Note:
“Classical” database design is restricted to the modeling of (static) structures, not considering
the (dynamic) processes resulting from the execution (see UML).

50

2.3 Logical Schema: Mapping ERM to RM

Starting with the ER schema, the relational schema is designed.

[Overview slide]

Let EER an entity type and RER a relationship type in the ERM.

• Entity types: (EER, {A1, . . . , An})→ E(A1, . . . , An),

• For weak entity types, the key attributes of the identifying entity type must be added.

• Relationship types:
(RER, {RO1 : E1, . . . , ROk : Ek}, {A1, . . . , Am})→
B(E1_K11, . . . , E1_K1p1 , . . . , Ek_Kk1, . . . , Ek_Kkpk

, A1, . . . , Am) ,

where {Ki1, . . . , Kipi} are the primary keys of Ei, 1 ≤ i ≤ k.

– Renaming of foreign key attributes is allowed
(e.g. coinciding attribute names in different referenced keys)

In case that k = 2 and a (1,1) relationship cardinality, the relation schema of the
relationship type and that of the entity type may be merged.

• Aggregate types can be ignored if the underlying relationship type is mapped.

51

ENTITY TYPES

(EER, {A1, . . . , An})→ E(Ai1 , . . . , Aik)

where {Ai1 , . . . , Aik} ⊆ {A1, . . . , An} are the scalar (i.e., not multivalued) attributes of EER –
multivalued attributes are mapped separately.

continentname area

Asia 4.5E7

Continent

name area

VARCHAR(20) NUMBER

Europe 10523000

Africa 30221500

Asia 44614500

North America 24709000

South America 17840000

Australia 9000000

The candidate keys of the relation are the candidate keys of the entity type.

52

MULTIVALUED ATTRIBUTES

... one thing left:

Attributes of relations must only be single values.

(EER, {A1, . . . , Ai, . . . , An}) where Ai is a multivalued attribute
→ E_Ai(K1, . . . , Kp, Ai)

where {K1, . . . , Kp} are the primary keys of E.
(renaming is allowed, especially if there is only one key attribute)

{K1, . . . , Kp, Ai} are the primary keys of the relation E_Ai.

Countrycode language

Languages

country language

D German

CH German

CH French

.. ..

53

WEAK ENTITY TYPES

For weak entity types, the key attributes of the identifying entity type(s) must be added.

Country

in

name

area pop.

code

356910 83536115

Germany D

Province

in Prov.

name

area pop.

35751 10272069

Baden-W.

Cityname pop.

198496Freiburg

< 1, 1 >

< 1, 1 >

City

name country province population ...

Freiburg D Baden-W. 198496 ..

Berlin D Berlin 3472009 ..

Freiburg CH FR NULL ..

Cordoba E Andalucia 328326 ..

Cordoba RA Cordoba 1207774 ..

..

54

RELATIONSHIP TYPES

(RER, {RO1 : E1, . . . , ROk : Ek}, {A1, . . . , Am})→
B(E1_K11, . . . , E1_K1p1 , . . . , Ek_Kk1, . . . , Ek_Kkpk

, A1, . . . , Am)

where {Ki1, . . . , Kipi} are the primary keys of Ei, 1 ≤ i ≤ k.
(it is allowed to rename, e.g., to use Country for Country.Code)

Continent Countryencompasses

name

Europe

code

R

percent

20

encompasses

country continent percent

VARCHAR(4) VARCHAR(20) NUMBER

R Europe 20

R Asia 80

D Europe 100

.

• Note: for references to weak entity types, the global key must be used (exercise:
located_on as an n:m relationship between cities and islands).

55

Relationship Types: 1:n-Relationships

In case that k = 2 (binary relationship) and a (0,1)- or (1,1)-relationship cardinality (i.e.,
n:1-relations), the relation schema of the relationship type and that of the entity type can be
merged (into the relation schema for the entity type)

Example: the “capital” relationship can be merged into the “country” table (or, less intuitively,
into the “city” table, where the <0,1> indicates that it would generate lots of NULL values).

Country

City

is_capital

< 1, 1 >

< 0, 1 >

name

Germany

code

D

name

Berlin

pop.

3472009

Country

name code population capital province ...

Germany D 83536115 Berlin Berlin ..

Austria A 8023244 Vienna Vienna ..

Canada CDN 28820671 Ottawa Quebec ..

Bolivia BOL 7165257 La Paz Bolivia ..

..

Other examples: headquarters of organizations, flows_into (the latter is a bit more complex
because a river flows into another river, a lake, or a sea).

56

Recursive Symmetric Relationship Types

• recursive non-symmetric relationship types (river-flowsInto):
use role names as column names.

• recursive symmetric relationship types (borders): invent column names

– Symmetric storage would introduce redundancy and risk for inconsistencies.
Store only one direction and create a symmetric SQL view from it (belongs to the
“external level” of the 3-level-architecture)

Countrycode name

borders

< 0, ∗ >< 0, ∗ >

length

borders

country1 country2 length

D F 451

F D 450

D CH 334

CH F 573

: : :
SQL view (see later)

CREATE VIEW symmborders AS
(SELECT * FROM borders) UNION (SELECT country2, country1, length FROM borders)

57

EXERCISE

Exercise 2.4
Give a relational schema for the following ER schema:

Supplier

Product Part

delivers

< 0, ∗ >

< 0, ∗ > < 0, ∗ >

component

< 0, ∗ >belongs to

< 0, ∗ > contains

nr

name

addr

nr
name

color weight

nrname

amount date

58

2.4 Relational Databases – Formalization

SYNTAX

(note the similarities with first-order logic)

• A (relational) signature is a set of relation schemata Ri(X̄i).

• a relation schema R(X̄) consists of a name (here, R) and a finite set X̄ = {A1, . . . , Am},
m ≥ 1 of attributes.
X̄ is the format of the schema.

• a (relational) database schema R consists of a relational signature (i.e., a set of
(relation) schemata), optionally with integrity constraints.

• alternative notations for relation schemata:

– abbreviation: R(A1, . . . , An) instead of R({A1, . . . , An}).
– if the order of the attributes {A1, . . . , Am} is relevant (i.e., for representation as a

table), X̄ is denoted as a vector [A1, . . . , Am].

59

RELATIONAL DATABASES – FORMALIZATION: DOMAINS

Consider a relation schema R(X̄)

• each attribute A ∈ X̄ is associated to a (non-empty) domain of atomic values, called
dom(A).

• dom(X̄) := dom(A1)× . . .× dom(Am).

• Example: Continent(name, area)
dom(continent.name) = VARCHAR, dom(continent.area) = NUMBER
dom(Continent) = VARCHAR × NUMBER

Note the following:

• the assignment of domains to attributes belongs to the database schema.

• in first-order logic, the definition of the domain of a structure belongs to the semantics.

60

RELATIONAL DATABASES – FORMALIZATION: SEMANTICS

• A (relational) database (or, more explicitly, a database state) S (over
R = {R1(X̄1), . . . , Rn(X̄n)}) is a relational structure over R.

• A relational structure S associates each Ri(X̄i) to a relation S(Ri) over X̄i.

• elements of a relation are called tuples.
(every tuple represents an entity or a relationship.)
Note: as a set of tuples, there cannot be two tuples that have all the same values.

• a tuple µ over X̄ is a mapping µ : X̄ → dom(X̄); or, for each individual attribute,
µ : A→ dom(A).
Tup(X̄) denotes the set of all tuples over X̄.

Example: Consider tuples in the Continent(name, area) table:
µ = name 7→ “Asia”, area 7→ 44614500

with µ(name) = “Asia”, µ(area) =44614500

• a relation r over X̄ is a finite set r ⊆ Tup(X̄) – usually represented by a table.

• Rel(X̄) := 2Tup(X̄) is the set of all relations over X̄ .

61

PERSPECTIVES: RELATIONAL VS. SET THEORY

• Relations are sets of tuples.
⇒ relational algebra

PERSPECTIVES: RELATIONAL VS. FIRST-ORDER LOGIC

• database schema = relational signature = first-order signature without function symbols

• database = relational structure = first-order structure (without function symbols)
(some autors use the term “interpretation” instead of “structure”)

Relational theory is based on “classical” logic results:
⇒ relational calculus

• first-order logic

• finite model theory

• complexity results

• (deductive databases)

62

KEYS

While in the ER model, the keys serve only for an intuitive modeling, in relational database
design they play an important role for the database performance and for the ability of the
database to incorporate and maintain key constraints.

The notion of keys is defined as for the ER model:

For a set K̄ ⊆ X̄ of attributes of a relation schema R, a relation r ∈ Rel(X̄) satisfies the key
constraint K̄ if for all tuples µ1, µ2 ∈ r:

If µ1(K̄) = µ2(K̄) (i.e., µ1 and µ2 coincide on the values of K̄), then µ1 = µ2.

More Concrete Requirements on Keys

(to be formalized on the next slides)

• keys should be minimal: no subset K̄ ′ (K̄ satisfies the key property,

• no “embedded relations” (i.e., partial functional dependencies): for no subset X̄ ′ (X̄ of
the attributes of R, any subset K̄ ′ (K̄ satisfies the key property wrt. X̄ ′.
[3rd Normal Form, cf. Slide 374; Example see Slide 67]

63

KEYS: ADDITIONAL FORMAL REQUIREMENTS

The relational model provides a more concise formalization of keys (cf. Slide 326 ff. on
Normalization Theory for details).

These are based on the definition of functional dependencies:

Given a relation R(X̄), V̄ , W̄ ⊆ X̄.
r satisfies the functional dependency (FD) V̄ → W̄ if for all tuples µ1, µ2 ∈ r,

µ1(V̄) = µ2(V̄)⇒ µ1(W̄) = µ2(W̄) .

(“W̄ functionally depends on V̄ ”)

Example 2.4
Consider the relation schema Country(name, code, area, population, capital, capprov).

The following functional dependencies hold wrt. the intended application domain:

{code}→ {name}, {name}→ {code}
{code}→ {area, population, capital, capprov}
{code}→ {name, code, area, population, capital, capprov}
{name}→ {name, code, area, population, capital, capprov} ✷

64

Keys (Cont’d)

• In general, there are more than one key (called candidate keys) for a relation schema R.

• One of these candidate keys is distinguished (by the designer) to be the primary key.
In the schema, it is represented by underlining these attributes.

65

KEYS: ADDITIONAL FORMAL REQUIREMENTS

• Formalization of the Key Constraint:
K̄ ⊆ X̄ is a possible key of R(X̄) if K̄ → X̄.

Additionally:

• keys must be minimal, i.e., no subset K̄ ′ (K̄ satisfies the key property:
there is no subset K̄ ′ (K̄ s.t. K̄ ′ → X̄.
(otherwise: take K̄ ′ as key)

• every single attribute should be fully dependent on the complete key: for every
A ∈ (X̄ \ K̄): there is no subset K̄ ′ (K̄ s.t. K̄ ′ → A.
(otherwise: if there is some attribute that depends only on a part of the key, split this
relationship into a separate table, cf. example on Slide 67 and section on Normalization
Theory, Slide 326.)

Although looking formally, the second criterion is also easy to understand and prevents
bad/dangerous database design.

66

Keys and Database Design: Example
Country (bad schema)

Name Code Language Percent Population Area Capital Province

Germany D German 100 83536115 356910 Berlin Berlin

Switzerland CH German 65 7207060 41290 Bern BE

Switzerland CH French 18 7207060 41290 Bern BE

Switzerland CH Italian 12 7207060 41290 Bern BE

: : : : : : : :

• the database is redundant

• needs more space, less efficient to query

• update anomalies/risks: updating Swiss population requires to update all three lines,
otherwise inconsistent information

Dependency analysis:

Keys: {Code, Language} or {Name, Language}, but
e.g. already {Code}→ {Population, Capital}

Split into Country(Name, Code, Population, Capital, Province) and Languages(Code,
Language, Percent).

67

Keys and Database Design

• A good ER model and straightforward translation as introduced in the previous section
leads to a good relational design

• determining the keys is helpful in validating the design:

• for tables obtained from translating entity types, the keys are the same as in the ER model
(for weak entity types: including those of the identifying entity types; cf. Country)

• the handling of multivalued attributes as shown on Slide 53 is a consequence of the
functional dependency analysis (same case as in the above example)

• for relations that represent relationship types: see exercise below.

Exercise: Keys of relations obtained from relationships

Discuss how the keys of the relations that are obtained from relationship types are
determined. Which alternative scenarios have to be considered?

• consider binary relationships systematically,

• what about ternary relationships?

68

INCLUSION CONSTRAINTS AND REFERENTIAL INTEGRITY

Consider relation schemata R1(X̄1) and R2(X̄2). Let Ȳ1 ⊆ X̄1 and Ȳ2 ⊆ X̄2 two attribute
vectors of the same length.

r1 = S(R1) and r2 = S(R2) satisfy an inclusion constraint R1.Ȳ1 ⊆ R2.Ȳ2 if and only if for
all µ1 ∈ r1 there is a µ2 ∈ r2 s.t. µ1(Ȳ1) = µ2(Ȳ2).

Referential Integrity

• if Ȳ2 is the key of R2, there is a referential integrity constraint from R1.Ȳ1 to R2.Ȳ2.

– Ȳ1 is called a foreign key in R1 that references R2.Ȳ2.

• encompasses.continent ⊆ Continent.name

• encompasses.country ⊆ Country.code

Referential integrity constraints result from incorporating the keys of the participating entities
into the table that represents the relationship.

69

NULL VALUES – UNKNOWN VALUES

• up to now, tuples are total functions.

• if for some attribute, there is no value, a null value can be used

Semantics:

– “value exists, but is unknown”
(e.g., geo-coordinates of some cities)

– “value does not yet exist, but will exist in the future”
(e.g., inflation of a newly founded country)

– “attribute not applicable” (e.g. “last eruption date” for mountains other than volcanoes)

• a partial tuple over X̄ is a mapping s.t.

for all A ∈ X̄, µ(A) ∈ dom(A) ∪ {null}.

A relation is called partial if it contains partial tuples.

70

2.4.1 Exercise

Exercise 2.5
Consider the relation schema R(X̄), where X̄ = {A,B} and dom(A) = dom(B) = {1, 2}.

• Give Tup(X̄) and Rel(X̄).

• A is a key of R. Which relations r ∈ Rel(X̄) violate the key constraint? ✷

71

Chapter 3
Relational Database Languages:
Relational Algebra

We first consider only query languages.

Relational Algebra: Queries are expressions over operators and relation names.

Relational Calculus: Queries are special formulas of first-order logic with free variables.

SQL: Combination from algebra and calculus and additional constructs. Widely used DML
for relational databases.

QBE: Graphical query language.

Deductive Databases: Queries are logical rules.

72

RELATIONAL DATABASE LANGUAGES: COMPARISON AND OUTLOOK

Remark:

• Relational Algebra and (safe) Relational Calculus have the same expressive power.
For every expression of the algebra there is an equivalent expression in the calculus, and
vice versa.

• A query language is called relationally complete, if it is (at least) as expressive as the
relational algebra.

• These languages are compromises between efficiency and expressive power; they are
not computationally complete (i.e., they cannot simulate a Turing Machine).

• They can be embedded into host languages (e.g. C++ or Java) or extended (PL/SQL),
resulting in full computational completeness.

• Deductive Databases (Datalog) are more expressive than relational algebra and calculus.

73

3.1 Relational Algebra: Computations over Relations

Operations on Tuples – Overview Slide

Let µ ∈ Tup(X̄) where X̄ = {A1, . . . , Ak}.
(Formal definition of µ see Slide 61)

• For ∅ ⊂ Ȳ ⊆ X̄, the expression µ[Ȳ] denotes the projection of µ to Ȳ .

Result: µ[Ȳ] ∈ Tup(Ȳ) where µ[Ȳ](A) = µ(A), A ∈ Ȳ .

• A selection condition α (wrt. X̄) is an expression of the form AθB or Aθ c, or c θ A
where A,B ∈ X̄, dom(A) = dom(B), c ∈ dom(A), and θ is a comparison operator on that
domain like e.g. {=,6=,≤,<,≥,>}.
A tuple µ ∈ Tup(X̄) satisfies a selection condition α, if – according to α – µ(A) θ µ(B) or
µ(A) θ c, or c θ µ(A) holds.

These (atomic) selection conditions can be combined to formulas by using ∧, ∨, ¬, and
(,).

• For Ȳ = {B1, . . . , Bk}, the expression µ[A1 → B1, . . . , Ak → Bk] denotes the renaming
of µ.

Result: µ[. . . , Ai → Bi, . . .] ∈ Tup(Ȳ) where µ[. . . , Ai → Bi, . . .](Bi) = µ(Ai) for 1 ≤ i ≤ k.

74

Let µ ∈ Tup(X̄) where X̄ = {A1, . . . , Ak}.

Projection (Reduction to a subset of the attributes)

For ∅ ⊂ Ȳ ⊆ X̄, the expression µ[Ȳ] denotes the projection of µ to Ȳ .

Result: µ[Ȳ] ∈ Tup(Ȳ) where µ[Ȳ](A) = µ(A), A ∈ Ȳ .

projection to a given set of attributes

Example 3.1
Consider the relation schema R(X̄) = Continent(name, area): X̄ = [name, area]

and the tuple µ = name 7→ “Asia”, area 7→ 4.50953e+07 .

formally: µ(name) = “Asia”, µ(area) = 4.5E7

projection attributes: Let Ȳ = [name]

Result: µ[name] = name 7→ “Asia” ✷

75

Again, µ ∈ Tup(X̄) where X̄ = {A1, . . . , Ak}.

Selection (only those tuples that satisfy some condition)

A selection condition α (wrt. X̄) is an expression of the form AθB or Aθ c, or c θ A where
A,B ∈ X̄, dom(A) = dom(B), c ∈ dom(A), and θ is a comparison operator on that domain
like e.g. {=, 6=,≤,<,≥,>}.
A tuple µ ∈ Tup(X̄) satisfies a selection condition α, if – according to α – µ(A) θ µ(B) or
µ(A) θ c, or c θ µ(A) holds.

yes/no-selection of tuples (without changing the tuple)

Example 3.2
Consider again the relation schema R(X̄) = continent(name, area): X̄ = [name, area].

Selection condition: area > 20000000.

Consider again the tuple µ = name 7→ “Asia”, area 7→ 4.50953e+07 .

formally: µ(name) = “Asia”, µ(area) = 4.5E7

check: µ(area) > 20000000

Result: yes. ✷

These (atomic) selection conditions can be combined to formulas by using ∧, ∨, ¬, and (,).

76

Let µ ∈ Tup(X̄) where X̄ = {A1, . . . , Ak}.

Renaming (of attributes)

For Ȳ = {B1, . . . , Bk}, the expression µ[A1 → B1, . . . , Ak → Bk] denotes the renaming of µ.

Result: µ[. . . , Ai → Bi, . . .] ∈ Tup(Ȳ) where µ[. . . , Ai → Bi, . . .](Bi) = µ(Ai) for 1 ≤ i ≤ k.

renaming of attributes (without changing the tuple)

Example 3.3
Consider (for a tuple of the table R(X̄) = encompasses(country, continent, percent)):

X̄ = [country, continent, percent].

Consider the tuple µ = country 7→ “R”, continent 7→ “Asia”, percent 7→ 80 .

formally: µ(country) = “R”, µ(continent) = “Asia”, µ(percent) = 80

Renaming: Ȳ = [code, name, percent]

Result: a new tuple µ[country → code, continent→ name, percent→ percent] =

code 7→ “R”, name 7→ “Asia”, percent 7→ 80 that now fits into the schema
new_encompasses(code, name, percent). ✷

The usefulness of renaming will become clear later ...

77

EXPRESSIONS IN THE RELATIONAL ALGEBRA

What is an algebra?

• An algebra consists of a "domain" (i.e., a set of "things"), and a set of operators.

• Operators map elements of the domain to other elements of the domain.

• Each of the operators has a "semantics", that is, a definition how the result of applying it
to some input should look like.

• Algebra expressions are built over basic constants and operators (inductive definition).

Relational Algebra

• The "domain" consists of all relations (over arbitrary sets of attributes).

• The operators are then used for combining relations, and for describing computations -
e.g., in SQL.

• Relational algebra expressions are defined inductively over relations and operators.

• Relational algebra expressions define queries against a relational database.

78

INDUCTIVE DEFINITION OF EXPRESSIONS

Atomic Expressions - Base Cases of the Inductive Definition

• For an arbitrary attribute A and a constant c ∈ dom(A), the constant relation A : {c} is
an algebra expression.

Format: [A]
Result relation: {µ} with µ = (A 7→ c)

A:{c}

A

c

• Given a database schema R = {R1(X̄1), . . . , Rn(X̄n)}, every relation name Ri is an
algebra expression.

Format of Ri: X̄i

Result relation (wrt. a given database state S): the relation S(Ri) that is currently stored
in the database.

79

Structural Induction: Applying an Operator

• takes one or more input relations in1, in2, . . .

• produces a result relation out:

– out has a format,
depends on the formats of the input relations.

– out is a relation, i.e., it contains some tuples,
depends on the content of the input relations.

• Note: the relational algebra is based on mathematical set theory
⇒ sets do not contain duplicates, i.e., whenever duplicates would occur, they are
immediately removed.
(SQL in contrast is based on multisets that can contain duplicates)

80

BASE OPERATORS

Let X̄, Ȳ formats and r ∈ Rel(X̄) and s ∈ Rel(Ȳ) relations over X̄ and Ȳ .

Union

Assume r, s ∈ Rel(X̄).
Result format of r ∪ s: X̄

Result relation: r ∪ s = {µ ∈ Tup(X̄) | µ ∈ r or µ ∈ s}.

r =

A B C

a b c
d a f
c b d

s =

A B C

b g a
d a f

r ∪ s =

A B C

a b c
d a f
c b d
b g a

(note: no duplicates in the result - based on set theory)

81

Set Difference

Assume r, s ∈ Rel(X̄).
Result format of r \ s: X̄

Result relation: r \ s = {µ ∈ r | µ 6∈ s}.

r =

A B C

a b c
d a f
c b d

s =

A B C

b g a
d a f

r \ s =
A B C

a b c
c b d

82

Projection (Reduction to a subset of the attributes)

Assume r ∈ Rel(X̄) and Ȳ ⊆ X̄.
Result format of π[Ȳ](r): Ȳ

Result relation: π[Ȳ](r) = {µ[Ȳ] | µ ∈ r}.

Example 3.4

Continent Let Ȳ = [name] π[name](Continent)

name area name

Europe 10523000 µ1[name] = name 7→ “Europe” Europe

Africa 30221500 µ2[name] = name 7→ “Africa” Africa

Asia 44614500 µ3[name] = name 7→ “Asia” Asia

N. America 24709000 µ4[name] = name 7→ “N.America” N.America

S. America 17840000 µ4[name] = name 7→ “S.America” S.America

Australia 9000000 µ5[name] = name 7→ “Australia” Australia
✷

83

Selection (Reduction of number of tuples by a condition)

Assume r ∈ Rel(X̄) and a selection condition α over X̄.

Result format of σ[α](r): X̄

Result relation: σ[α](r) = {µ ∈ r | µ satisfies α}.

Example 3.5

Continent Let α = “area > 20000000”

name area

Europe 10523000 µ1(area) > 20000000?– no

Africa 30221500 µ2(area) > 20000000?– yes

Asia 44614500 µ3(area) > 20000000?– yes

N. America 24709000 µ4(area) > 20000000?– yes

S. America 17840000 µ4(area) > 20000000?– no

Australia 9000000 µ5(area) > 20000000?– no

σ[area > 20E6](Continent)

name area

Africa 30221500

Asia 44614500

N.America 24709000

✷

84

Renaming (of attributes)

Assume r ∈ Rel(X̄) with X̄ = [A1, . . . , Ak] and a renaming [A1 → B1, . . . , Ak → Bk].

Result format of ρ[A1 → B1, . . . , Ak → Bk](r): [B1, . . . , Bk]

Result relation: ρ[A1 → B1, . . . , Ak → Bk](r) = {µ[A1 → B1, . . . , Ak → Bk] | µ ∈ r}.

Example 3.6
Consider the renaming of the table encompasses(country, continent, percent):

X̄ = [country, continent, percent]

Renaming: Ȳ = [code, name, percent]

ρ[country → code, continent→ name, percent→ percent](encompasses)

code name percent

R Europe 20

R Asia 80

D Europe 100
...

...
...

✷

85

(Natural) Join (Combining two relations via common attributes)

Assume r ∈ Rel(X̄) and s ∈ Rel(Ȳ) for arbitrary X̄, Ȳ .

Convention: For X̄ ∪ Ȳ , as a shorthand, write XY .
for two tuples µ1 = v1, . . . , vn and µ2 = w1, . . . , wm , µ1µ2 := v1, . . . , vn, w1, . . . , wm .

Result format of r ⊲⊳ s: XY .
Result relation: r ⊲⊳ s = {µ ∈ Tup(XY) | µ[X̄] ∈ r and µ[Ȳ] ∈ s}.

Motivation

Simplest Case: X̄ ∩ Ȳ = ∅ ⇒ Cartesian Product r ⊲⊳ s = r × s
r × s = {µ1µ2 ∈ Tup(XY) | µ1 ∈ r and µ2 ∈ s}.

r =

A B

1 2

4 5

s =

C D

a b

c d

e f

r ⊲⊳ s =

A B C D

1 2 a b

1 2 c d

1 2 e f

4 5 a b

4 5 c d

4 5 e f

86

Example 3.7 (Cartesian Product of Continent and Encompasses)
The cartesian product combines everything with everything, not only “meaningful”
combinations:

Continent× encompasses

name area continent country percent

Europe 10523000 Europe D 100

Europe 10523000 Europe R 20

Europe 10523000 Asia R 80

Europe 10523000 : : :

Africa 30221500 Europe D 100

Africa 30221500 Europe R 20

Africa 30221500 Asia R 80

Africa 30221500 : : :

Asia 44614500 Europe D 100

Asia 44614500 Europe R 20

Asia 44614500 Asia R 80

Asia 44614500 : : :

: : : : :

87

Back to the Natural Join
General case X̄ ∩ Ȳ 6= ∅: shared attribute names constrain the result relation.

Again the definition: r ⊲⊳ s = {µ ∈ Tup(XY) | µ[X̄] ∈ r and µ[Ȳ] ∈ s}.
(Note: this implies that the tuples µ1 := µ[X̄] ∈ r and µ2 := µ[Ȳ] ∈ s coincide in the shared
attributes X̄ ∩ Ȳ)

Example 3.8
Consider encompasses(country,continent,percent) and isMember(organization,country,type):

encompasses

country continent percent

R Europe 20

R Asia 80

D Europe 100

: : :

isMember

organization country type

EU D member

UN D member

UN R member

: : :

encompasses ⊲⊳ isMember = {µ ∈ Tup(country, cont, perc, org, type) |
µ[country, cont, perc] ∈ encompasses and µ[org, country, type] ∈ isMember}

✷

88

Example 3.8 (Continued)

encompasses ⊲⊳ isMember = {µ ∈ Tup(country, cont, perc, org, type) |
µ[country, cont, perc] ∈ encompasses and µ[org, country, type] ∈ isMember}

start with (R,Europe, 20) ∈ encompasses.
check which tuples in isMember match:

(UN,R,member) ∈ isMember matches:
result: (R,Europe, 20, UN,member) belongs to the result.
(some more matches ...)

continue with (R,Asia, 80) ∈ encompasses.
(UN,R,member) ∈ isMember matches:
result: (R,Asia, 80, UN,member) belongs to the result.
(some more matches ...)

continue with (D,Europe, 100) ∈ encompasses.
(EU,D,member) ∈ isMember matches:
result: (D,Europe, 100, EU,member) belongs to the result.
(UN,D,member) ∈ isMember matches:
result: (D,Europe, 100, UN,member) belongs to the result.
(some more matches ...) ✷

89

Example 3.8 (Continued)
Result:

encompasses ⊲⊳ isMember

country continent percent organization type

R Europe 20 UN member

R Europe 20 : :

R Asia 80 UN member

R Asia 80 : :

D Europe 100 UN member

D Europe 100 EU member

D Europe 100 : :

: : : : :
✷

90

Example 3.9 (and Exercise)
Consider the expression

Continent ⊲⊳ ρ[country → code, continent→ name, percent→ percent](encompasses)
✷

Functionalities of the Join

• Combining relations

• Selective functionality: only matching tuples survive
(consider joining cities and organizations on headquarters)

DERIVED OPERATORS

Intersection

Assume r, s ∈ Rel(X̄).

Then, r ∩ s = {µ ∈ Tup(X̄) | µ ∈ r and µ ∈ s}.

Theorem 3.1
Intersection can be expressed by difference: r ∩ s = r \ (r \ s). ✷

91

θ-Join

Combination of Cartesian Product and Selection:

Assume r ∈ Rel(X̄), and s ∈ Rel(Ȳ), such that X̄ ∩ Ȳ = ∅, and AθB a selection condition.

r ⊲⊳AθB s = {µ ∈ Tup(XY) | µ[X̄] ∈ r, µ[Ȳ] ∈ s and µ satisfies AθB} = σ[AθB](r × s).
Equi-Join

θ-join that uses the “=”-predicate.

Example 3.10 (and Exercise)
Consider again Example 3.7:

Continent ⊲⊳ encompasses = Continent× encompasses contained tuples that did not really
make sense.

Continent ⊲⊳continent=name encompasses would be more useful.

Furthermore, consider
π[continent, area, code, percent](Continent ⊲⊳continent=name encompasses):

• removes the - now redundant - “name” column,

• is equivalent to the natural join (ρ[name→ continent](continent)) ⊲⊳ encompasses. ✷

92

Semi-Join

• recall: joins combine, but are also selective

• semi-join acts like a selection on a relation r:
selection condition not given as a boolean formula on the attributes of r, but by “looking
into” another relation (a subquery)

Assume r ∈ Rel(X̄) and s ∈ Rel(Ȳ) such that X̄ ∩ Ȳ 6= ∅.

Result format of r ✄< s: X̄

Result relation: r ✄< s = π[X̄](r ⊲⊳ s)

The semi-join r ✄< s does not return the join, but checks which tuples of r “survive” the join
with s (i.e., “which find a counterpart in s wrt. the shared attributes”):

• Used with subqueries: (main query) ✄< (subquery)

• r ✄< s ⊆ r

• Used for optimizing the evaluation of joins (often in combination with indexes).

93

Semi-Join: Example

Give the names of all countries where a city with at least 1000000 inhabitants is located:

π[name]

✄< Country.code=City.country

Country σ[population>1000000]

City

• Have a short look “inside” the subquery, but dont’ actually use it:

• look only if there is a big city in this country.

• “if the country code is in the set of country codes ...”:

π[name]

✄< Country.code=City.country

Country π[country] and put an index on the result set

σ[population>1000000]

City

94

Towards the Outer Join

• The (inner) join is the operator for combining relations

Example 3.11
• Persons work in divisions of a company, tools are assigned to the divisions:

Works

Person Division

John Production

Bill Production

John Research

Mary Research

Sue Sales

Tools

Division Tool

Production hammer

Research pen

Research computer

Admin. typewriter

Works ⊲⊳ Tools

Person Division Tool

John Production hammer

Bill Production hammer

John Research pen

John Research computer

Mary Research pen

Mary Research computer

• join contains no tuple that describes Sue,

• join contains no tuple that describes the administration or sales division,

• join contains no tuple that shows that there is a typewriter. ✷

95

Outer Join
Assume r ∈ Rel(X̄) and s ∈ Rel(Ȳ).

Result format of r ⊐⊲⊳⊏ s: XY

The outer join extends the “inner” join with all tuples that have no counterpart in the other
relation (filled with null values):

Example 3.12 (Outer Join)
Consider again Example 3.11

Works ⊐⊲⊳⊏ Tools

Person Division Tool

John Production hammer

Bill Production hammer

John Research pen

John Research computer

Mary Research pen

Mary Research computer

Sue Sales NULL

NULL Admin typewriter

Works ✄< Tools

Person Division

John Production

Bill Production

John Research

Mary Research

Works >✁ Tools

Division Tool

Production hammer

Research pen

Research computer

96

Formally, the result relation r ⊐⊲⊳⊏ s is defined as follows:

J = r ⊲⊳ s — take the (“inner”) join as base
r0 = r \ π[X̄](J) = r \ (r ✄< s) — r-tuples that “are missing”
s0 = s \ π[Ȳ](J) = s \ (r >✁ s) — s-tuples that “are missing”
Ȳ0 = Ȳ \ X̄, X̄0 = X̄ \ Ȳ
Let µs ∈ Tup(Ȳ0), µr ∈ Tup(X̄0) such that µs, µr consist only of null values

r ⊐⊲⊳⊏ s = J ∪ (r0 × {µs}) ∪ (s0 × {µr}) .

Example 3.12 (Continued)
For the above example,

J = Works ⊲⊳ Tools
r0 = [“Sue”,“Sales”], s0 = [“Admin”,“Typewriter”]
Ȳ0 = Tool, X̄0 = Person

µs =
Tool

null
µr =

Person

null

r0 × {µs} =
Person Division Tool

Sue Sales null
s0 × {µr} =

Person Division Tool

null Admin Typewriter
✷

97

Left and Right Outer Join

Analogously to the (full) outer join:

• r ⊐⊲⊳ s = J ∪ (r0 × {µs}) .

• r ⊲⊳⊏ s = J ∪ (s0 × {µr}) .

Generalized Natural Join

Assume ri ⊆ Tup(X̄i).

Result format: ∪ni=1X̄i

Result relation: ⊲⊳ni=1 ri = {µ ∈ Tup(∪ni=1X̄i) | µ[X̄i] ∈ ri}

Exercise 3.1
Prove that the Generalized Natural Join is well-defined, i.e., that the order how to join the ri
does not matter.
Proceed as follows:

• Show that the natural join is commutative,

• Show that the natural join is associative,

• ... then complete the proof. ✷

98

Relational Division

Assume r ∈ Rel(X̄) and s ∈ Rel(Ȳ) such that Ȳ (X̄.
Result format of r ÷ s: Z̄ = X̄ \ Ȳ .

The result relation r ÷ s is specified as “all Z̄-values that occur in π[Z̄](r), with the additional
condition that they occur in r together with each of the Ȳ values that occur in s”.

Formally,

r ÷ s = {µ ∈ Tup(Z̄) | µ ∈ π[Z̄](r) ∧ {µ} × s ⊆ r} = π[Z̄](r) \ π[Z̄]((π[Z̄](r)× s) \ r).

• Simple observation: π[Z̄](r) ⊇ r ÷ s.
This constrains the set of possible results.

• Often, Z̄ and Ȳ correspond to the keys of relations that represent the instances of entity
types.

• Exercise: the explicit “µ ∈ π[Z̄](r)” in the first characterization looks a bit redundant. Is it?
– or why not?

99

Example 3.13 (Relational Division)
Compute those organizations that have at least one member on each continent:

First step: which organizations have (some) member on which continents:

π[organization,continent]

⊲⊳

ismember encompasses

SELECT DISTINCT i.organization, e.continent
FROM ismember i, encompasses e
WHERE i.country=e.country
ORDER by 1

orgOnCont

organization continent

UN Europe

UN Asia

UN N.America

UN S.America

UN Africa

UN Australia

NATO Europe

NATO N.America

NATO Asia

EU Europe

: :

100

Example 3.13 (Cont’d)

÷

orgOnCont ρ[name→continent]

π[name]

continent

r(X̄), s(Ȳ), Z̄ := X̄ \ Ȳ
r ÷ s = { µ ∈ Tup(Z̄) |

µ ∈ π[Z̄](r) ∧ {µ} × s ⊆ r }
X̄ = [organization, continent]
Ȳ = [continent]
Thus, Z̄ = [organization].

orgOnCont

organization continent

UN Europe

UN Asia

UN N.America

UN S.America

UN Africa

UN Australia

NATO Europe

NATO N.America

NATO Asia

EU Europe

: :

ρ[name→continent]

(π[name](continent))

continent

Asia

Europe

Australia

N.America

S.America

Africa

• UN: occurs with each continent in orgOnCont⇒ belongs to the result.

• NATO: does not occur with each continent in orgOnCont⇒ does not belong to the result.

• EU: does not occur with each continent in orgOnCont⇒ does not belong to the result.

101

Example 3.13 (Cont’d)
Consider again the formal algebraic characterization of the division:

r ÷ s = {µ ∈ Tup(Z̄) | µ ∈ π[Z̄](r) ∧ {µ} × s ⊆ r} = π[Z̄](r) \ π[Z̄]((π[Z̄](r)× s) \ r).

1. r = orgOnCont, s = π[name](continent), Z = Country.

2. (π[Z̄](r)× s) contains all tuples of organizations with each of the continents, e.g.,
(NATO,Europe), (NATO,Asia), (NATO,N.America), (NATO,S.America), (NATO,Africa),
(NATO,Australia).

3. ((π[Z̄](r)× s) \ r) contains all such tuples which are not “valid”, e.g., (NATO,Africa).

4. projecting this to the organizations yields all those organizations where a non-valid tuple
has been generated in (2), i.e., that have no member on some continent (e.g., NATO).

5. π[Z̄](r) is the list of all organizations ...

6. ... subtracting those computed in (4) yields those that have a member on each continent.✷

102

EXPRESSIONS

• inductively defined: combining expressions by operators

Example 3.14
The names of all cities where (i) headquarters of an organization are located, and (ii) that are
capitals of a member country of this organization.

As a tree:
π[city]

∩

π[abbrev,city,province,country]

organization

ρ[capital→city]

π[abbrev,capital,province,country]

⊲⊳

ρ[organization→abbrev]

ismember

ρ[code→country]

country

✷

Note that there are many equivalent expressions.

103

EXPRESSIONS IN THE RELATIONAL ALGEBRA AS QUERIES

Let R = {R1, . . . , Rk} a set of relation schemata of the form Ri(X̄i). As already described, an
database state to R is a structure S that maps every relation name Ri in R to a relation
S(Ri) ⊆ Tup(X̄i)

Every algebra expression Q defines a query against the state S of the database:

• For given R, Q is assigned a format ΣQ (the format of the answer).

• For every database state S, S(Q) ⊆ Tup(ΣQ) is a relation over ΣQ, called the answer set
for Q wrt. S.

• S(Q) can be computed according to the inductive definition, starting with the innermost
(atomic) subexpressions.

• Thus, the relational algebra has a functional semantics.

104

SUMMARY: INDUCTIVE DEFINITION OF EXPRESSIONS

Atomic Expressions

• For an arbitrary attribute A and a constant a ∈ dom(A), the constant relation A : {a} is
an algebra expression.

ΣA:{a} = [A] and S(A : {a}) = A : {a}

• Every relation name R is an algebra expression.

ΣR = X̄ and S(R) = S(R).

105

SUMMARY (CONT’D)

Compound Expressions

Assume algebra expressions Q1, Q2 that define ΣQ1 , ΣQ2 , S(Q1), and S(Q2).

Compound algebraic expressions are now formed by the following rules (corresponding to the
algebra operators):

Union

If ΣQ1
= ΣQ2

, then Q = (Q1 ∪Q2) is the union of Q1 and Q2.

ΣQ = ΣQ1
and S(Q) = S(Q1) ∪ S(Q2).

Difference

If ΣQ1
= ΣQ2

, then Q = (Q1 \Q2) is the difference of Q1 and Q2.

ΣQ = ΣQ1
and S(Q) = S(Q1) \ S(Q2).

106

INDUCTIVE DEFINITION OF EXPRESSIONS (CONT’D)

Selection

For a selection condition α over ΣQ1 , Q = σ[α](Q1) is the selection from Q1 wrt. α.

ΣQ = ΣQ1 and S(Q) = σ[α](S(Q1)).

Projection

For ∅ 6= Ȳ ⊆ ΣQ1
, Q = π[Ȳ](Q1) is the projection of Q1 to the attributes in Ȳ .

ΣQ = Ȳ and S(Q) = π[Ȳ](S(Q1)).

Natural Join

Q = (Q1 ⊲⊳ Q2) is the (natural) join of Q1 and Q2.

ΣQ = ΣQ1
∪ ΣQ2

and S(Q) = S(Q1) ⊲⊳ S(Q2).

Renaming

For ΣQ1 = {A1, . . . , Ak} and {B1, . . . , Bk} a set of attributes,
Q = ρ[A1 → B1, . . . , Ak → Bk](Q1) is the renaming of Q1

ΣQ = {B1, . . . , Bk} and S(Q) = ρ[A1 → B1, . . . , Ak → Bk](S(Q1)).

107

Example

Example 3.15
Professor(PNr, Name, Office), Course(CNr, Credits, CName)
teach(PNr, CNr), examine(PNr, CNr)

• For each professor (name) determine the courses he gives (CName).

π [Name, CName] ((Professor ⊲⊳ teach) ⊲⊳ Course)

• For each professor (name) determine the courses (CName) that he teaches, but that he
does not examine.

π[Name,CName]((

(π[Name,CNr](Professor ⊲⊳ teach))

\
(π[Name,CNr](Professor ⊲⊳ examine))

) ⊲⊳ Course)

Simpler expression:

π [Name, CName] ((Professor ⊲⊳ (teach \ examine)) ⊲⊳ Course) ✷

108

EQUIVALENCE OF EXPRESSIONS

Algebra expressions Q,Q′ are called equivalent, Q ≡ Q′, if and only if for all structures S,
S(Q) = S(Q′).

Equivalence of expressions is the basis for algebraic optimization.

Let attr(α) the set of attributes that occur in a selection condition α, and Q,Q1, Q2, . . .

expressions with formats X, X1,

Projections

• Z̄, Ȳ ⊆ X̄ ⇒ π[Z̄](π[Ȳ](Q)) ≡ π[Z̄ ∩ Ȳ](Q).

• Z̄ ⊆ Ȳ ⊆ X̄ ⇒ π[Z̄](π[Ȳ](Q)) ≡ π[Z̄](Q).

Selections

• σ[α1](σ[α2](Q)) ≡ σ[α2](σ[α1](Q)) ≡ σ[α1 ∧ α2](Q)).

• attr(α) ⊆ Ȳ ⊆ X̄ ⇒ π[Ȳ](σ[α](Q)) ≡ σ[α](π[Ȳ](Q)).

Joins

• Q1 ⊲⊳ Q2 ≡ Q2 ⊲⊳ Q1.

• (Q1 ⊲⊳ Q2) ⊲⊳ Q3 ≡ Q1 ⊲⊳ (Q2 ⊲⊳ Q3).

109

EQUIVALENCE OF EXPRESSIONS (CONT’D)

Joins and other Operations

• attr(α) ⊆ X̄1 ∩ X̄2 ⇒ σ[α](Q1 ⊲⊳ Q2) ≡ σ[α](Q1) ⊲⊳ σ[α](Q2).

• attr(α) ⊆ X̄1, attr(α) ∩ X̄2 = ∅ ⇒ σ[α](Q1 ⊲⊳ Q2) ≡ (σ[α](Q1)) ⊲⊳ Q2.

• Assume V̄ ⊆ X1X2 and let W̄ = X̄1 ∩ V X2, Ū = X̄2 ∩ V X1.

Then, π[V̄](Q1 ⊲⊳ Q2) ≡ π[V̄](π[W̄](Q1) ⊲⊳ π[Ū](Q2));

(Note: unary operations bind stronger than binary operations)

• X̄2 = X̄3 ⇒ Q1 ⊲⊳ (Q2 op Q3) ≡ (Q1 ⊲⊳ Q2) op (Q1 ⊲⊳ Q3) where op ∈ {∪, \}.
(distributivity of ⊲⊳ wrt. ∪ and \)
Note the similarity to the arithmetic term algebra: n · (a± b) = (n · a)± (n× b)

Exercise 3.2
Prove some of the equalities (use the definitions given on the “Base Operators” slide). ✷

110

EXPRESSIVE POWER OF THE ALGEBRA

Transitive Closure

The transitive closure of a binary relation R, denoted by R∗ is defined as follows:

R1 = R

Rn+1 = {(a, b)| there is an s s.t. (a, x) ∈ Rn and (x, b) ∈ R}
R∗ =

⋃

1..∞
Rn

Examples:

• child(x,y): child* = descendant

• flight connections

• flows_into of rivers in MONDIAL

Theorem 3.2
There is no expression of the relational algebra that computes the transitive closure of
arbitrary binary relations r. ✷

111

EXAMPLES

Time to play. Perhaps postpone examples after comparison with SQL (next subsections)

Aspects

• join as “extending” operation (cartesian product – “all pairs of X and Y such that ...”)

• equijoin as “restricting” operation

• natural join/equijoin in many cases along key/foreign key relationships

• relational division (in case of queries of the style “return all X that are in a given relation
with all Y such that ...”)

112

3.2 SQL

SQL: Structured (Standard) Query Language

Literature: A Guide to the SQL Standard, 3rd Edition, C.J. Date and H. Darwen,
Addison-Wesley 1993

History: about 1974 as SEQUEL (IBM System R, INGRES@Univ. Berkeley, first product:
Oracle in 1978)

Standardization:

SQL-86 and SQL-89: core language, based on existing implementations, including
procedural extensions

SQL-92 (SQL2): some additions

SQL-99 (SQL3):

• active rules (triggers)

• recursion

• object-relational and object-oriented concepts

113

Underlying Data Model

SQL uses the relational model:

• SQL relations are multisets (bags) of tuples (i.e., they can contain duplicates)

• Notions: Relation ❀ Table

Tuple ❀ Row

Attribute ❀ Column

The relational algebra serves as theoretical base for SQL as a query language.

• comprehensive treatment in the “Practical Training SQL”
(http://dbis.informatik.uni-goettingen.de/Teaching/DBP/)

114

BASIC STRUCTURE OF SQL QUERIES

SELECT A1, . . . , An (. . . corresponds to π in the algebra)
FROM R1, . . . , Rm (. . . specifies the contributing relations)
WHERE F (. . . corresponds to σ in the algebra)

corresponds to the algebra expression π[A1, . . . , An](σ[F](r1 × . . .× rm))

• Note: cartesian product→ prefixing with or without aliasing (optional)

Example

SELECT code, capital, country.population, city.population
FROM country, city
WHERE code = country -- only country has a code

AND city.name = capital -- city and country have names
AND city.province = country.province;

• SQL is case-insensitive, i.e. CITY=city=City=cItY.;

inside quotes not case-insensitive, i.e. City=’Berlin’ 6= City=’berlin’,

• String constants: use single quotes,

• end of command: semicolon “;”,

• comment syntax: inside “/* . . . */” or from “--” to end of line.

115

PREFIXING, ALIASING AND RENAMING

• Prefixing: tablename.attr

• Aliasing of relations in the FROM clause:

SELECT alias1.attr1,alias2.attr2
FROM table1 alias1, table2 alias2

WHERE ...

• Renaming of result columns of queries:

SELECT attr1 AS name1, attr2 AS name2

FROM ... WHERE ...

(formal algebra equivalent: renaming)

116

SUBQUERIES

Subqueries of the form (SELECT ... FROM ... WHERE ...) can be used anywhere where a
relation is required:

Subqueries in the FROM clause allow for selection/projection/computation of intermediate
results/subtrees before the join:

SELECT ...
FROM (SELECT ... FROM ... WHERE ...),

(SELECT ... FROM ... WHERE ...)
WHERE ...

(interestingly, although “basic relational algebra”, this has been introduced e.g. in Oracle only
in the early 1990s.)

Subqueries in other places allow to express other intermediate results:

SELECT ... (SELECT ... FROM ... WHERE ...) FROM ...
WHERE [NOT] value1 IN (SELECT ... FROM ... WHERE)
AND [NOT] value2 comparison-op [ALL|ANY] (SELECT ... FROM ... WHERE)
AND [NOT] EXISTS (SELECT ... FROM ... WHERE);

117

SUBQUERIES IN THE FROM CLAUSE

• often in combination with aliasing and renaming of the results of the subqueries.

SELECT alias1.name1,alias2.name2
FROM (SELECT attr1 AS name1 FROM ... WHERE ...) alias1,

(SELECT attr2 AS name2 FROM ... WHERE ...) alias2 WHERE ...

... all big cities that belong to large countries:

SELECT city, country
FROM (SELECT name AS city, country AS code2

FROM city
WHERE population > 1000000
),
(SELECT name AS country, code
FROM country
WHERE area > 1000000
)

WHERE code = code2;

118

SUBQUERIES

• Subqueries of the form (SELECT ... FROM ... WHERE ...) that result in a single value
can be used anywhere where a value is required

SELECT function(..., (SELECT ... FROM ... WHERE ...))
FROM ... ;

SELECT ...
FROM ...
WHERE value1 = (SELECT ... FROM ... WHERE ...)
AND value2 < (SELECT ... FROM ... WHERE ...);

119

Subqueries in the WHERE clause

Non-Correlated subqueries

... the simple ones. Inner SFW independent from outer SFW

SELECT name
FROM country
WHERE area >

(SELECT area
FROM country
WHERE code=’D’);

SELECT name
FROM country
WHERE code IN

(SELECT country
FROM encompasses
WHERE continent=’Europe’);

Correlated subqueries

Inner SELECT ... FROM ... WHERE references value of outer SFW in its WHERE clause:

SELECT name
FROM city
WHERE population > 0.25 *
(SELECT population
FROM country
WHERE country.code = city.country);

SELECT name, continent
FROM country, encompasses enc
WHERE country.code = enc.country
AND area > 0.25 *
(SELECT area
FROM continent
WHERE name = enc.continent);

120

Subqueries: EXISTS

• EXISTS makes only sense with a correlated subquery:

SELECT name
FROM country
WHERE EXISTS (SELECT *

FROM city
WHERE country.code = city.country

AND population > 1000000);

algebra equivalent: semijoin.

• NOT EXISTS can be used to express things that otherwise cannot be expressed by SFW:

SELECT name
FROM country
WHERE NOT EXISTS (SELECT *

FROM city
WHERE country.code = city.country

AND population > 1000000);

Alternative: use (SFW) MINUS (SFW)

121

SET OPERATIONS: UNION, INTERSECT, MINUS/EXCEPT

(SELECT name FROM city) INTERSECT (SELECT name FROM country);

Often applied with renaming:

SELECT *
FROM ((SELECT river AS name, country, province FROM geo_river)

UNION
(SELECT lake AS name, country, province FROM geo_lake)
UNION
(SELECT sea AS name, country, province FROM geo_sea))

WHERE country = 'D';

122

Set Operations and Attribute Names

The relational algebra requires X̄ = Ȳ for R(X̄) ∪ S(X̄), R(X̄) ∩ S(X̄), and R(X̄) \ S(X̄):

• attributes are unordered, the tuple model is a “slotted” model.

In SQL,

(SELECT river, country, province FROM geo_river)
UNION
(SELECT lake, country, province FROM geo_lake)

is allowed and the resulting table has the format (river, country, province) (note that the name
of the first column may be indeterministic due to internal optimization).

• the SQL model is a “positional” model, where the name of the i-th column is just inferred
“somehow”,

• cf. usage of column number in ... ORDER BY 1,

• note that column numbers can only be used if there is no ambiguity with numeric values,
e.g.,
SELECT name, 3 FROM country
yields a table whose second column has always the value 3.

123

SYNTACTICAL SUGAR: JOIN

• basic SQL syntax: list of relations in the FROM clause, cartesian product, conditions in
the WHERE clause.

• explicit JOIN syntax in the FROM clause:

SELECT ...
FROM R1 NATURAL JOIN R2 ON join-cond1,2 [NATURAL JOIN R3 ON join-cond1,2,3 ...]
WHERE ...

• usage of parentheses is optional,

• same translation to internal algebra.

OUTER JOIN

• Syntax as above, as LEFT OUTER JOIN, RIGHT OUTER JOIN, FULL OUTER JOIN (and
FULL JOIN, which is equivalent to FULL OUTER JOIN).

• usage of parentheses is optional, otherwise left-first application (!).

• can be translated to internal outer joins, much more efficient than handwritten outer join
using UNION and NOT EXISTS.

124

HANDLING OF DUPLICATES

In contrast to algebra relations, SQL tables may contain duplicates (cf. Slide 114):

• some applications require them

• duplicate elimination is relatively expensive (O(n logn))

⇒ do not do it automatically

⇒ SQL allows for explicit removal of duplicates:
Keyword: SELECT DISTINCT A1, . . . , An FROM ...

The internal optimization can sometimes put it at a position where it does not incur
additional costs.

125

GENERAL STRUCTURE OF SQL QUERIES:

SELECT [DISTINCT] A1, . . . , An list of expressions
FROM R1, . . . , Rm list of relations
WHERE F condition(s)
GROUP BY B1, . . . , Bk list of grouping attributes
HAVING G condition on groups, same syntax as WHERE clause
ORDER BY H sort order – only relevant for output

• ORDER BY: specifies output order of tuples

SELECT name, population FROM city;

full syntax: ORDER BY attribute-list [ASC|DESC] [NULLS FIRST|LAST]
(ascending/descending)
Multiple attributes allowed:

SELECT * FROM city ORDER BY country, province;

Next: How many people live in the cities in each country?

• GROUP BY: form groups of “related” tuples and generate one output tuple for each group

• HAVING: conditions evaluated on the groups

126

Grouping and Aggregation

• First Normal Form: all values in a tuple are atomic (string, number, date, . . .)

• GROUP BY attr-list : forms groups of tuples that have the same values for attr-list

SELECT country, SUM(population), MAX(population), COUNT(*)
FROM City
GROUP BY country
HAVING SUM(population) > 10000000;

: : : :

Innsbruck A Tirol 118000

Vienna A Vienna 1761738

: : : :

Graz A Steiermark 238000

: : : :

• each group yields one tuple which may
contain:

– the group-by attributes

– aggregations of all values in a column:
SUM, AVG, MIN, MAX, COUNT

: : : :

country: A SUM(population): 2862618 MAX(population):1761738 COUNT(*):13

country: D SUM(population):25333235 MAX(population):3292365 COUNT(*):85

: : : :

• HAVING (condition on groups) AND SELECT use these values.

127

Aggregation

• Aggregation can be applied to a whole relation:

SELECT COUNT(*), SUM(population), MAX(population)
FROM country;

• Aggregation with DISTINCT:

SELECT COUNT (DISTINCT country)
FROM CITY
WHERE population > 1000000;

128

ALTOGETHER: EVALUATION STRATEGY

SELECT [DISTINCT] A1, . . . , An list of expressions
FROM R1, . . . , Rm list of relations
WHERE F condition(s)
GROUP BY B1, . . . , Bk list of grouping attributes
HAVING G condition on groups, same syntax as WHERE clause
ORDER BY H sort order – only relevant for output

1. evaluate FROM and WHERE,

2. evaluate GROUP BY→ yields groups,

3. generate a tuple for each group containing all expressions in HAVING and SELECT,

4. evaluate HAVING on groups,

5. evaluate SELECT (projection, removes things only needed in HAVING),

6. output result according to ORDER BY.

129

CONSTRUCTING QUERIES

For each problem there are multiple possible equivalent queries in SQL (cf. Example 3.14).
The choice is mainly a matter of personal taste.

• analyze the problem “systematically”:

– collect all relations (in the FROM clause) that are needed

– generate a suitable conjunctive WHERE clause

⇒ leads to a single “broad” SFW query
(cf. conjunctive queries, relational calculus)

• analyze the problem “top-down”:

– take the relations that directly contribute to the result in the (outer) FROM clause

– do all further work in correlated subquery/-queries in the WHERE clause

⇒ leads to a “main” part and nested subproblems

• decomposition of the problem into subproblems:

– subproblems are solved by nested SFW queries that are combined in the FROM
clause of a surrounding query

130

COMPARISON

SQL:

SELECT A1, . . . , An FROM R1,...,Rm WHERE F

• equivalent expression in the relational algebra:

π[A1, . . . , An](σ[F](r1 × . . .× rm))

• Algorithm (nested-loop):
FOR each tuple t1 in relation R1 DO

FOR each tuple t2 in relation R2 DO
:

FOR each tuple tn in relation Rn DO
IF tuples t1, . . . , tn satisfy the WHERE-clause THEN

evaluate the SELECT clause and generate the result tuple (projection).

Note: the tuple variables can also be introduced in SQL explicitly as alias variables:

SELECT A1, . . . , An FROM R1 t1,...,Rm tm WHERE F

(then optionally using ti.attr in SELECT and WHERE)

131

Comparison: Subqueries

• Subqueries in the FROM-clause (cf. Slide 118): joined subtrees in the algebra

SELECT city, country
FROM (SELECT name AS city,

country AS code2
FROM city
WHERE population > 1000000

),
(SELECT name AS country, code
FROM country
WHERE area > 1000000

)
WHERE code = code2;

π[city, country]

σ[code=code2]

×

ρ[name→ city, country→ code2]

π[name, country]

σ[population>1000000]

city

ρ[name→ country]

π[name, code]

σ[area>1000000]

country

• the relation from evaluating the from clause has columns city, code2, country, code that can be
used in the where clause and in the select clause.

132

Comparison: Subqueries in the WHERE clause

• WHERE ... IN uncorrelated-subquery (cf. Slide 120):
Natural semijoin of outer tree with the subquery tree;

SELECT name
FROM country
WHERE code IN

(SELECT country
FROM encompasses
WHERE continent=’Europe’);

π[name]

✄<

country ρ[country→ code]

π[country]

σ[continent=’Europe’]

encompasses

Note that the natural semijoin serves as an equi-selection where all tuples from the outer
expression qualify that match an element of the result of the inner expression.

133

Comparison: Subqueries

• WHERE value op uncorrelated-subquery:
(cf. Slide 120):
join of outer expression with subquery, selection, projection to outer attributes

SELECT name
FROM country
WHERE area >

(SELECT area
FROM country
WHERE code=’D’);

π[name]

σ[area > germanyArea]

×

country ρ[area→ germanyArea]

π[area]

σ[code=’D’]

country
Note: the table that result table from the cartesian product has the format (name, code,
area, population, . . . , germanyArea).

134

Comparison: Correlated Subqueries

• WHERE value op correlated-subquery:

– tree1: outer expression

– tree2: subquery, uncorrelated

– natural join/semijoin of both trees contains the correlating condition

– afterwards: WHERE condition

SELECT name, continent
FROM country, encompasses enc
WHERE country.code = enc.country
AND area > 0.25 *
(SELECT area
FROM continent
WHERE name=enc.continent);

π[name,continent]

σ[area > 0.25 * contarea]

⊲⊳

⊲⊳[code = country]

country encompasses

ρ[name→continent,
area→contarea]

continent

• the internal (more operational) algebra evaluates the join and the condition as a semijoin that
includes the condition.

135

Comparison: Correlated Subqueries

... comment to previous slide:

• although the tree expression looks less target-oriented than the SQL correlated subquery,
it does the same:

• instead of iterating over the tuples of the outer SQL expression and evaluating the inner
one for each of the tuples,

• the results of the inner expression are “precomputed” and iteration over the outer result
just fetches the corresponding one.

• effectiveness depends on the situation:

– how many of the results of the subquery are actually needed (worst case: no tuple
survives the outer local WHERE clause).

– are there results of the subquery that are needed several times.

database systems are often able to internally choose the most effective solution
(schema-based and statistics-based)
... see next section.

136

Comparison: EXISTS-Subqueries

• WHERE EXISTS: similar to above:
correlated subquery, no additional condition after natural semijoin

• SELECT ... FROM X,Y,Z WHERE NOT EXISTS (SFW):

SELECT ...
FROM ((SELECT * FROM X,Y,Z) MINUS

(SELECT X,Y,Z WHERE EXISTS (SFW)))

Results

• all queries (without NOT-operator) including subqueries without grouping/aggregation can
be translated into SPJR-trees (selection, projection, join, renaming),

• they can even be flattened into a single broad cartesian product, followed by a selection
and a projection,

• so-called “SPJR-algebra” or “conjunctive queries”, whose optimization plays an important
role.

137

Comparison: the differences between Algebra and SQL

• The relational algebra has no notion of grouping and aggregate functions.
Such operators can be defined as additional base operators (see Exercises)

• SQL has no clause that corresponds to relational division.

Such queries must be constructed by the users, using the existing SQL constructs.

Example 3.16 (Relational Division in SQL)
Consider again Example 3.13 (Slide 100):

“Compute those organizations that have at least one member on each continent”:

orgOnCont÷ π[name](continent).
Exercise (DIV-1):

Use your commonsense logical reasoning to express this query in SQL.

Exercise (DIV-2): Use the algebraic expression for r ÷ s from Slide 99 for stating the query in
SQL (use the SQL statement for orgOnCont from Slide 100):

r ÷ s = π[Z̄](r) \ π[Z̄]((π[Z̄](r)× s) \ r).

(try both now before continuing with the video)

138

Example 3.16 (Cont’d: Commonsense logical reasoning – Brain 1.0)
The relational division corresponds to the universal quantifier – “such that all ...” or “such that
each of ...”:

• “... those organizations o such that that for each continent c, there is some country x such
that x is a member of o and x is located on c. (here, x is a “witness”)

• “... those organizations such that there is no continent c such that there is no country x
such that x is a member of o and x is located on c.
(... no continent where no such witness can be found)

can be expressed by not exists - not exists:

select abbreviation
from organization o
where not exists
(select *
from continent c
where not exists
(select *
from country x
where (x.code, o.abbreviation) in (select country, organization from ismember)
and (x.code, c.name) in (select country, continent from encompasses)

))

139

Example 3.16 ((DIV-2) – inserting into r ÷ s = π[Z̄](r) \ π[Z̄]((π[Z̄](r) × s) \ r))

(select org
from (select distinct i.organization as org, e.continent as cont

from ismember i, encompasses e
where i.country = e.country))

minus
(select o1

from ((select o1,n1
from (select org as o1

from (select distinct i.organization as org, e.continent as cont
from ismember i, encompasses e
where i.country = e.country)

) ,
(select name as n1 from continent)

)
minus
(select distinct i.organization as org, e.continent as cont
from ismember i, encompasses e
where i.country = e.country)

)
)

Nobody would do this:

• learn this formula,

• copy&paste and fight with parentheses!

140

Example 3.16 (Cont’d)
• Instead of π[Z̄](r), a simpler query yielding the Z̄ values can be used.

These often correspond to the keys of some relation that represents the instances of
some entity type (here: the organizations):

orgOnCont÷ π[name](continent) =
π[abbreviation](organization)\

π[Z̄]((π[abbreviation](organization)× π[name](continent)︸ ︷︷ ︸
orgs×conts

) \ orgOnCont

︸ ︷︷ ︸
the “missing” pairs

)

︸ ︷︷ ︸
organizations that have a missing pair

• the corresponding SQL query is much smaller, and can be constructed intuitively:

(select abbreviation from organization)
minus
(select abbreviation

from ((select o.abbreviation, c.name
from organization o, continent c)

minus
(select distinct i.organization as org, e.continent as cont
from ismember i, encompasses e
where i.country = e.country)))

... the structure is the same as the previous one!

141

Example 3.16 (Cont’d)
The corresponding SQL formulation that implements division corresponds to the textual

“all organizations that occur in orgOnCont together with each of the continent names”,

or equivalently

“all organizations org such that there is no value cont in π[name](continent) such that org
does not occur together with cont in orgOnCont”.

select abbreviation
from organization o
where not exists
((select name from continent)
minus
(select cont
from (select distinct i.organization as org, e.continent as cont

from ismember i, encompasses e
where i.country = e.country)

where org = o.abbreviation))

• the query is still algebra-style set-theory-based.

Oracle Query Plan Estimate: not-exists-not-exists: 339; copy-and-paste-solution: 707;
minus-minus: 20; not-exists-minus: 341.

142

Example 3.16 (Cont’d)
Aside: logic-based querying with Datalog (see Lecture on “Deductive Databases”)
corresponding to the minus-minus solution:

{o | organization(o, . . .) ∧ ¬∃cont : (continent(cont, . . .) ∧ ¬orgOnCont(o, cont))}
% [mondial].
orgOnCont(O,C,Cont) :- isMember(C,O,_), encompasses(C, Cont,_).
notResult(O) :- organization(O,_,_,_,_,_), continent(Cont,_), not orgOnCont(O,_,Cont).
result(O) :- organization(O,_,_,_,_,_), not notResult(O).
% ?- result(O).
% ?- findall(O, result(O), L). [Filename: Datalog/orgOnContsDiv.P]

... much shorter.

Algebra expression for it:

\

π[abbrev](org) π[abbrev]

\

π[abbrev](org) × π[name](cont) ρ[org→abbrev](π[org,cont](isMember ⊲⊳ encompasses))

corresponds to the most efficient minus-minus solution.

143

Orthogonality

Full orthogonality means that an expression that results in a relation is allowed everywhere,
where an input relation is allowed

• subqueries in the FROM clause

• subqueries in the WHERE clause

• subqueries in the SELECT clause (returning a single value)

• combinations of set operations

But:

• Syntax of aggregation functions is not fully orthogonal:
Not allowed: SUM(SELECT ...)

SELECT SUM(pop_biggest)
FROM (SELECT country, MAX(population) AS pop_biggest

FROM City
GROUP BY country);

• The language OQL (Object Query Language) uses similar constructs and is fully
orthogonal.

144

3.3 Efficient Algebraic Query Evaluation

Semantical/logical optimization: Consider integrity constraints in the database.

• constraint on table city: population ≥ 0.
Query plan for select * from city where population < 0:

Operation object predicate cost

SELECT STATEMENT 0

_FILTER NULL IS NOT NULL

__TABLE ACCESS (FULL) CITY POPULATION < 0 7

• (foreign key references activated)
select * from ismember where country not in (select code from country):

Operation object predicate cost

SELECT STATEMENT 0

_FILTER NULL IS NOT NULL

__TABLE ACCESS (FULL) ISMEMBER 9

145

Semantical/logical optimization (Cont’d): Consider integrity constraints in the database.

• (foreign key references activated)

select country from ismember where country in (select code from country):

Operation object predicate cost

SELECT STATEMENT 9

_TABLE ACCESS (FULL) ISMEMBER 9

No lookup of country.code at all (because guaranteed by foreign key)

• not always obvious

• general case: first-order theorem proving.

Algebraic optimization: search for an equivalent algebra expression that performs better:

• size of intermediate results,

• implementation of operators as algorithms,

• presence of indexes and order.

146

ALGEBRAIC OPTIMIZATION

The operator tree of an algebra expression provides a base for several optimization strategies:

• reusing intermediate results

• equivalent restructuring of the operator tree

• “shortcuts” by melting several operators into one
(e.g., join + equality predicate→ equijoin)

• combination with actual situation: indexes, properties of data

Real-life databases implement this functionality.

• SQL: declarative specification of a query

• internal: algebra tree + optimizations

147

REUSING INTERMEDIATE RESULTS

• Multiply occurring subtrees can be reused
(directed acyclic graph (DAG) instead of algebra tree)

–

π[X] π[X]

⊲⊳ ⊲⊳

s r r ⊲⊳

q s

–

π[X] π[X]

⊲⊳

q

⊲⊳

r s

π[X]

if not
>✁

q ⊲⊳

r s

Comment on rightmost graph:
“take X from all r ⊲⊳ s that do not match any tuple in q”.

148

Reusing intermediate results

∪

⊲⊳ ⊲⊳

r s t s t u

∪

⊲⊳ ⊲⊳

r ⊲⊳ u

s t

for each tuple in s ⊲⊳ t, computation
can be forked, joining it with r and u

and contributing to the union in paral-
lel

149

OPTIMIZATION BY TREE RESTRUCTURING

• Equivalent transformation of the operator tree that represents an expression

• Based on the equivalences shown on Slide 109.

• minimize the size of intermediate results
(reject tuples/columns as early as possible during the computation)

• selections reduce the number of tuples

• projections reduce the size of tuples

• apply both as early as possible (i.e., before joins)

• different application order of joins

• semijoins instead of joins (in combination with implementation issues; see next section)

150

Push Selections Down

Assume r, s ∈ Rel(X̄), Ȳ ⊆ X̄.

σ[cond](π[Ȳ](r)) ≡ π[Ȳ](σ[cond](r))

(condition: cond does not use attributes from X̄ − Ȳ ,

otherwise left term is undefined)

σpop>1E6(π[name, pop](country)) ≡ π[name, pop](σpop>1E6(country))

σ[cond](r ∪ s) ≡ σ[cond](r) ∪ σ[cond](s)
σpop>1E6(π[name, pop](country) ∪ π[name, pop](city))

≡ σpop>1E6(π[name, pop](country)) ∪ σpop>1E6(π[name, pop](city))

σ[cond](ρ[N](r)) ≡ ρ[N](σ[cond′](r))

(where cond′ is obtained from cond by renaming according to N)

σ[cond](r ∩ s) ≡ σ[cond](r) ∩ σ[cond](s)
σ[cond](r − s) ≡ σ[cond](r)− σ[cond](s)

π : see comment above. Optimization uses only left-to-right.

151

Push Selections Down (Cont’d)

Assume r ∈ Rel(X̄), s ∈ Rel(Ȳ). Consider σ[cond](r ⊲⊳ s).

Let cond = condX̄ ∧ condȲ ∧ condXY such that

• condX̄ is concerned only with attributes in X̄

• condȲ is concerned only with attributes in Ȳ

• condXY is concerned both with attributes in X̄ and in Ȳ .

Then,
σ[cond](r ⊲⊳ s) ≡ σ[condXY](σ[condX̄](r) ⊲⊳ σ[condȲ](s))

Example 3.17
Names of all countries that have an area of more than 1,000,000 km2, their capital has more
than 1,000,000 inhabitants, and more than half of the inhabitants live in the capital. ✷

152

Example 3.17 (Cont’d)

π[name]

σ[countrypop < 2·citypop]

⊲⊳

ρ[capital→city,population→countrypop]

π[name,code,capital,province,population]

σ[area > 1000000]

country

ρ[name→city,population→citypop]

π[name,province,country,population]

σ[population > 1000000]

city

✷

• Nevertheless, if cond is e.g. a complex mathematical calculation, it can be cheaper first to
reduce the number of tuples by ∩, −, or ⊲⊳

⇒ data-dependent strategies (see later)

153

Push Projections Down

Assume r, s ∈ Rel(X̄), Ȳ ⊆ X̄.

Let cond = condX̄ ∧ condȲ such that

• condȲ is concerned only with attributes in Ȳ

• condX̄ is the remaining part of cond that is also concerned with attributes X̄ \ Y .

π[Ȳ](σ[cond](r)) ≡ σ[condȲ](π[Ȳ](σ[condX̄](r)))

π[Ȳ](ρ[N](r)) ≡ ρ[N](π[Ȳ ′](r))

(where Ȳ ′ is obtained from Ȳ by renaming according to N)

π[Ȳ](r ∪ s) ≡ π[Ȳ](r) ∪ π[Ȳ](s)

• Note that this does not hold for “∩” and “−”!

• advantages of pushing “σ” vs. “π” are data-dependent
Default: push σ lower.

Assume r ∈ Rel(X̄), s ∈ Rel(Ȳ).

π[Z̄](r ⊲⊳ s) ≡ π[Z](π[X̄ ∩ ZY](r) ⊲⊳ π[Ȳ ∩ ZX](s))

• complex interactions between reusing subexpressions and pushing selection/projection

154

Application Order of Joins

Consider the query:

SELECT organization.name as oname, country.name as cname
FROM organization, country
WHERE (abbreviation,code) IN (SELECT organization, country

FROM isMember)

• transforming into the relational algebra suggests a very costly evaluation:

π[oname,cname] (10000)

✄< [org.abbrev=ism.org ∧ c.code=ism.country]

×

ρ[name→oname,abbreviation→organization]

π[name,abbreviation]

organization (150)

ρ[name→cname,code→country]

π[name,code]

country (250)

ismember (10000)(150·250=37500)

(37500·10000 = 375 000 000)

• evaluation: semijoin uses an index (on the key of ismember) or nested-loop.

155

Application Order of Joins

Minimize intermediate results (and number of comparisons):

... consider the equivalent query:

SELECT organization.name as org, country.name as cname
FROM organization, isMember, country
WHERE organization.abbreviation = isMember.organization
AND isMember.country = country.code

If primary key and foreign key indexes on country.code and organization.abbreviation are
available:

• loop over isMember

• extend each tuple with matching
organization and country by using
the indexes.

• Oracle query plan shows an
extremely efficient evaluation of
both of the above queries using
indexes and ad-hoc views.

π[oname,cname] (10000)

⊲⊳

⊲⊳

ρ[name→oname,
abbrev.→org.]

π[name,abbreviation]

organization (150)

ismember
(10000)

ρ[name→cname,
code→country]

π[name,code]

country (250)

(10000)

(10000)

156

Aside: the real query plan

(see Slide 160 ff. for details)

Operation Object Pred(Index) Pred(Filter) COST Rows

SELECT STATEMENT 13 9968

_HASH JOIN C.CODE=ISM.COUNTRY 13 9968

__VIEW v2 2 241

___HASH JOIN ROWID=ROWID

____INDEX (FULL SCAN) COUNTRYKEY 1 241

____INDEX (FULL SCAN) SYS_C0030486 1 241

__HASH JOIN ORG.ABBREV=ISM.ORG 11 9968

___VIEW v1 2 152

____HASH JOIN ROWID=ROWID

_____INDEX (FULL SCAN) ORGKEY 1 152

_____INDEX (FULL SCAN) ORGNAMEUNIQ 1 152

___SORT (UNIQUE) 9 9968

____INDEX (FULL SCAN) MEMBERKEY 9 9968

No access to actual tables, ism(org,country) from key index, org(abbrev,name) from indexes
via rowid-join, country(code,name) from indexes via rowid-join; both materialized as
ad-hoc-views, combined by two hash-joins.

157

OPERATOR EVALUATION BY PIPELINING

• above, each algebra operator has been considered separately

• if a query consists of several operators, the materialization of intermediate results should
be avoided

• Pipelining denotes the immediate propagation of tuples to subsequent operators

Example 3.18
• σ[country = “D” ∧ population > 200000](City):

Assume an index that supports the condition country = “D”.

– without pipelining: compute σ[country = “D”](City) using the index, obtain City’. Then,
compute σ[population > 200000](City’).

– with pipelining: compute σ[country = “D”](City) using the index, and check on-the fly
each qualifying tuple against σ[population > 200000].

– extreme case: when there is also an index on population (tree index, allows for range
scan):
obtain set S1 of all tuple-ids for german cities from index on code, obtain set S2 of all
tuple-ids of cities with more than 2 million inhabitants from population index, intersect
S1 and S2 and access only the remaining cities. ✷

158

Pipelining

• Unary (i.e., selection and projection) operations can always be pipelined with the next
lower binary operation (e.g., join)

• σ[cond](R ⊲⊳ S):

– without pipelining: compute R ⊲⊳ S, obtain RS, then compute σ[cond](RS).

– with pipelining: during computing (R ⊲⊳ S), each tuple is immediately checked whether
it satisfies cond.

• (R ⊲⊳ S) ⊲⊳ T :

– without pipelining: compute R ⊲⊳ S, obtain RS, then compute RS ⊲⊳ T .

– with pipelining: during computing (R ⊲⊳ S), each tuple is immediately propagated to
one of the described join algorithms for computing RS ⊲⊳ T .

Most database systems combine materialization of intermediate results, iterator-based
implementation of algebra operators, indexes, and pipelining.

159

Chapter 4
Internal Organization and
Implementation

This section heavily relies on other subdisciplines of Practical Computer Science:

• System Structures, down to the physical level

• Operating Systems Aspects: Caching

• Algorithms (mainly: for joins) and Data Structures (tree indexes, hashing)

160

PHYSICAL DATA ORGANIZATION

• the conceptual schema defines which data is described and its semantics.

• the logical schema defines the actual relation names with their attributes (and
datatypes), keys, and integrity constraints.

• the physical schema defines the physical database where the data is actually stored.

⇒ efficiency

• system: the data is actually stored in files: data that semantically belongs together
(a relation, a part of a relation (hashing), some relations (cluster)).

• additionally, there are files that contain auxiliary information (indexes).

• data is accessed pagewise or blockwise (typically, 4KB – 8KB).

• each page contains some records (tuples). Records consist of fields that are of an
elementary type, e.g., bit, integer, real, string, or pointer.

161

DB SERVER ARCHITECTURE: SECONDARY STORAGE AND CACHING

runtime server system: accessed by user queries/updates

• parser: translates into algebra, determines the required relations + indexes

• file manager: determines the file/page where the requested data is stored

• buffer/cache manager: provides relevant data in the cache

• query/update processing: uses only the cache

Cache (main memory): pagewise organized
• Accessed pages are fetched into the cache

• pages are also changed in the cache

• and written to the database later ...

Secondary Storage (Harddisk): pagewise organized
• data pages with tuples

• index pages with tree indexes
(see later)

• database log etc. (see later)

x

x

x

162

DATABASE ACCESS MECHANISM

Records must be loaded from (and written to) the secondary memory for processing:

• the file manager determines the page where the record is stored.

• the buffer/cache manager is responsible to provide the page in the buffer (buffer
management):

– maintains a pool of pages (organized as frames).
for every page, it is stored if the page has been changed, how often/frequently it has
been used, and if it is currently used by transactions

– if the required page is not in the cache, some stored page is replaced (if it has been
changed, it must be written to the secondary memory)

• complex prefetching strategies, based on knowledge about transactions.
[see lecture on Operating Systems]

• for now, it is sufficient to note that pagewise access has to be dealt with.

163

Storage of Files, Pages, and Records

• Inside a file, every tuple/record has a tuple identifier of the form (p, n) where p is the
page number and n is its index inside the page.

Each page then contains a directory that assigns a physical address to each n.

• memory management for deleted records

• different strategies for fixed-length and variable-length records

Simplified storage of a page of the Country table:

• • • • · · ·
1 I 5 I t a l y int: 301230 bigint: 57460274 4 R

o m e 5 L a z i o 2 C H 11 S w i t z e r l a

n d int: 41290 bigint: 7207060 4 B e r n 2 B E

1 B 7 B e l g i u m int: 30510 bigint: 10170241

8 B r u s s e l s 7 B r a b a n t · · ·
...

... so far to the physical facts ...

164

4.1 Efficient Data Access

• efficiency depends on the detailed organization and additional algorithms and data
structures

• support generic operations:

– Scan: all pages that contain records are read.

– Equality Search: all records that satisfy some equality predicate are read.
SELECT * FROM City WHERE Country = ’D’;

– Range Search: all records that satisfy some comparison predicate are read.
SELECT * FROM City WHERE Population > 100.000;

– Modify, Delete: analogously

– Insert: analogously: search for an appropriate place where to put the record.

• linear search (scan) ??

• Need for efficient searching (equality and/or range)

165

INDEXING

Indexes (for a file) are auxiliary structures that support special (non-linear) access paths

• Based on search keys

• not necessarily the relational “keys”, but any combination of attributes

• a relation may have several search keys

• an index is a set of data entries on some pages together with efficient access
mechanisms for locating an entry according to its search key value.

• different types of indexes, depending on the operations to be supported:

– equality search

– range search (ordered values)

– search on small domains

• in general, joins by key/foreign-key references are supported by indexes.

166

TREE INDEXES

This topic brings data structures and databases (= applications of data structures) together.

• introductory lecture “Computer Science I”: store numbers in trees.

• databases: tree index over the values of a column of a relation

– search tree based on the values (numbers, strings)

– the tuples themselves are not stored in the tree

– entries (or leaf entries only) hold the values and point to the respective tuples in the
database

• special trees with higher degrees:

– each node (of the size of a storage page) has multiple entries and multiple children.

167

ASIDE, APPLICATION AND REVIEW: BINARY SEARCH TREES

• Binary Search Trees are a typical topic in “Computer Science I”: store numbers.

• Often used for implementation of other concepts, e.g., sets (cf. also topic “Abstract
Datatypes” in some CS I lectures)

– set: add(x), contains(x)?, list-all()
how to implement efficiently?
Java: classes TreeSet, HashSet

168

Example: BSB-based TreeSet in SQL Query Answering

[Exercise/Demonstrate on whiteboard]

(1) SELECT country FROM City WHERE population > 1000000; contains duplicates.

(2) SELECT distinct country FROM City WHERE population > 1000000;

– initialize an empty TreeSet rs,

– evaluate (1),

– during computation, for each result r:

– if r /∈ rs, then add it, and output r;

– requires n · log n steps.

• sketch Java class: treenode(left: node, right: node, value: String)

• sketch representation of BSB in storage page/array (cf. CS I)
[node at position n→ left child at position 2n, right child at position 2n+ 1]

(3) SELECT country, count(*) FROM City WHERE population > 1000000
GROUP BY country;

– same strategy as above, additional data (count) stored in the tree,

– if r /∈ rs, then add (r, count : 1) it, and output r,

– if r ∈ rs, then increment count of r.

169

B- AND B∗-TREES

A B-tree (R. Bayer & E.McCreight, 1970) of order (m, ℓ), m ≥ 3, ℓ ≥ 1, is a search tree [see
lecture on Algorithms and Data Structures]:

• the root is either a leaf or it has at least 2 children

• every inner node has at least ⌈m/2⌉ and at most m children

• all leaves are on the same level (balanced tree), and hold at most ℓ entries

• inner nodes have the form (p0, k1, p1, k2, p2, . . . , kn, pn) where ⌈m/2⌉ − 1 ≤ n ≤ m− 1 and

– ki are search key values, ordered by ki < kj for i < j

– pi points to the i+ 1th child

– all search key values in the left (i.e., pi−1) subtree are less than the value of ki (and all
values in the right subtree are greater or equal)

B-trees are used for “simply” organizing items of an ordered set (e.g. for sorting) as an
extension of binary search trees.

170

B∗-TREES

(sometimes also called B+-Trees)

A B∗-tree of order (m, ℓ), m ≥ 3, ℓ ≥ 1, is closely related, except:

• they are intended to associate data with search key values:

• the inner nodes do not hold additional data, but are still intended to guide the search.
(organized internally e.g. as binary search trees)

• The leaves are of the form ([k1, s1], [k2, s2], . . . , [kg, sg]) where g ≤ ℓ, ki is a search key
value, and si is a data record or (in databases) a pointer to the corresponding record.

171

E
xam

ple
B
∗-Tree

overC
ity.nam

e

H
ann

R
om

a
...

B
ern

...
G

ren
...

M
uni

• Aachen

:
• Berlin

• Bern

:

...

:
• Göttingen

• Grenoble

:
• Hamburg

• Hannover

:
...

• Munich

:

......

Relation “City”

: : :

Munich D 1244676

: : :

Grenoble F 150758

: : :

Aachen D 247113

: : :

Bern CH 134393

: : :

Göttingen D 127519

: : :

Hannover D 525763

: : :

Berlin D 3472009

: : :

Hamburg D 1705872

: : :

172

Properties

• Let N the number of entries. Then, for the height h of the tree,
h ≤ ⌈logm/2(2N/ℓ)⌉ (ℓ/2 entries per leaf, inner nodes half filled) and
h ≥ ⌈logm(N/ℓ)⌉ (ℓ entries/leaf, inner nodes completely filled)

• equality search needs h steps
inside each of the inner nodes, search is also in O(n)

• if the leaves are connected by pointers, ordered sequential access (range search) is also
supported

• insertions and modifications may be expensive (tree reorganization)

Use of B∗-Trees as Access Paths in Databases

• databases: cities stored in data files, index trees hold pointers to city records in their tree
entries.

• separation between index files/pages and data files/pages.

• multiple search trees for each relation possible.

173

Example

Example 4.1
Consider the MONDIAL database with 3000 cities, with an index over the name. Assume the
following sizes:

• every leaf (tuple) page contains 10 cities,

• every inner node contains 20 pointers

Then

• every inner node on the lowest level covers 200 cities

• every inner node on the second lowest level covers 4000 cities

• minimal: only one level of inner nodes

• maximal: two levels of inner nodes (nodes about only 2/3 filled)

• access every city with WHERE Name =“...” in 3 or 4 steps

• index on population, e.g., for WHERE Population > 1,000,000 ORDER BY Population

• realistic numbers: block size 4K: lowest level (keys+pointers to DB): 100 cities; inner
nodes: 100 references. ✷

174

HASH-INDEX (DICTIONARY)

Hash index over the value of one or more columns (“hask key” – is not necessarily a key of
the relation):

The values are distributed over k tiles.

• A hash function h is a function that maps each value to a tile number.
operation: lookup(value)

• each tile holds pairs (key,pointer) to all tuples whose hash-key value is mapped to this tile;

• each tile consists of one or more pages.

• common technique: convert value to an integer i. i mod k gives the tile number.

175

E
xam

ple:H
ash

index
overC

ity.nam
egiven:a

city
nam

e
n

com
pute

value
ofhash

function
h
(n

)
=

sum
(ascii(n

[i]))m
od

13

h
(n

)
=

1
h
(n

)
=

4
h
(n

)
=

6
h
(n

)
=

8
h
(n

)
=

1
1

...

• Munich
:
• Bern

:
• Hannover

...

• Aachen
:
• Lisbon

:
• Göttingen

:

...

• Berlin

:

...
• Hamburg

:
• Grenoble

:

...

• Vienna

:

...

Relation “City”

: : :

Munich D 1244676

: : :

Vienna A 1583000

: : :

Grenoble F 150758

: : :

Aachen D 247113

: : :

Bern CH 134393

: : :

Göttingen D 127519

: : :

Hannover D 525763

: : :

Berlin D 3472009

: : :

Hamburg D 1705872

: : :

Lisbon P 2063800

: : :

176

Hash-Index

Example 4.2
Multi-attribute hash keys:
Consider a hash index on City.(name, province, country). h computes the sum of the ASCII
numbers of the letters and takes the remainder modulo 111. ✷

Properties:

• equality search and insert in constant time (+ time for searching in the tile)

• does not support range queries or ordered output

Comments:

• maintenance of overflow pages: see Info III

• lookup inside each tile can be organized by a B-tree (kept on a single page)

177

TREE AND HASH INDEXES: OBSERVATIONS

• structure of tree leaf nodes and hash tiles is the same:

– pairs: (search key value, reference to a tuple in storage page)

• tree leaf nodes and hash tiles are actually projections of a table R on the search key
attribute/attributes

– π[name](City) can be answered by just using the above tree/hash indexes.

⇒ indexes not only be as access paths, but also to support frequently used projections.

DUPLICATES IN TREE OR HASH INDEXES

What if π[search-key-attrs](relation) contains duplicates,
e.g., index on City.country?

• straightforward: multiple subsequent (value, ref) entries for the same value in the leaf/tile
pages,

• saves some space: pairs (value, set-of-references).

• any index that is not over a superset of a candidate key potentially contains duplicates.

178

BIT LISTS

If the number of possible values of a search key value is small wrt. the number of tuples, bit
lists are useful as indexes

Let a an attribute of the records stored in a file f , where k values of a exist. Then, a bit list
index to f consists of k bit vectors B(vi), i ≤ 1 ≤ k.

• B(vi)(j) = 1 if the jth record in f has the value vi for the attribute a.

Properties:

• access all tuples with a given value:
without bit list: linear search over all pages
with bit list: access bit list, and access those pages where a “1”-tuple is located.

• modifications: no problem

• deletions: depends (if gaps are allowed on the pages)

179

Example 4.3
Consider the relation isMember(organization, country, type) where type has only the values
“member”, “applicant”, and “observer”:

isMember

Org. Country Type

EU D member

UN D member

UN CH observer

UN R member

EU PL applicant

EU CZ applicant

: : :

Bit list for type=member: 1 1 0 1 0 0 . . .

Bit list for type=observer: 0 0 1 0 0 0 . . .

Bit list for type=applicant: 0 0 0 0 1 1 . . .

Bit list for org=EU: 1 0 0 0 1 1 . . .

Bit list for org=UN: 0 1 1 1 0 0 . . .

• Search for members of the UN:
without bit list: linear search over all pages
with bit list: access bit list, and access those pages where a 1-tuple is located.

• 2nd bit list on organization column: “members of UN” by logical “and” of bit lists. ✷

180

ORDERED STORAGE

Tuples of a relation can be stored grouped/ordered wrt. one search key

• Example: table City grouped by country (or even by (country, province))

R
el

at
io

n
“C

ity
”

V
ie

nn
a

A
15

83
00

0

In
ns

br
uc

k
A

11
80

00

:
:

:

B
er

n
C

H
13

43
93

:
:

:

B
er

lin
D

34
72

00
9

H
am

bu
rg

D
17

05
87

2

M
un

ic
h

D
12

44
67

6

H
an

no
ve

r
D

52
57

63

G
öt

tin
ge

n
D

12
75

19

A
ac

he
n

D
24

71
13

:
:

:

P
ar

is
F

21
52

42
3

G
re

no
bl

e
F

15
07

58

:
:

:

Li
sb

on
P

20
63

80
0

:
:

:

• things that are frequently needed together can be fetched within the same page,

• Index on City.country needs only a reference to the first tuple in each country
(note that the index is still useful to have access in O(log n) or O(1)).

- insertions and modifications more costly
(strategies to allow and keep free space between blocks)

181

CLUSTERING

• keep data that semantically belongs together on the same pages

• obviously done for relations, by ordered storage even inside a relation

• data of several relations R1(X̄1), . . . , Rn(X̄n) can also be grouped to clusters:

– choose a set Ȳ ⊆ X̄1 ∩ . . . ∩ X̄n as cluster key.

– combine relations by their Ȳ -values.

– provides obvious advantages when evaluating joins over the cluster key.

182

Example 4.4
Consider the relation schemata

organization(name,abbrev,established,. . .)
and

isMember(organization, country, type).
The foreign key

isMember.organization → organiza-
tion.abbreviation
is used as cluster key.

Organization

Abbrev

EU Name established

European Union 07.02.1992

Country Type

D member

A member

: :

UN Name established

United Nations 26.06.1945

Country Type

D member

CH observer

: :

183

4.1.1 Algorithms and Data Structures: Basic Techniques

Iteration: all tuples in the input relations are processed iteratively. If possible, instead of the
tuples themselves, an index can be used.

Indexes: selections and joins can be based on processing of an index for determining the
tuples that satisfy the selection condition (a join condition is also a selection condition).

Indexes on single attributes: obvious.

Indexes on multiple attributes:

• a hash index to a conjunction of equality predicates of the form field = value can be
used if every field of the search key occurs exactly in one predicate together with a
constant,

• a tree index to a conjunction of comparison predicates of the form field θ value can
be used if a prefix of the search key exists such that each field of the prefix occurs in
exactly one predicate together with a constant.
Example: if (Country,Province,CityName) is the search key of an index, it can also be
used as an index for the key’s prefix (Country,Province).

184

4.1.2 Implementation of Algebra Operations

SELECTION

Selection: σ[R.field θ value]R.

• no index, unordered tuples: linear scan of the file

• no index, tuples ordered wrt. field: find the tuple(s) that satisfy “field θ value” (binary
search) and process these tuples.

• tree index: find the tuple(s) that satisfy “field θ value” using the tree index and process
these tuples.

• hash: suitable only if θ is equality.

185

Selection: boolean combination of predicates

Boolean combinations of predicates can be evaluated by set operations on references (from
the tree leaves and hash tiles):

Consider π[name](σ[country=“D” ∧ population > 500.000](City))

• hash index on City.country,

• tree index on City.population (supports range search for > 500.000)

Leaf entries and entries on hash tiles are of the form

(search-key-value, reference-to-tuple)

(i) hash lookup on City.country=“D” results in a set of references,

(ii) index search on City.population>500.000 results in a set of references.

• compute intersection:

• put (i) into a TreeSet or HashSet s (fits in main memory)

• for each reference in (ii): if it is contained in s, access actual tuple and output its name.

186

PROJECTION

Projection: π[field1, field2, ..., fieldm]R.

Main problem: remove duplicates (relational algebra does not allow duplicates, SQL does).

• if an index over field1, field2, ..., fieldm or a superset of it exists: scan only the index leaf
nodes and apply a projection to them.

• by sorting:
scan the file, create a new file with projected tuples.
sort the new file (over all fields, n logn).
scan the result, remove duplicates.

• by hash: scan the file, put the projected tuples into a hash.
duplicates all end up in the same tile (still in files).
remove duplicates separately for each tile (iterating the hashing process with different
functions until tile fits in main memory)
collect the tiles in the output file.

⇒ hashing not only as an index for search structures, but also as an algorithm for
partitioning.

187

JOIN

Consider an Equijoin: R ⊲⊳R.A=S.B S.

Nested-loop-join

foreach tuple r ∈ R do

foreach tuple s ∈ S do

if rA = sB then add [r, s] to result

Very inefficient:

• assumption: only one page of each relation fits into main memory

• m tuples of R per page, n tuples of S per page:
|R|/m+ |R| · |S|/n filesystem accesses (for each tuple of R, loop over all pages of S).

• |R| · |S| comparisons.

obvious: if possible, process the smaller relation in inner loop to keep it in main memory
(|R|/m+ |S|/n filesystem accesses).

188

Block-nested-loop-Join

Optimization by page-oriented strategy:

Divide S into blocks that fit in main memory and process each of the blocks separately.

• assumption: only one page of each relation fits into main memory

• m tuples of R per page, n tuples of S per page:

– take first page (R1) of R and first page (S1) of S;

– combine each tuple of R1 with each tuple with S1.

– continue with R1 and second page (S2) of S ... up to R1 with Slast

– continue with R2 and S1 etc.

• |R|/m+ |R|/m · |S|/n filesystem accesses (for each page of R, loop over all pages of S).

• still |R| · |S| comparisons.

• same for k > 1 available cache pages: read k − 1 pages from R for each block.

189

Straightforward optimizations for Block-Nested-Loop-Join

For each block, some optimizations can be applied:
(that motivate also the subsequent algorithms)

• idea: do not consider cartesian product + selection as the base for join, but look up
matching tuples in S.

Applied to the Block-Nested-Loop-Join base algorithm, these do not reduce the number of
page accesses, but the number of comparisons:

• generate a temporary index on S.B over the loaded fraction of S;

• in case of duplicates of R.A: generate a temporary index also over R.A. on the single
loaded page to process tuples groupwise;

• [do not discuss yet: generate temporary ordered indexes both on R.A and S.B, process
them merge-style]

next step: consider these optimizations on the global level of the algorithm

190

Index-Nested-Loop-Join

If for one of the input relations there is an index over the join attribute, choose it as the inner
relation.

• given index on S’s join attribute

• loop over R, for each value access matching tuple(s) in S.

• |R|/m+ |Result| filesystem accesses,

• up to |R|/m+ |R| · |S| filesystem accesses,

• usually less efficient than block-nested-loop!

Parallelization

• Divide R into partitions and process each of them on a separate processor (share the
index on S).

191

Sort-merge-join

Algorithm type: “Scan line”

First: simple case that illustrates the principle:

Assumption: relations are sorted wrt. R.A and S.B

• search for matches as follows:

– proceed through the ordered R and S stepwise, always doing a step in the index
where the “smaller” value is.

• if a match is found:

– generate a result tuple.

– check for tuples which have the same values of the join attributes (must immediately
follow this match in both relations).

• |R|/m+ |S|/n filesystem accesses.

General Case: relations are not sorted

... next slide

192

Sort-merge-join (cont’d)

• Sort relations first:

– sort R according to R.A:

– copy first k pages in cache, sort them in place (Quicksort), store them,

– do this for pages 2k...3k − 1 etc.

– requires 2 · |R|/m page accesses (read and write)

– mergesort the sorted packets (linear; traverse all packets in parallel and write out in
different place)

– requires again 2 · |R|/m page accesses (read and write)

– do the same for S

Sort+merge: 4 · |R|/m+ 4 · |S|/n+ |R|/m+ |S|/n page accesses

• [note: the step “mergesort the sorted packets” can be omitted by running merge join
directly on all of them; then 2 · |R|/m+ 2 · |S|/n+ |R|/m+ |S|/n .]

193

Sort-merge-join (cont’d)

• Use only sorted indexes:

– compute sorted indexes of both relations on the join attributes
(fit into main memory, requires |R|/m+ |S|/n)
(if tree indexes on join attributes are available, simply use them)

– search for matches as above:

* proceed through the ordered indexes R and S stepwise, always doing a step in the
index where the “smaller” value is.

– if a match is found:

* access actual tuples and generate a result tuple.

* check for tuples which have the same values of the join attributes (must immediately
follow this match in both relations).

– at most |R|/m+ |S|/n+ |Result| filesystem accesses
(when processing duplicates with same R.A = S.B value, less than + |Result|)

• with sorted indexes: costs depend on number of results (“selectivity of the join”).

⇒ decide to sort relations or to use indexes based on selectivity/heuristics.

194

Sort-merge-join: basic Algorithm

if R not sorted on attribute A, sort it;
if S not sorted on attribute B, sort it;

Tr := first tuple in R;
Ts := first tuple in S;
Gs := first tuple in S;

while Tr 6= eof and Ts 6= eof do {
while Tr 6= eof and Tr.A < Ts.B do Tr = next tuple in R after Tr;

while Ts 6= eof and Tr.A > Ts.B do Ts = next tuple in S after Ts;

// now, Tr.A = Ts.B: match found
while Tr 6= eof and Tr.A = Ts.B do {

Gs := Ts;
while Gs 6= eof and Gs.B = Tr.A do {

add [Tr,Gs] to result;
Gs = next tuple in S after Gs;}

Tr = next tuple in R after Tr;
}

Ts := Gs;
}

195

Hash-join

Algorithm type: “Divide and Conquer”

Partitioning (building) phase:

• Partition the smaller relation R by a hash function h1 applied to R.A.

• Partition the larger relation S by the same hash function applied to S.B.
(into different hash tables)

Matching (probing) phase:

• potential(!) matches have been mapped to “face-to-face” partitions.

• thus, consider each pair of corresponding partitions:

• if partition of R does not fit into main memory, proceed recursively with another h.

• otherwise – i.e., R-partition fits in main memory:

– if corresponding S-partition also fits into main memory, compute the join.

– otherwise proceed recursively with another (finer) h2 inside main memory and process
S-partition pagewise.

196

EXERCISE

Exercise 4.1
Consider the join of two relations R and S wrt. the join condition R.A = S.B. R uses M pages
with pR tuples each, and S uses N pages with pS tuples each. Let M = 1000, pR = 100,
N = 500, pS = 80; the cache can keep 100 pages. Compute the number of required
I/O-operations for computing the join (without writing the result relation) for:

(a) simple nested-loop-join,

(b) pagewise nested-loop-join,

(c) index-nested-loop-join (Index on SB),

(d) sort-merge-join (sorted relation/sorted index),

(e) hash-join. ✷

197

Another Example

In the previous comparison, the index-nested-loop-join did not perform well:

• access to each individual matching tuple is fast, but every page of S has to be accessed
n times.

Example 4.5
Consider (σ[cond](R)) ⊲⊳R.A=S.B S where cond has a selectivity q, (e.g. q = 1/1000):

• loop over R, evaluate cond, for each tuple that satisfies the condition, access matching
tuple(s) in S using the index.

• |R|/m+ |Result| = |R|/m+ q · |R| · q′ filesystem accesses,

• where q′ is the selectivity of the join.

⇒ usage of index is efficient when only a small number of tuples of S has to be accessed
(the other algorithms had to process S completely). ✷

198

SEMIJOINS

• Natural Semijoins or Condition Semijoins as subqueries:
R ✄< [condition(Ri1 , ..., Ri1 , Si1 ..., Siℓ)]S

It is often sufficient to use an index over Si1 ...Siℓ instead of the whole relation.

• Semjoins as preparation for joins: R ⊲⊳ S = (R ✄< S) ⊲⊳ S (and symmetrically
= R ⊲⊳ (R >✁ S))

Is that simpler? – Sometimes Yes!

– cf. Join R ⊲⊳ S, with an existing index over the join attribute(s) in S: iterate over R and
access S via index. No access, if not found. If found, access tuple in S
This actually is (R ✄< S) ⊲⊳ S.

Consider R ⊲⊳ S to be a hash join:

– First hash S, build an index over the join attribute(s), keep the index in main memory.

– iterate over R: for every tuple µ, if µ ∈ (R ✄< S) (can be checked against the main
memory index), then hash it.

199

“PURE” INDEX-BASED SELECTIONS, PROJECTIONS, AND JOINS

Consider that leaves of tree- and hash-indexes are of the form (value, pointer-to-tuple)

• SELECT code FROM country WHERE population > 10000000 AND area > 500000

• indexes on country.population, country.area (tree) and country.code (tree or hash)

1. search 10000000 in the population index (yields first leaf with > 10000000),

2. from there, iterate over all higher entries (pop,ptr1) in the leaves. ptr points to a tuple
representing a result. Collect ptr1s in a (Tree)Set S1.

3. search 500000 in area population index (yields first leaf with > 500000),

4. from there, iterate over all higher entries (pop,ptr2) in the leaves. ptr2 points to a tuple
representing a result. Collect ptr2s in a (Tree)Set S2.

5. intersect S1 ∪ S2 (intersection of index pointers)

6. For each result ptr, look in the index entries for code (code, ptr3) for the entry with
ptr3 = ptr. Output code.

• problem: the index on code is looked up “backwards”.

200

Inverted Indexes

Sometimes (as in the previous example) is would be useful to use an index backwards:

• Recall: leaves of tree- and hash-indexes are of the form (value, pointer-to-tuple)

• if the pointer-to-tuple is known from an index lookup, the value of an indexed attribute of
this tuple is stored in the index leaf node.

• instead of accessing the (large) tuple(s) from its storage, it might be cheaper to lookup
the values in the index.

⇒ an Inverted index on an attribute attr is a (tree or hash) index for search by the
tuple-pointers.

• Step (6) of the previous example profits from an inverted index on country.code.

201

Pure Index-based Equi-Joins

... via intersection of index values

Consider the equijoin: R ⊲⊳R.A=S.B S from before.

• Indexes on R.A and on S.B (both tree or both hash with same hash function).

• find matching index entries by “merge”-style processing of leaves or tiles, yields pointer
pairs (ptrA, ptrB) to matching tuples,

• access the tuples, or the required output attribute values per inverted index,
(if joining further an another attribute with another table T , the tuple pointers/ids may be
sufficient)

• with tuple access: O(2 · |Result|) page accesses, with inverted index none.

⇒ may be better or worse than the tuple-based algorithms.

⇒ if no index is present, on-the-fly temporal indexes (or inverted indexes) can be created by
the database.
(the DB may keep this indexes then, and maybe maintain them, or delete them when the
relation is updated)

202

GROUPING AND AGGREGATION

General Structure:

SELECT A1, . . . , An list of attributes
FROM R1, . . . , Rm list of relations
WHERE F condition(s)
GROUP BY B1, . . . , Bk list of grouping attributes
HAVING G condition on groups
ORDER BY H sort order

• SUM, AVG, COUNT: linear scan necessary (need to consider all tuples)

• MIN, MAX: index can be used

• support for grouping (SQL: GROUP BY) using an index or a hash table

UNION, DIFFERENCE, INTERSECTION ⇔ CARTESIAN PRODUCT

• intersection and cartesian product are special cases of join

• union and difference: analogous to sort-merge-join or hash-join

203

SITUATION-DEPENDENT OPTIMIZATION

Determining the optimal execution plan depends on cost models, heuristics, and the
actual physical schema and the actual database contents:

• index structures

• statistics on data (i.e., to some extent state dependent)

– cardinality of relations

– distribution of values

204

Notions

The selectivity sel of operations can be used for estimating the size of the result relation:

• Selection with condition p:

selp =
|σ[p](R)|
|R|

Proportion of tuples that satisfy the selection condition.

– for p an equality test R.A = c where A is a key of R, selp = 1/|R|.
– if R.A distributes evenly on i different values, selp = 1/i.

• Join of R and S:

selRS =
|R ⊲⊳ S|
|R× S| =

|R ⊲⊳ S|
|R| · |S|

is the proportion of result tuples wrt. the cartesian product.

for R ⊲⊳R.A=S.B S with A a key attribute, |R ⊲⊳R.A=S.B S| ≤ |S|, thus selRS ≤ 1/|R|.

• optimal order of applying joins

• optimal order of applying selections

205

APPLICATION-LEVEL ALGORITHMIC OPTIMIZATION

And never forget about using efficient algorithms for querying the database!

• analyze the problem from the algorithmic point of view

• before hacking

EXAMPLES

Use the MONDIAL database for the following examples.

Example 4.6
Compute all pairs of european countries that are adjacent to the same set of seas. ✷

Example 4.7
Compute all political organizations that have at least one member country on every continent
(this operation is called relational division). ✷

206

4.1.3 Exercises and Examples

Solution to Exercise 4.1

R: 1000 pages, each of them with 100 tuples
S: 500 pages, each of them with 80 tuples
Cache: 100 pages

a) simple nested loop join

– outer loop: R
Load each page of R. For all tuples, iterate over S’s pages.
1000 · (1 (load) + 100 (tuples per page) · 500 (pages of S)) = 50, 001, 000

– outer loop: S
Load each page of S. For all tuples, iterate over R’s pages.
500 · (1 (load) + 80 (tuples per page) · 1000 (pages of R)) = 40, 000, 500

207

Solution to Exercise 4.1 (cont’d)

R: 1000 pages, each of them with 100 tuples
S: 500 pages, each of them with 80 tuples
Cache: 100 pages

b) pagewise nested loop:

– outer loop: R. Load each page of R. Combine all tuples of that page with all tuples
from each page of S.
1000 · (1 + 500 (pages of S)) = 501, 000

– outer loop: S. 500 · (1 + 1000 (pages of R)) = 505, 000

b2) maximum-pages nested loop: load as many (first 99) pages of R as possible in the cache
and join with one page of S after the other. Then continue with 2nd 99 pages.

– 11 times, i.e., 10 · 99 R pages + 1 · 10 R pages through all S pages.
Overall: 1000 + 11 · 500 = 6500.

– symmetric with (5 · 99 + 1 · 5) pages of S:
Overall: 500 + 6 · 1000 = 6500.

– can be algorithmically optimized by on-the-fly indexes during the main-memory join

208

Solution to Exercise 4.1 (cont’d)

R: 1000 pages, each of them with 100 tuples
S: 500 pages, each of them with 80 tuples; Cache: 100 pages

c) Index-nested-loop (index on S.B): Assumptions:

– every R.A matches – average – 4 S-tuples.

– index over S.B already exists (if not: creating an index over S.B requires 500
accesses) and can be kept in main memory

Iterate over R, for each tuple search for the value of R.A in the index over S.B and access
the tuples
1000 · (1 (load) + 100 · 4 (access tuples)) = 401, 000.

Note: the number of page accesses depends on the number of results since for every
actual result there is one page access.

In case that S is ordered wrt. S.B: 1000 · (1 (load) + 100 · 1 (access tuples)) = 101, 000.

209

Solution to Exercise 4.1 (cont’d)

R: 1000 pages, each of them with 100 tuples
S: 500 pages, each of them with 80 tuples; Cache: 100 pages

d) sort-merge:
different settings

– if already ordered: linear scan:
1000 + 500 = 1500

– sort relations first:
2 · 1000 + 2 · 500 + 1000 + 500 = 4500

– using an index (assume: every R.A matches – average – 4 S-tuples):
1000 + 500 + 4 · 1000 · 100 = 401, 500

210

Solution to Exercise 4.1 (cont’d)

R: 1000 pages, each of them with 100 tuples
S: 500 pages, each of them with 80 tuples
Cache: 100 pages

e) Hash-Join:

– Hash R:
100 pages fit in memory - read one page of R after the other and distribute over 99
partitions (whenever a page of a partition is full, move it to the disk).
In the average, each partition them contains about 10.1 (→ 11) pages; last page of
each partition is not completely filled.
maximum 1000 (read) + 1089 (write) = 2099.

– Same for S. Get 99 partitions of average 5.1 (→ 6) pages
(maximum 500 + 594 = 1094 accesses).

– now there are 99 corresponding pairs of partitions (one from R, one from S).
Join each pair: read 11 + 6 pages per partition and process them.
(about 99 · (11 + 6) = 1683 accesses).

Overall: 4876 accesses.

211

Solution to Exercise 4.6

First, compute all pairs of european countries. Note that the answer should be their names,
thus also the Country relation is needed.

σ[seas]

σ[eur]

ρ[enc→enc1]×ρ[enc→enc2]

⊲⊳cond ⊲⊳cond

encompasses country encompasses country

• cond = “enc.country=country.code” ,

• eur = “enc1.continent=‘europe’ and enc2.continent=‘europe’” ,

• seas expresses that both countries border the same set of seas.
It is a correlated subquery;

• add suitable projections;

• move σ[eur] downwards both sides directly to encompasses;

• obviously, both subtrees of × are identical.

212

Solution to Exercise 4.6 (cont’d)

• σ[seas(C1, C2)] is a correlated subquery that takes two country codes as input:

σ[seas(C1, C2)] = seas(C1)− seas(C2) = ∅ ∧ seas(C2)− seas(C1) = ∅
= (seas(C1)− seas(C2)) ∪ (seas(C2)− seas(C1)) = ∅

• seas(C) = π[sea](σ[country = C](geo_sea))

• for each country, seas(C) is computed only once and then reused.

Resulting SQL skeleton (using subqueries in the FROM clause):

SELECT ...
FROM (SELECT european countries) as C1,

(SELECT european countries) as C2
WHERE σ[seas(C1, C2)]

213

Solution to Exercise 4.7

• π[abbrev](σ[all_continents(org)])(organization) where σ[all_continents(org)] is true for

{org | ∀cont : cont is a continent→ org has a member on cont}

• convert ∀ into ¬exists:
{org | ¬∃cont : cont is a continent and org has no member on cont}

• Thus, σ[all_continents(org)] checks if

π[name](continent)−π[enc.continent]((σ[organization = org]isMember) ⊲⊳ encompasses)

is empty.

Resulting SQL skeleton (uses a correlated subquery):

SELECT ...
FROM organization
WHERE NOT EXISTS

((SELECT continents)
MINUS
(SELECT continents where org has a member))

214

Chapter 5
Relational Databases and SQL:
Further Issues

• Data Definition Language (DDL):
schema generation

• Data Manipulation Language (DML):

– queries

– insertions, deletions, modifications

• Database behavior?

215

5.1 Database Schema

The database schema is the complete model of the structure of the application domain (here:
relational schema):

• relations

– names of attributes

– domains of attributes

– keys

• additional constraints

– value constraints

– referential integrity constraints

• storage issues of the physical schema: indexes, clustering etc. also belong to the schema

216

5.1.1 Schema Generation in SQL

Definition of Tables

Basic form: attribute names and domains

CREATE TABLE <table>

(<col> <datatype>,
...
<col> <datatype>)

domains: NUMBER, CHAR(n), VARCHAR2(n), DATE ...

CREATE TABLE City
(Name VARCHAR2(35),
Country VARCHAR2(4),
Province VARCHAR2(32),
Population NUMBER,
Latitude NUMBER,
Longitude NUMBER);

217

Integrity constraints

Simple constraints on individual attributes are given with the attribute definitions as “column
constraints”:

• domain definitions are already integrity constraints

• further constraints on individual attribute values
more detailed range restrictions:
City: CHECK (population ≥ 0) or CHECK (longitude BETWEEN -180 AND 180)
Note: every CHECK constraint can only use a single column.

• NULL values allowed? : Country: name NOT NULL

• Definition of key/uniqueness constraints:
Country: code PRIMARY KEY or name UNIQUE

218

Integrity constraints (Cont’d)

Multi-attribute constraints are given separately as “table constraints”:

CREATE TABLE <table>

(<column definitions>,
<table-constraint>, ... ,<table-constraint>)

• table-constraints have a name;

• must state which columns are concerned;

• e.g. multi-column keys and foreign keys.

CREATE TABLE City
(Name VARCHAR2(35),
Country VARCHAR2(4),
Province VARCHAR2(32),
Population NUMBER CONSTRAINT CityPop CHECK (Population >= 0),
Latitude NUMBER CONSTRAINT CityLat CHECK (Latitude BETWEEN -90 AND 90),
Longitude NUMBER CONSTRAINT CityLong CHECK (Longitude BETWEEN -180 AND 180),
CONSTRAINT CityKey PRIMARY KEY (Name, Country, Province));

... for details see “Practical Training SQL”.

219

Integrity constraints (Cont’d)

• up to now: only intra-table constraints

General Assertions

• inter-table constraints
e.g., “sum of inhabitants of provinces equals the population of the country”,
“sum of inhabitants of all cities of a country must be smaller the than population of the
country”

• SQL standard: CREATE ASSERTION

• not supported by most systems

• other solution: later

220

5.1.2 Referential Integrity Constraints

• important part of the schema; especially for tables corresponding to relationship types;

• relate foreign keys with their corresponding primary keys:

Continent Countryencompasses

name

Europe

code

R

percent

20

encompasses (cf. Slide 47)

Country Continent Percent

VARCHAR(4) VARCHAR(20) NUMBER

R Europe 20

R Asia 80

D Europe 100

.

encompasses.country→ country.code and
encompasses.continent→ continent.name

Tables corresponding to entity types have foreign keys that correspond to 1:n relationships:

city.country→ country.code and
country.(capital,province,code)→ city.(name,province,country)

221

Referential Integrity Constraints: SQL Syntax

• as column constraints (only single-column foreign keys):
<column-name> <datatype> REFERENCES <table>(<column>)

• as table constraints (also compound foreign keys):
[CONSTRAINT <name>] FOREIGN KEY (<column-list>)

REFERENCES <table>(<column-list>)

CREATE TABLE encompasses
(Country VARCHAR2(4) REFERENCES Country(Code),
Continent VARCHAR2(12) REFERENCES Continent(Name),
percent NUMBER CHECK (0 < percent <= 100),
PRIMARY KEY (Country, Continent));

CREATE TABLE City
(Name VARCHAR2(35),
Country VARCHAR2(4) REFERENCES Country(Code),
Province VARCHAR2(32),
Population NUMBER ..., Latitude NUMBER ..., Longitude NUMBER ...,
CONSTRAINT CityKey PRIMARY KEY (Name, Country, Province),
FOREIGN KEY (Country,Province) REFERENCES Province (Country,Name));

222

5.1.3 Virtual Tables: Views

Views are tables that are not materialized, but defined by a query against the database:

CREATE VIEW <name> AS <query>

CREATE OR REPLACE VIEW symm_borders AS
SELECT * FROM borders
UNION
SELECT Country2, Country1, Length FROM borders;

SELECT country2
FROM symm_borders
WHERE country1=’D’;

• classical views: the content of a view is always computed when it is queried.

• Materialized Views: view is materialized and automatically maintained
→ view maintenance problem: when a base table changes, what modifications have to be
applied to which views?

223

5.2 SQL: Data Manipulation Language

... everything is based on the structure of the SELECT-FROM-WHERE clause:

• Deletions:

DELETE FROM <table> WHERE ...

– specifies in which table to delete,

– where-clause can contain arbitrary subqueries to other tables

• Updates:

UPDATE <table>

SET <attribute> = <value>, ..., <attribute> = <value>

WHERE ...

– specifies in which table to update,

– value can be a subquery (also a correlated one)

• Insertions:

INSERT INTO <table> VALUES (<const1>, ..., <constn>)
INSERT INTO <table> (SELECT ... FROM ... WHERE ...)

– where the <consti> are constants (strings, numbers, dates, . . .).

224

5.3 SQL: The DATE Datatype ... and Customization

• many applications in business and administration use dates

• computations on dates (e.g., “last of the third month after ...”, “number of days between”)

⇒ SQL provides comprehensive datatypes DATE, TIME, TIMESTAMP

A More General View I: Datatypes

DATE etc. are just some (important and typical) examples of built-in datatypes

• specific operators (and behavior, cf. the XMLTYPE datatype in the SQLX standard)

• handled via one or more lexical representations as strings

225

A MORE GENERAL VIEW II: INTERNATIONALIZATION AND CUSTOMIZATION

Database systems are used anywhere in the world (like most software), and their contents is
exchanged all over the world

• people use different languages (e.g. for error messages!)

• people use different representations

– even for numbers: 3,1415 vs. 1.000.000 (german), 3.14 vs. 1,000,000 (anywhere else)

– for dates: ’31.12.2007’, ’12/31/2007’ or ’12-31-2007’ (USA), ’01-JAN-2003’ etc., ’01
Janeiro 2003’ even language dependent.

226

SQL: INTERNATIONALIZATION AND CUSTOMIZATION

This issue is handled syntactically differently (but using the same idea) between different
products.

Oracle: Natural Language Support

NLS_LANG (language and localization issues in general), NLS_NUMERIC_CHARACTERS
(decimal point/dezimalkomma) and NLS_DATE_FORMAT (date format), NLS_SORT (sorting
order)

• ALTER SESSION SET NLS_LANGUAGE = ’Language Territory.CharacterSet ’;
Language: error messages, etc, Territory: more detailed formats (America/Canada/UK)
including default for decimal point and date format.
ALTER SESSION SET NLS_LANGUAGE = ’portuguese’

• ALTER SESSION SET NLS_NUMERIC_CHARACTERS =’,.’; (german style),
ALTER SESSION SET NLS_NUMERIC_CHARACTERS =’.,’; (english style),

• ALTER SESSION SET NLS_DATE_FORMAT = ’string-pattern’, e.g. ’DD.MM.YYYY’,
’DD-MON-YY’, ’DD hh:mm:ss’

227

SQL: Internationalization and Customization

Then, e.g., INSERT INTO Politics VALUES('D','18.01.1871','federal republic')

is correctly interpreted. In the output, DATE values are always represented in the currently
specified format.

⇒ SQL provides comprehensive datatypes DATE, TIME, TIMESTAMP

• semantics: year/month/date/hour/minute/second
timestamp: additionally fractions of seconds as decimal
(Oracle: only DATE and TIMESTAMP)
built-in calendar knows about length of months, leap years etc.

• operators on date and time:

– date+ days

– MONTHS_BETWEEN(date1, date2), ADD_MONTHS(date, n), LAST_DAY(date)

– SYSDATE

to_char(string,pattern) and to_date(string,pattern) functions

SELECT to_char(independence,'MM/DD/YYYY') from Politics; -- 01/18/1871
SELECT to_char(independence,'DAY') from Politics; -- wednesday
SELECT to_date('25-FEB-2012','DD-MON-YYYY')+5 from dual; -- 01-MAR-12

228

The DATE Datatype: Example

CREATE TABLE Politics
(Country VARCHAR2(4),

Independence DATE,
Government VARCHAR2(120));

ALTER SESSION SET NLS_DATE_FORMAT = 'DD MM YYYY';
INSERT INTO politics VALUES
('B','04 10 1830','constitutional monarchy');

All countries that have been founded between 1200 und 1600:

SELECT Country, Independence
FROM Politics
WHERE Independence BETWEEN
'01 01 1200' AND '31 12 1599'
ORDER BY Independence;

Country Independence

THA 01 01 1238

MC 01 01 1419

E 01 01 1492

NL 01 01 1579

229

5.4 Beyond Relational Completeness

• The Relational Algebra and SQL are only relationally complete.

• can e.g. not compute the transitive closure of a relation

• applications require a more complex behavior:

– SQL as the “core query language”

– with something around it ...

230

MAKING SQL TURING-COMPLETE

• embedded SQL in C/Pascal:

EXEC SQL SELECT ... FROM ... WHERE ...

embedded into Java: JDBC (Java Database Connectivity)

• SQL-92: Procedural Extensions to SQL:

– CREATE procedures and functions as compiled things inside the database

– standardized concepts, but product-specific syntax

– basic programming constructs of a “typical” Turing-complete language:
Variables, BEGIN ... END, IF ... THEN ... ELSIF ..., WHILE ... LOOP ..., FOR ... LOOP

– SQL can be used inside PL/SQL statements

231

“IMPEDANCE MISMATCH” BETWEEN DB AND PROGRAMMING LANGUAGES

(cf. Slide 3)

Set-oriented (relations) vs. value-oriented (variables)

• how to handle the result of a query in C/Pascal/Java?

Iterators (common programming pattern for all kinds of collections)

• explicit:

– new/init(<query>)/open()

– first(), next(), isempty()

– fetch() (into a record/tuple variable)

• implicit (PL/SQL’s “Cursor FOR LOOP”):

FOR <record-variable> IN <query>

LOOP
do something with <record-variable>

END LOOP;

... for details see “Practical Training SQL”.

232

5.5 Integrity Maintenance

• if a tuple is changed/inserted/deleted it is immediately checked whether all constraints in
the current database state are satisfied afterwards.
Otherwise the operation is rejected.

• if a constraint is defined/enabled, it is immediately checked whether it is satisfied by the
current database state.
Otherwise the operation is rejected.

Any further possibilities?

233

Integrity Maintenance (Cont’d): referential integrity

Consider again country - organization - is member:

isMember.organization→ organization.abbreviation
isMember.country→ country.code

• deletion of a membership entry: no problem

• deletion of a country: any membership entries for it are now “dangling”

⇒ remove them!

Referential Actions
FOREIGN KEY isMember(country) REFERENCES country(code) ON DELETE CASCADE

• ON DELETE CASCADE: delete referencing tuple

• ON DELETE RESTRICT: referenced tuple cannot be deleted

• ON DELETE NO ACTION: referenced tuple can be deleted if the same transaction also
deletes the referencing tuple

• ON DELETE SET NULL: foreign key of referencing tuple is set to NULL

• ON DELETE SET DEFAULT: foreign key of referencing tuple is set to a default value

• same for ON UPDATE

234

Referential Actions: a simple example

Country

Name Code Capital Province

Germany D Berlin Berlin

United States USA Washington Distr. Columbia

.

City

Name Country Province

Berlin D Berlin

Washington USA Distr. Columbia

.

1. DELETE FROM City
WHERE Name='Berlin';

2. DELETE FROM Country
WHERE Name='Germany';

3. UPDATE Country
SET code='DE'
WHERE code='D';

CASCADE

NO ACTION

235

Referential Actions: Problems

Country

Name Code Capital Province

Germany D Berlin Berlin

United States US Washington Distr.Col.

.
Province

Name Country Capital

Berlin D Berlin

Distr.Col. US Washington

.
City

Name Country Province

Berlin D Berlin

Washington USA Distr.Col.

.
DELETE FROM Country

WHERE Code=’D’

SET NULL

CASCADE

CASCADE

... ambiguous semantics!

see http://dbis.informatik.uni-goettingen.de/RefInt.

236

... active behavior/reaction on events!

5.6 Active Databases/Triggers

• reacting on an event

– external event/signal

– internal event: modification/insertion/deletion

– internal event: time

• if a condition is satisfied

• then do something/execute an action

ECA: Event-Condition-Action rules

237

ECA-Rules

Consider database updates only: one or more tuples of a table are changed.

• Granularity:

– execute action once for “all updates together” (e.g., afterwards, update a sum)

– execute action for each changed tuple (e.g. cascading update)

• Timepoint:

– after execution of original update

– before execution of original update

– instead of original update

• Actions:

– can read the before- and after value of the updated tuple

– read and write other tables

238

Triggers

The SQL standard provides “Triggers” for implementation of ECA rules:

CREATE TRIGGER

• specify event:
ON {DELETE | UPDATE | INSERT} OF <table> <pl/sql-block>

• specify condition: WHEN <condition>

• specify granularity: FOR EACH STATEMENT | ROW

• specify action by pl/sql-block.

Actions are programmed using the above-mentioned procedural extensions to SQL.

Applications

• implementation of application-specific business rules,

• integrity maintenance,

• monitoring of assertions.

... for details see “Practical Training SQL”.

239

Chapter 6
Running a Database: Safety and
Correctness Issues

• Transactions

• Safety against failure

Not discussed here:

• Access control, Authentication

240

6.1 Transactions: Properties and Basic Notions

Transaction:

• a unit of work from the user’s point of view.

• for the DBS: a process, characterized by a sequence of database accesses.

• requirements: ACID-properties:

Atomicity: A transaction is (logically) a unit that cannot be further decomposed: its effect is
atomic, i.e., all updates are executed completely, or nothing at all (“all-or-nothing”).

Concistency: A transaction is a correct transition from one state to another. The final state
is not allowed to violate any integrity condition (otherwise the (complete! – cf. atomicity)
transaction is undone and rejected).

Isolation: Databases are multi-user systems. Although transactions are running
concurrently, this is hidden against the user
(i.e., after starting a transaction, the user does not see changes by other transactions
until finishing his transaction, simulated single-user).

Durability: If a transaction completes successfully, all its effects are durable (=persistent).
I.e., no error situation (including system crash!) is allowed to undo them ⇒ safety.

241

Transactions consist of elementary actions:

• Read access: READ
By READ A (RA), the value of a DB-object A from the DB is copied to the local workspace
of the transaction.

• Write Access: WRITE
By WRITE A (WA), the value of a DB-object A is copied from the local workspace of the
transaction to the DB.

• BEGIN WORK and COMMIT WORK denote its begin (BOT - begin of transaction) and its
successful completion (EOT - end of transaction).

⇒ of the form BOT RA RB RC . . . WA . . . RD . . . WE EOT

• ROLLBACK WORK for undoing all its effects (ABORT).

• These elementary actions are physically atomic. At every timepoint, only one such action
is executed.

• in contrast, transactions are logically atomic, but several transactions may be executed in
an interleaved manner (see below).

242

6.2 Transaction models

FLAT TRANSACTIONS

Basic transaction model: Transactions are a “flat” (and short) sequence of elementary actions
without additional structure.
Example 6.1
Outline of a simple transaction for transferring money from account A to account B:

1. BEGIN WORK

3. debit (READ and WRITE) money from account A.

4. book money (READ and WRITE) on account B.

5. if account A negative, then ROLLBACK, otherwise COMMIT WORK. ✷

243

Atomicity

A transaction is logically atomic – even when executed interleaving with others

• all-or-nothing,

• potential rollback at the end,

⇒ requires isolation – other transactions must not use uncommitted written values (or also
rolled back)

⇒ rollback based on logging (see Slide 312 ff.).

Consistency

• Concept: check conditions only at the end of a transaction (COMMIT)

• Default in DB systems: Check after each atomic action

• Optional: declare CONSTRAINTs with DEFERRABLE INITIALLY DEFERRED to
postpone checks.

244

FLAT TRANSACTIONS WITH SAVEPOINTS

Limits of simple flat transactions: long transactions, e.g., travel booking (hotel, several
flights, rental car)

• partial rollback, for trying alternative continuations:

• SAVE WORK defines savepoints (intermediate states)

• sequences between savepoints are atomic (but in general not consistent and durable)

• ROLLBACK WORK(i) undoes effects back to savepoint i

• COMMIT WORK commits the whole transaction (ACID)

• complete ROLLBACK WORK undoes the whole transaction

245

NESTED TRANSACTIONS [OPTIONAL]

• internal (hierarchical) structuring of a transaction into subtransactions

• subtransactions can be executed serially, synchronous parallel, or asynchronous parallel

• transaction satisfies ACID, subtransactions only A&I.

Properties of Subtransactions

• atomicity

• consistency: not required – only for the root transaction

• isolation: required for rollback

• durability: not possible, since rollback of a superordinate (sub)transaction required also to
rollback “committed” subtransactions

246

Properties of Subtransactions (Cont’d)

• Commit: the local commit of a subtransaction makes its effects accessible only for its
superordinate transaction.

• root transaction commits if all immediate subtransactions commit.

• rollback: if some (sub)transaction is rolled back, all its subtransactions are rolled back
recursively (even when they committed locally)

• visibility: all updates of a subtransaction become visible to its superordinate transaction
when it commits.
All objects that are kept by a transaction are accessible for its subtransactions.
Effects are not visible for sibling transactions.

• above: “closed nested transactions”

• weaker visibility/isolation requirements: “open nested transactions”
require more complex rollback mechanisms

247

6.3 Multi-User Aspects

• In general, at any timepoint, several transactions are running.

• means interleaving (i.e., one step here, one step there, and again one step here)

• not necessarily true parallelism (requires multi-processor systems)

• techniques for interleaving are also sufficient for parallelism

Goal of multi-user policies: allow for as much interleaving as possible without the risk of
“unintended” results

Problem: transactions run on shared data.
⇒ enforce virtual isolation

248

TYPICAL ERROR SITUATIONS

For multiuser aspects, consider a scenario where a high number of short and long
transactions has to be processed:

(Online) Banking

A bank maintains branches at several cities; at each city multiple customers have accounts.
Customers are doing money transfers, cash withdrawals at ATMs (german: Geldautomaten);
and the bank computes the yearly interest rate (german: Zinsen) always on January 1st.

Consider the following relations:

• Account: Name, City, Amount

• Branch: City, Total
where “Total” contains the sum of all accounts at that place.

249

Lost update

money transfer A→ B B taking cash at the ATM

SELECT amount INTO a
FROM Accounts WHERE name = ’Alice’

a := a - 100;

UPDATE Accounts
SET amount = a WHERE name = ’Alice’
SELECT amount INTO b
FROM Accounts WHERE name = ’Bob’

SELECT amount INTO c
FROM Accounts WHERE name = ’Bob’

b := b + 100;
c := c - 200;

UPDATE Accounts
SET amount = b WHERE name = ’Bob’

UPDATE Accounts
SET amount = c WHERE name = ’Bob’

• the money transfer (first update) is lost

• note: such problems can usually occur when values are calculated using earlier ones, not when the
database does mainly store-and-read (like Mondial)

250

Dirty Read

money transfer A→ D fails A taking cash at the ATM

SELECT amount INTO a
FROM Accounts WHERE name = ’Alice’

a := a - 100;

UPDATE Accounts
SET amount = a WHERE name = ’Alice’
SELECT amount INTO d
FROM Accounts WHERE name = ’Dave’
· · · search and wait· · ·

SELECT amount INTO c
FROM Accounts WHERE name = ’Alice’
c := c - 200;
UPDATE Accounts
SET amount = c WHERE name = ’Alice’

Dave does not have an account here!
ABORT (i.e., ROLLBACK)

(what must be done now?)

• The second transaction reads and uses a value that is later undone

251

Non-repeatable Read
Sum of Accounts Money transfer A to C

sum := 0

SELECT amount INTO x
FROM Account WHERE name = ’Alice’

sum := sum + x

UPDATE Accounts
SET amount = amount - 100
WHERE name = ’Alice’

SELECT amount INTO x
FROM Account WHERE name = ’Bob’

sum := sum + x

UPDATE Accounts
SET amount = amount +100
WHERE name = ’Carol’

SELECT amount INTO x
FROM Account WHERE name = ’Carol’

sum := sum + x

• The value computed in the sum does not correspond to any database state
(and also not to any serial execution of both transactions)

252

Phantom

• sum of account balances equals stored total for each branch?

Check sum of account balances by branch Insert new account

SELECT SUM(amount) INTO sum
FROM Account WHERE city = ’Frankfurt’

INSERT INTO Accounts (name, city, amount)
VALUES (’Dave’, ’Frankfurt’, 1000)

UPDATE Branches
SET total = total + 1000
WHERE city = ’Frankfurt’

SELECT total INTO x
FROM Branches WHERE city = ’Frankfurt’

IF x 6= sum THEN
<error handling>

• similar to non-repeatable read

253

6.4 Serializability

• A schedule wrt. a set of transactions is an interleaving of their (elementary) actions that
does not change the inner order of each of the transactions.

• A schedule is serial if the actions of each individual transaction are immediately following
each other (no interleaving).

Example 6.2 (Bank Accounts: Transferring Money from A to B)
T1 = RA; A:=A-10; WA; RB; B:=B+10; WB, T2 = RA; A:=A-20; WA; RB; B:=B+20; WB

Some schedules (without computation steps):

S1 = R1A W1A R1B W1B R2A W2A R2B W2B (serial)

S2 = R1A R2A W1A W2A R1B R2B W1B W2B

S3 = R1A W1A R2A W2A R1B W1B R2B W2B

S4 = R1A W1A R2A W2A R2B W2B R1B W1B

S5 = R2A W2A R2B W2B R1A W1A R1B W1B (serial)
✷

... which of them are “good”?
(for n transactions, there is an exponential number of candidates)

254

SERIALIZABILITY CRITERION FOR PARALLEL TRANSACTIONS

• “Isolation” requirement:
A transaction must not see results from other (not yet committed) ones.

• The serial ones are good.

• are there other “good” ones?

Definition 6.1
A schedule is serializable if and only if there exists an equivalent serial schedule. ✷

255

Example 6.2 (Cont’d: Bank Accounts Interleaved)
A=B=10; T1: RA; A:=A-10; WA; RB; B:=B+10; WB T2: RA; A:=A-20; WA; RB; B:=B+20; WB

T1 T2 T1 T2 T1 T2 T1 T2

RA RA RA RA

A:=A-10 RA A:=A-10 A:=A-10

WA A:=A-10 WA WA

RB A:=A-20 RA RA

B:=B+10 WA A:=A-20 A:=A-20

WB WA WA WA

RA RB RB RB

A:=A-20 RB B:=B+10 B:=B+20

WA B:=B+10 WB WB

RB B:=B+20 RB RB

B:=B+20 WB B:=B+20 B:=B+10

WB WB WB WB

S1: serial S2: not serializable S3: serializable S4: serializable?

A=-20, B=40 A=-10, B=30 A=-20,B=40 A=-20,B=40

A+B=20 A+B=20 A+B=20 A+B=20 ✷

256

Problem: what means “equivalence” in this context?

• consider each step in each transaction?
Then, (4) is not equivalent with (1):
in (1) T1 reads B = 10, in (4), T1 reads B = 30

• consider the initial and final database state?
Then, (4) and (1) would be equivalent.

Example 6.3
Consider again Example 6.2 for A=B=10;
T ′
1: RA; A:=A*1.05; WA; RB; B:=B*1.05; WB (Yearly Interest Rate) and
T2: RA; A:=A-10; WA; RB; B:=B+10; WB (Money Transfer).
Consider S1, S5 := T2T1, S3, and S4. ✷

257

6.4.1 Formalization of the Semantics of Transactions

• How to show that for all possible circumstances, a schedule is serializable?

• Theory & algorithms depend only on the READ and WRITE actions, not on the semantics
of the computations in-between.

(this would require theorem-proving instead of symbolic algorithms)

Transactions T and schedules S are represented as a sequence of their READ- and
WRITE-Actions (actions are assigned to transactions by indexing).

• take a logic-based framework!

258

ASIDE: BASIC NOTIONS OF FIRST-ORDER PREDICATE LOGIC

(you probably have learnt this in “Discrete Mathematics” or in “Formal Systems”)

• An first-order signature Σ contains function symbols and predicate symbols, each of
them with a given arity (function symbols with arity 0 are constants).

• The set of ground terms over Σ is built inductively over the function symbols: for f ∈ Σ

with arity n and terms t1, . . . , tn, also f(t1, . . . , tn) is a term.

• A first-order structure S = (D, I) over a signature Σ consists of a nonempty set D
(domain) and an interpretation I of the signature symbols over D which maps

– every constant c to an element I(c) ∈ D,

– every n-ary function symbol f to an n-ary function I(f) : Dn → D,

– every n-ary predicate symbol p to an n-ary relation I(p) ⊆ Dn.

259

LOGIC FORMALIZATION OF THE SEMANTICS OF TRANSACTIONS

• Let D denote the domain of the database objects.

• Consider a transaction T , with a write action WX where RY1, . . . , RYk k ≥ 0 are the read
actions that are executed by T before WX.

• The value written to X by WX is denoted by

fT,X(Y1, . . . , Yk)

where
fT,X : Dk → D .

(fT,X encodes the functional relationship (computation) between the read-values and the
written value)

• the functions fT,X abstract the calculation of the value of X that is then written by WX in
T ,

• their actual interpretation is given by the computation of the transaction.

260

APPLICATION TO TRANSACTIONS AND SCHEDULES

• for every transaction and every schedule, the final values (call them a∞, b∞, ...) can be
expressed in terms of the tT,X of the contributing transactions,

• the constants a0, b0 are interpreted by initial values,

• the actual interpretation of the functions is given by the transaction.

Consider the single transaction runs:

T1: RA read a0
A := A− 10
WA write fT1,A(a0)

RB read b0
B := B + 10
WB write fT1,B(a0, b0)

a∞ = fT1,A(a0),
b∞ = fT1,B(a0, b0)

T ′
1: RA read a0

A := A ∗ 1.05
WA write fT ′

1,A
(a0)

RB read b0
B := B ∗ 1.05
WB write fT ′

1,B
(a0, b0)

a∞ = fT ′
1,A

(a0),
b∞ = fT ′

1,B
(a0, b0)

both induce the same final term structure. The interpretations differ:
T1: fT1,A(A) = A− 10, fT1,B(A,B) = B + 10,
T ′
1: fT ′

1,A
(A) = A ∗ 1.05, fT ′

1,B
(A,B) = B ∗ 1.05.

261

Application to Single Transactions

• for given transactions (i.e. a given interpretation of fT,X), properties of the final values
can formally be proven, e.g.,
T1 : a∞ + b∞ = a0 + b0,
T ′
1 : a∞ + b∞ = (a0 + b0) ∗ 1.05

• later/Exercise: intra-transactional optimization by interchanging non-conflicting operations
of a transaction.

262

Application to Schedules

Example 6.4
Consider again the transactions T1 = RA WA RB WB and T2 = RA WA RB WB

Let the initial state be given by values a0, b0.

Schedule T1T2 (serial) Schedule T2T1 (serial)

T1 : RA a0 T2 : RA a0

WA fT1,A(a0) WA fT2,A(a0)

RB b0 RB b0

WB fT1,B(a0, b0) WB fT2,B(a0, b0)

T2 : RA fT1,A(a0) T1 : RA fT2,A(a0)

WA fT2,A(fT1,A(a0)) WA fT1,A(fT2,A(a0))

RB fT1,B(a0, b0) RB fT2,B(a0, b0)

WB fT2,B(fT1,A(a0), fT1,B(a0, b0)) WB fT1,B(fT2,A(a0), fT2,B(a0, b0))
✷

• for a given interpretation, the evaluation of the terms yields the final values,

• the terms themselves additionally encode the data flow through the schedule.

263

EQUIVALENCE OF SCHEDULES

Definition 6.2
Two schedules S, S′ (of the same set of transactions) are equivalent, if for every initial state,
corresponding atomic actions read/write the same values in S and S′. ✷

Corollary 6.1
For two equivalent schedules S and S′ executed on the same initial state, S and S′ generate
the same final states. ✷

Proof: consider the last write actions for each data item.

• according to the Definition 6.2, equivalence can only be checked by investigating both
schedules step-by-step.

• In the above formalization, this is encoded into the (final) terms: the execution of a
schedule is traced symbolically
(“Herbrand interpretation” – every term is interpreted “as itself”).

264

EQUIVALENCE OF SCHEDULES

Exercise 6.1
Consider again Example 6.2.

Show by the detailed tables with f(...) that Schedule S2 and Schedule S4 are not serializable,
but Schedule S3 is serializable.

Give at least one more serializable schedule. ✷

265

Example 6.5 (Solution of Exercise 6.1)
Consider again the transactions T1 = RA WA RB WB and T2 = RA WA RB WB

and the schedules S2 and S4. Let the initial state again be given by values a0, b0.

Schedule S2 Schedule S4

RA a0 RA a0

RA a0 WA fT1,A(a0)

WA fT1,A(a0) RA fT1,A(a0)

WA fT2,A(a0) WA fT2,A(fT1,A(a0))

RB b0 RB b0

RB b0 WB fT2,B(fT1,A(a0), b0)

WB fT1,B(a0, b0) RB fT2,B(fT1,A(a0), b0)

WB fT2,B(a0, b0) WB fT1,B(a0, fT2,B(fT1,A(a0), b0))

For S3, the terms are the same for every R/W as for S1.
For S4, the blue-red-blue “shows” that there can be no serial schedule that generates the
same terms. ✷

266

A STEP TOWARDS MORE ABSTRACTION

Summary and conclusions:

• the fs are abstractions for the actual functions/computations of the transactions,

• we are actually not interested at all, what the fs are,

• but (mainly) in the term structure and the data flow (indicated by the colors above),

• the “history” of a data item is described by the f -terms.

⇒ find another way to represent how information flows and “who reads and writes what
values”.

267

6.4.2 Theoretical Investigations

Consider a schedule S together with two additional distinguished transactions T0, T∞:
T0 generates the initial state, and T∞ reads the final state of S.

• T0 is a transaction that executes a write action for every database object for which S
executes a read or write action.

• T∞ is a transaction that executes a read action for every database object for which S
executes a read or write action.

The schedule Ŝ = T0 S T∞ is the augmented schedule to S.

Assumption (without loss of generality):

• each transaction reads and writes an object at most once,

• if a transaction reads and writes an object, then reading happens before writing.

Corollary 6.2
Two schedules S, S′ (of the same set of transactions) are equivalent if and only if for every
interpretation of the write actions, all transactions read the same values for Ŝ and Ŝ′. ✷

Check all these terms for an exponential number for candidates?

268

DEPENDENCY GRAPHS

Consider a schedule S. The D-Graph (dependency graph) of S is a directed graph
DG(S) = (V,E) where V is the set of actions in Ŝ and E is the set of edges given as follows
(i 6= j):

• if Ŝ = . . . RiB . . .WiA . . . , then RiB →WiA ∈ E,
(i.e., Ti reads B (and possible uses it) and then writes a value A)

• if Ŝ = . . .WiA . . .RjA . . . , then WiA→ RjA ∈ E,
if there is no write action to A between WiA and RjA in Ŝ.
(i.e., Tj reads a value A that has been written by Ti)

A transaction T ′ is dependent of a transaction T , if in S, either T ′ reads a value that has
been written by T , or by a transaction that is dependent on T .

269

Example 6.6
Consider again Example 6.2: T1 = RA WA RB WB; T2 = RA WA RB WB

Consider the serial schedule T1T2 and S3 = R1A W1A R2A W2A R1B W1B R2B W2B.

Dependency graphs: W0A
W0B

R1A

W1A

R1B

W1B
R2A

W2A

R2B

W2B

R∞A
R∞B

W0A
W0B

R1A

W1A
R2A

W2A
R1B

W1B
R2B

W2B

R∞A
R∞B

✷Theorem 6.1
Two schedules S, S′ (of the same transactions) are equivalent if and only if
DG(Ŝ) = DG(Ŝ′). ✷

Check these graphs for an exponential number for candidates?

270

... and now to the

Proof [Optional]

Each transaction T with n, n ≥ 1 write actions on A1, . . . , An induces a set
FT = {fT,A1

, . . . , fT,An
} of function symbols that are used for representing the computations

associated with the write actions.

Given a domain D, every transaction also induces an interpretation

ST = (D, IFT
) such that each I(fT,Ai

) is a mapping Dki → D .

Analogously, the interpretation of a set T1, . . . , Tm of transactions has the form
S = (D, FT1

∪ . . . ∪ FTm
).

Assume an action a of a schedule S. If a is a write action, then aS(I) is the value that is
written by a in S under the interpretation I. If a is a read action, then aS(I) is the value that is
read by a.

For a node a of the D-graph DG(S), the restriction of DG(S) to a and its predecessors is
denoted by predS(a) – (this is the portion of the graph consisting of all actions that contribute
to the value that is read/written by a).

271

Proof (Cont’d)

“⇐”: We show that for all actions a in S,

predS(a) = predS′(a)⇒ aS(I) = aS′(I)

for arbitrary interpretations I by induction over the number of nodes in predS(a).

Assume that a is an action in a transaction T to a database object x.

• predS(a) contains a single node. Then, a is this node.

– a cannot be a read action, as any read action RA would have at least a write action
W0 in T0 as predecessor.

– if a is a write action on A, fT,A is a constant function (depending on no input/original
values) and thus, aS(I) = aS′(I) for all I.

• predS(a) contains more than a single node. Because of predS(a) = predS′(a), a has the
same predecessors b1, . . . , bk in both graphs. By induction hypothesis, for each of them,
bS(I) = bS′(I).

– if a is a read action, the conclusion aS(I) = aS′(I) is again trivial.

– if a is a write action on A,
aS(I) = fT,A(b1S(I), . . . , bkS(I)) = fT,A(b1S′(I), . . . , bkS′(I)) = aS′(I).

Thus, in both sequences, the same values are read and written.

272

Proof (Cont’d)

“⇒”:

Since S and S′ are assumed to be equivalent, all transactions in S and S′ read the same
values for arbitrary interpretations I.

Consider the (Herbrand-) [that means, using uninterpreted ground terms] interpretation H to
the transactions in S:

• D = {fT0,A1 , fT0,A2 , . . . , fT1,A1(. . . , fT0,A1 , . . .), . . . ,

fT2,A1
(. . . , fT0,A1

, . . . , fT1,A1
(. . . , fT0,A1

, . . .), . . .), . . .}
is the set of (ground) terms built over the symbols that are assigned to the write actions.

• fT,A : Dk → D: applying fT,A to values v1, . . . , vk yields the term fT,A(v1, . . . , vk).

For every action a in S and S′, aS(H) and aS′(H) encode predS(v) and predS′(v), resp.

(e.g., if for a write action a =W1B, aS(H) = fT1,B(a0, fT2,B(fT1,A(a0), b0)), then it has a
predecessor R1A that read a0, and a predecessor R1B that read the value
fT2,B(fT1,A(a0), b0) written by W2B that in course had (i) a predecessor R2A that read value
fT1,A(a0) written by W1A that in turn had a predecessor R1A that read a0, and (ii) a
predecessor R2B that read b0).

Thus, since vS(H) = vS′(H), DG(S) = DG(S′).

273

NEXT STEP TOWARDS MORE ABSTRACTION

• we are even not interested in the Dependency Graph, only in the question for which
schedules there is a serial schedule with the same DG.

Example 6.7
Consider the DG of S4 Example 6.2 (Example/Exercise) ✷

• intra-transaction edges are not relevant
(for a given transaction they are the same in all DGs),

• edges between transactions are important
(see above example),

• some other relationships between transactions are also important.

⇒ they tell, what conditions an equivalent serial schedule must satisfy!

• ... if they are satisfiable, there is an equivalent serial schedule (or several of them).

274

THEORY: EQUIVALENCE CLASSES OF SCHEDULES

Recall from Discrete Mathematics

A binary relation ∼ is an equivalence relation on a set X if it is

• reflexive: x ∼ x for every x ∈ X,

• symmetric: x ∼ y ⇒ y ∼ x for every x, y ∈ X

• transitive x ∼ y ∧ y ∼ z ⇒ x ∼ z for every x, y, z ∈ X.

Equivalence Classes

For an equivalence relation ∼ ⊆ X ×X, the equivalence class [x] is defined as

[x] := {y ∈ X|x ∼ y}

Note: two equivalence classes are either the same, or disjoint.

275

Equivalence Classes of Schedules and Serializable Schedules

On the set of schedules, let ∼ be defined as S ∼ S′ if DG(S) = DG(S′). A schedule S is
serializable, if S ∈ [S′] for a serial schedule S′.

The following properties hold:

• given n transactions, there are at most n! equivalence classes of serializable schedules,

• for two serial schedules, [S1] = [S2] is possible (when two or more transactions have no
conflicts at all),

• there are many more equivalence classes of non-serializable schedules.

276

Neighboring Schedules

Definition 6.3
Two schedules S, S′ (of the same set of transactions) are neighbors if S′ can be obtained from
S by exchanging a single pair of atomic actions a1, a2. ✷

Note:

• for a given set of transactions T , a1, a2 above must belong to different transactions to
obtain a valid schedule of T .

• Aside: if exchanging actions of the same transaction, the approach is applicable to
intra-transaction optimization:

Actions in a transaction can be exchanged if the D-Graph is not effected (e.g., RiA and
RiB).

277

WHEN ARE NEIGHBORING SCHEDULES EQUIVALENT?

Let S = S1aiajS2 and S′ = S1ajaiS2 be neighboring schedules.

Consider each pair of types of actions possible for (ai, aj).

• obviously, actions on different data items can be exchanged without effecting the
D-Graph.

RR: RiA,RjA: no change.

WR: WiA,RjA: WR is an edge in the D-Graph, exchanging the actions removes this edge
and adds an edge from the preceding WjA to RjA.

RW: RiA,WjA: symmetric. RW represents a “no-edge” in the DG.

WW: WiA,WjA: For the next RkA (if no Wℓ is in-between [this condition will become relevant
later – note also that T∞ is needed here]), there is an edge in the D-Graph WjA→ RkA;
after exchanging, there is an edge WiA→ RkA.

In the RW/WR/WW cases the D-Graph is different from before, S 6∼ S′.

The respective pairs of actions ai, aj determine a constraint (that distinguishes S from S′ and
[S] from [S′]) on the equivalent serial schedule that Ti must be executed before Tj .

278

CONFLICT GRAPH: IDEA

Every schedule can be characterized wrt. the equivalence class it belongs to by these
“borders” between their member sets.

• the constraints state a topological order on the set T of transactions,

• if the graph is cyclic, then the set of constraints is not satisfiable (= there is no equivalent
serial schedule).

Note that [S] then also exists, but does (usually; cf. later) not contain any serial schedule;
only under certain conditions, there may be an equivalent serial schedule.

• if the graph does not contain a cycle, the constraints can be interpreted as a topological
order that characterizes the equivalence class.

279

CONFLICT GRAPH: DEFINITION

Consider a schedule S. The C-Graph (conflict graph) of S is a directed graph CG(S) = (V,E)

where V is the set of Transactions in Ŝ and E is a set of edges given as follows (i 6= j):

• if S = . . .WiA . . .RjA . . . then Ti → Tj ∈ E, if there is no write action to A between WiA

and RjA in S (WR-conflict).

• if S = . . .WiA . . .WjA . . . then Ti → Tj ∈ E, if there is no write action to A between WiA

and WjA in S (WW-conflict).

• if S = . . . RiA . . .WjA . . . then Ti → Tj ∈ E, if there is no write action to A between RiA

and WjA in S (RW-conflict).

Theorem 6.2
If the conflict graph CG(S) of a schedule S is cycle-free, then S is serializable. ✷

280

Conflict Graph Theorem: Proof

Assumed: Since CG(S) is cycle-free.

Interpret CG(S) as a topological order of the nodes (i.e., of the transactions).
Short: let S′ a serial schedule according to this ordering. Then, DG(S) = DG(S′) and
[S] = [S′].

Long:

Let CG∗(S) denote the transitive closure of CG(S).

For any serial S′ = Ti1 . . . Tin over T1, . . . , Tn (i.e., {i1, . . . , in} = {1, . . . , n}), let

≤S′ := {(n,m)|Tn occurs before Tm in S′}

S′ ∼ S ⇔ CG∗(S) ⊆ ≤S′ (i.e., if the orderings are consistent).

As CG(S) is noncyclic, it is a (satisfiable) topological ordering and such an S′ exists.

Remarks

Note that the ordering given by CG(S) may be incomplete, i.e. there can be serial S′ 6= S′′

both in the same equivalence class: [S] = [S′] = [S′′].

281

CONFLICT GRAPHS

Example 6.8
Consider the CGs of S1, S3, S4 from Example 6.2. ✷

Example 6.9
Consider the schedule

S = R1A W1A R2A R3A R2B R3C W3C W2B .

Draw the Conflict Graph, interpret it as a topological order and give all equivalent serial
schedules. Draw the DG of S and the DGs of the equivalent serial schedules. ✷

282

NEIGHBORING SCHEDULES

• Given a serial schedule, equivalent schedules can be constructed by considering
neighboring schedules:
“It is allowed to postpone action ai of Ti and instead already process action aj from Tj?”
(cf. Schedule S3 in Example 6.2)

• define ∼1 (one-change-equivalence) by

S1 ∼1, S2 :⇔ S1 and S2 are neighbors and S1 ∼ S2

• define ∼n (n-change-equivalence) by

S1 ∼n, S2 :⇔ there are S1, S2, . . . , Sn such that Si ∼1 Si+1 for all 1 ≤ i < n

• Obviously, ∼ ⊆ ⋃
n∈IN

∼n.

(When) does equality hold?

283

BLIND WRITES

Note that there are serializable schedules whose C-Graph contains cycles:

Example 6.10
Consider the following schedule S:

T1: RA WB

T2: RB WB

T3: RC WB

red lines: conflicts inducing the CG

black, dashed lines: dependency graph

The C-Graph containing the edges (3,1), (3,2), (2,1), and (1,2) is cyclic.

Nevertheless, S′ = T1T3T2 is an equivalent (i.e., with the same dependency graph) serial
schedule:

R1A W1B R3C W3B R2B W2B

with conflict graph (1,3), (3,2).

Why this? W1B is not used anywhere in S. It is also not used in S′ (since T3 does not read it
before writing B). W3B and W1B are “Blind Writes” (a transaction does a WX without a RX
before). ✷

284

CLOSER LOOK AT WW CONFLICTS

Consider again Slide 278 and WiA WjA-conflicts:

WiA
WjA

RkA

WjA
WiA

RkA

If there is another WℓA before the next RkA, the D-Graph is not changed when interchanging
ai and aj :

WiA

WjA

WℓA

RkA

WjA

WiA

WℓA

RkA

• A write WjA “cuts” the data flow from the preceding WiA.

• WW-conflicts where the second write is never read can be ignored.

• the above fragments can only be completed to equivalent serializable schedules if WℓA

and either WiA or WjA are blind writes.

285

CLOSER LOOK AT RW CONFLICTS

Consider again Slide 278 and RiA WjA-conflicts:

RiA
WjA

WjA
RiA

Exchanging RiA and WjA leads to a dataflow. If WjA is not put immediately before, but much
earlier, the original dataflow is (locally) unchanged:

WℓA

RiA

WjA

WjA

WℓA

RiA

• the above fragments can only be completed to equivalent serializable schedules if WjA is
followed by a blind write in both cases (which is exactly the case as in Example 6.10).

286

EQUIVALENT SCHEDULES IN PRESENCE OF BLIND WRITES

• Example 6.10 shows that in presence of two blind writes a completely different schedule
can be equivalent.

• WR-conflicts represent actual data flow – they must be the same in the corresponding
serial schedule.

• WW-conflicts and RW-conflicts can be ignored under certain conditions (needing at least
two blind writes on the corresponding data item)

• In the RW case, there is no path wrt. the “neighborship” relation from S′ to S that stays
inside [S] = [S′], i.e., [S] 6∼n [S′] for any n.

287

C-Graph-Serializability

Definition 6.4
A schedule is C-serializable (conflict-serializable) if its C-Graph is cycle-free. ✷

Theorem 6.3
If for a set T , there are no “blind writes”, i.e., for each T ∈ T ,

T = . . .WA . . . =⇒ T = . . . RA . . .WA . . . ,

then every schedule S over T is serializable if and only if S is C-serializable. ✷

Proof: Exercise.

Note: In the sequel, serializability always means C-serializability.

288

6.4.3 More Detailed Serializability Theory [Optional]

The C-Graph is more restrictive than necessary (cf. the above example):

For a more liberal criterion, consider only the following situation:

S = . . .WiA . . .RjA . . .

and there is no write action on A between Wi and Rj .

• In every equivalent serial schedule, Ti precedes Tj ,

• if WkA ∈ S, there is no equivalent serial schedule s.t. Tk is between Ti and Tj .
But, it can be before Ti or after Tj .

289

POLYGRAPH

For a schedule S, the polygraph P (S) is a tuple P (S) = (V,E, F), where

1. V is the set of transactions in S,

2. E is a set of edges, given by the WR-conflicts in S,

3. F is a set of pairs of edges (alternatives):
for all i 6= j such that S = . . .WiA . . .RjA . . . and there is no write action to A between
WiA and RjA, and all WkA in S where k 6= i, k 6= j:

(Tk → Ti, Tj → Tk) ∈ F.
(include start =W0(all) and end = R∞(all)!)

A graph (V,E′) is compatible to a polygraph (V,E, F) if E ⊆ E′ and E′ contains for each
alternative exactly one of the edges.

A polygraph P (S) = (V,E, F) is cycle-free if there is a cycle-free compatible graph (V,E′).

Theorem 6.4
A schedule S is serializable if and only if its polygraph is cycle-free. ✷

Note: The test for cycle-freeness of a polygraph is NP-complete.

290

Example 6.11
Consider again Example 6.10.

T1: R(X) W(Y)

S: T2: R(Y) W(Y)

T3: R(Z) W(Y)

From (2), there is the edge (3, 2) ∈ E.

From (3), consider

• W3(Y)/R2(Y): For W1(Y) ((1, 3), (2, 1)) has to be added to F .

• W0(X)/R1(X), W0(Z)/R3(Z): there is no W (X) and W (Z). Do nothing.
Note that the original value of Y is never read.

• W2(Y)/R∞(Y). For W1(Y) and W3(Y), add ((1, 2), (∞, 1)) and ((3, 2), (∞, 3)) to F .

Since edges like (n, 0) (a transaction before start) and (∞, n) (a transaction after end) do not
make sense, the only compatible graphs are

• (3,2), (1,3), (1,2), (3,2) (cycle-free), and

• (3,2), (2,1), (1,2), (3,2) (cyclic).

The first of these gives the equivalent serial schedule T1T3T2. ✷

291

... and now to the

Proof of Theorem 6.4

We need two Lemmata:

Lemma 6.1
For two equivalent schedules S and S′, P (S) = P (S′). ✷

Proof: Follows from equality of the D-Graphs (which are also based on WR-conflicts).

Lemma 6.2
For a serial schedule S, P (S) is cycle-free. ✷

Proof: Construct a graph G that contains an edge Ti → Tj if and only if Ti is before Tj in S.
G is cycle-free and compatible to P (S).

292

Proof of the theorem

“⇒”: follows immediately from the above lemmata.

“⇐”: Consider a cycle-free graph G that is compatible to P (S). Let S′ a serial schedule
according to a topological sorting of G.
We show that S and S′ are equivalent, i.e., DG(S) = DG(S′).

Assume DG(S) 6= DG(S′). Thus, there are actions WiA,WkA,RjA from different
transactions such that

• in S, Tj reads a value of A that has been written by Ti. Thus,

– the E component of P (S) contains an edge Ti → Tj ,

– The F component of P (S) contains a pair (Tk → Ti, Tj → Tk).

• in S′, Tj reads a value of A that has been written by Tk .

Because of compatibility, G contains the edge Ti → Tj .
Since S′ is serial, it is of the form S′ = . . . Ti . . . Tj

Since Tj reads A from Tk in S′ (assumption), Tk is be executed later than Ti, and before Tj .
Thus, S′ = . . . Ti . . . Tk . . . Tj

Since G is cycle-free, there are no edges Tk → Ti or Tj → Tk.

Then, G cannot be compatible to P (S) (the pair in F is not satisfied).

293

6.5 Scheduling

The Scheduler of a database system ensures that only serializable schedules are executed.
This can be done by different strategies.

Input: a set of actions of a set of transactions (to be executed)
Output: a serializable sequence (= the schedule to be actually executed) of these actions

• runtime-scheduling, incremental, “online-algorithm” that does not need to test an
exponential number of possibilities a priori, but which runs nearly in linear time.

• at each timepoint, new transactions can “arrive” and have to be considered

Different Types of Strategies

• Supervise the schedule, and with the first non-serializable action, kill the transaction (→
C-graph, timestamps)

• Avoidance strategies: avoid at all that non-serializable schedules can be created (→
Locking),

• Optimistic Strategies: keep things running even into non-serializable schedules, and
check only just before committing a transaction (→ read-set/write-set).

294

Scheduling Strategies

• Based on the conflict graph:

The scheduler maintains the conflict graph of the actions executed so far (partial
schedule).

Let S the current (partial) schedule and action the next action of some transaction T .

If CG(S · action) is cycle-free, then execute action. Otherwise (action will never be
conflict-free in this schedule) abort T and all transactions that depend on T (i.e., that have
read items that have been written by T before), and remove the corresponding actions
from S. Restart T later.

Note: not only the CG must be maintained, but all earlier actions that can still be part of a
conflict (i.e., for each tuple, all actions backwards until (including) the most recent write).

Exercise: S4 from Example 6.2.

295

Scheduling Strategies (Cont’d)

• Timestamps:
Each transaction T is associated to a unique timestamp Z(T).
(thus, transactions can be seen as ordered).

Let S the current (partial) schedule and action the next action of some transaction T .

If for all transactions T ′ that have executed an action a′ that is in conflict with action,
Z(T ′) ≤ Z(T) (*), then execute action. Otherwise abort T (T “comes too late”) and all
transactions that depend on T , and remove the corresponding actions from S. Restart T
later (with new timestamp).

Implementation: For any action (read and write) on a data item V , the latest timestamp
is recorded at V as Zr(V) or Zw(V). Then, (*) is checked as Z?(T) ≥ Z?(V) (set “?”
according to conflict matrix), and if an action is executed, then Z(V) is set to Z(T).

• Lock-based strategies: see next section.

296

Scheduling Strategies (Cont’d)

• Optimistic Strategies:
(Assumption: “there is no conflict”)

Let S the current (partial) schedule. A transaction T is active in S, if an action of T is
contained in S, and T is not yet completed.

Let readset(T), writeset(T) the set of objects that have been read/written by a transaction
T .

Let action the next action, and T the corresponding transaction.

Execute action and update readset(T), writeset(T).

If action is the final action in T , then check the following:

– if for any other active transaction T ′:

* readset(T) ∩ writeset(T ′) 6= ∅,
* writeset(T) ∩ writeset(T ′) 6= ∅,
* writeset(T) ∩ readset(T ′) 6= ∅.

then abort T and all transactions that depend on T , and remove the corresponding
actions from S.

297

6.6 Locks

• access to database objects is administered by locks

• transactions need/hold locks on database objects:
if T has a lock on A, T is has a privilege to use this object

• privileges allow for read-only, or read/write access to an object:

– Read-privilege: RLOCK (LRX)

– Read and write-privilege: WLOCK (LWX)

• operations:

– LOCK X (LX): apply for a privilege for using X.

– UNLOCK X (UX): release the privilege for using X.

• lock- and unlock operations are handled like actions and belong to the action sequence of
a transaction.

• each action of a transaction must be inside a corresponding pair of lock-unlock-actions.
(i.e., no action without having the privilege)

298

Example 6.12
Consider again Example 6.2: T = RA WA RB WB

Possible handling of locking actions:

• T = LA RA WA UA LB RB WB UB

• T = LA LB RA WA RB WB UA UB

• T = LA RA WA LB RB WB UA UB

• T = LA RA WA LBUA RB WB UB ✷

299

LOCKING POLICIES

Locking policies (helping the scheduler) must guarantee correct execution of parallel
transactions.

• privileges are given according to a compatibility matrix:

Y: requested privilege can be granted

N: requested privilege cannot be granted

• if there is only one privilege (“use an object”):

requested privilege

granted privilege (for the same object):

LOCK

LOCK N

• if read and write privilege are distinguished:

RLOCK WLOCK

RLOCK Y N

WLOCK N N

i.e., multiple transactions reading the same ob-
ject are allowed.

300

PROBLEMS

• Livelock: It is possible that a transaction never obtains a requested lock (if always other
transactions are preferred).
Solution: e.g., first-come-first-served strategies

• Deadlock: during execution, deadlocks can occur:

Transactions: T1: LOCK A; LOCK B; RA WA RB WB UNLOCK A,B;

T2: LOCK B; LOCK A; RA WA RB WB UNLOCK A,B;

Execution: T1: LOCK A

T2: LOCK B

Deadlock: no transaction can proceed.

301

Avoiding and resolving deadlocks

• each transaction applies for all required locks when starting (in an atomic action).

• a linear ordering of objects. Privileges must be requested according to this ordering.

• maintenance of a waiting graph between transactions: The waiting graph has an edge
Ti → Tj if Ti applies for a privilege that is hold/blocked by Tj .

– a deadlock occurs exactly if the waiting graph is cyclic

– it an be resolved if one of the transactions in the cycle is aborted.

302

Note: locks alone do not yet guarantee serializability.

Example 6.13
Consider again Example 6.2 where T1 and T2 are extended with locks:

T = LA RA WA UA LB RB WB UB

Consider Schedule S4 (which was not serializable):

S4L = L1A R1A W1A U1A L2A R2A W2A U1A

L2B R2B W2B U2B L1B R1B W1B U1B ✷

Only correct use and policies do.

We need a protocol/policy that – if satisfied – guarantees serializability.

303

2-PHASE LOCKING PROTOCOL (2PL)

“After the first UNLOCK, a transaction must not execute any LOCK.”

i.e., each transaction has a locking phase and an unlocking phase.

Example 6.14
Consider again Example 6.12:

Which transactions satisfy 2PL?

• T = LA RA WA UA LB RB WB UB (no)

• T = LA LB RA WA RB WB UA UB (yes)

• T = LA RA WA LB RB WB UA UB (yes)

• T = LA RA WA LB UA RB WB UB (yes!) ✷

The last LOCK-operation of a transaction T defines T ’s locking point.

304

Theorem 6.5
The 2-Phase-Locking Protocol guarantees serializability. ✷

Proof: Consider a schedule S of a set {T1, T2, . . .} of two-phase transactions.

Assume that S is not serializable, i.e., CG(S) contains a cycle, w.l.o.g.
T1 → T2 → . . .→ Tk → T1. Then, there are objects A1, . . . , Ak such that

S = . . . (W1A1) U1A1 . . . L2A1 (R2A1) . . .

S = . . . (W2A2) U2A2 . . . L3A2(R3A2) . . .
...

S = . . . (Wk−1Ak−1) Uk−1Ak−1 . . . LkAk−1 (RkAk−1) . . .

S = . . . (WkAk) UkAk . . . L1Ak (R1Ak) . . .

Let li the locking point of Ti. Then, the above lines imply that l1 is before l2, that is before l3
etc, and lk−1 before lk, that is before l1. Impossible.

305

Properties of 2PL

2-Phase locking is optimal in the following sense:

For every non 2-phase transaction T1 there is a 2-phase transaction T2 such that for T1, T2
there exists a non-serializable schedule.
(T1 is then of the form . . . UX . . . LY . . .)

Example 6.15
Consider the non-2PL transaction from Example 6.14 and a 2PL transaction

T1 = L1A R1A W1A U1A L1B R1B W1B U1B

T2 = L2A L2B R2A W2A R2B W2B U2A U2B

The following schedule S (= S4 from Examples 6.2) is possible that has been shown not to be
serializable:

S = L1A R1A W1A U1A L2A L2B R2A W2A

R2B W2B U2A U2B L1B R1B W1B U1B ✷

306

Properties of 2PL (Cont’d)

“optimal” does not mean that every serializable schedule can also occur under 2-phase
locking:

Example 6.16
The schedule S

S = R1A R2A W2A R3B W3B R1B W1B

is serializable (equivalent to T3 T1 T2), but there is no way to add LOCK/UNLOCK actions to
T1 that satisfy the 2PL requirement such that S is an admissible schedule. ✷

307

STRICT 2PL

Consider Schedule S3 from Example 6.2 with 2PL-Locks:

S3 = L1A R1A W1A L1B U1A L2A R2A W2A L2B U2A R1B W1B U1B R2B W2B U2B.

Consider the case that T1 fails as follows:

L1A R1A W1A L1B U1A L2A R2A W2A L2B U2A R1B ROLLBACK1

• T2 has already read A (dirty read) and must also be rolled back.

• Dirty reads (and cascading rollbacks) can be avoided, if the locks are only released after
EOT (“Strict 2PL”): T1 = L1A R1A W1A L1B R1B W1B EOT1 U1A U1B.

• the user does not have to specify Lock/unlock at all:

– every item is locked when used for the first time (done via the Access Manager),

– the transaction manager unlocks all items of a transaction after EOT.

308

LOCKING GRANULARITY

• the database consists of relations that are stored in blocks that contain tuples.

Database

Relation1

Block1,1 Block1,n1

Tuple(1,n1),1 Tuple(1,n1),mn1

. . . Relationk

Blockk,1 Blockk,n1

• find a compromise between maximal parallelism and number of locks.

• transactions that use all tuples of a relation: lock the relation

• transactions that lock only some tuples of a relation: lock the tuples.

309

LOCKING GRANULARITY

Having only tuple-locks and 2PL can still lead to non-serializable schedules:

Example 6.17
Consider again Slide 253.

T1 computes the sum of the population of all accounts in Frankfurt – reading all these tuples.
Thus, at the beginning it locks all (existing) tuples. T2 adds a new account and adapts the
total.

The schedule given on Slide 253 is still possible. ✷

Solution: Locking of complete tables, key areas, depending on predicates, or indexes.

Consequence: if the set of database objects changes dynamically, a conflict-based
serializability test is not sufficient.

310

LOCKING IN THE SQL2-STANDARD

Serializability is enforced as follows:

• every transaction does only see updates by committed transactions.

• no value that has been read/written by T can be changed by any other transaction before
committing/aborting T .
That means, “locks” are released only after EOT (strict 2-Phase Locking).

• if T has read a set of tuples defined by some search criterion, this set cannot be changed
until T is committed or aborted. (this excludes the phantom-problem)

311

6.7 Safety: Error Recovery

What (more or less dangerous) errors can happen to a database system?

• Transaction errors
local, application-semantical error situations

– error situation in the application program

– user-initiated abort of transaction

– violation of system restrictions (authentication etc)

– resolving of a deadlock by aborting a transaction.

• System errors
runtime environment crashes completely

– hardware errors (main memory, processor)

– faulty values in system tables that cause a software crash

• Media crashes
database backend crashes
crash of secondary memory (disk head errors ...)

Assumption: Transactions satisfy strict 2PL (⇒ no cascading rollback).

312

“SIMPLE” ROLLBACK

• the transaction manager decides to rollback a running transaction,

• requires to undo all effects of the database

• (recall that strict 2PL is assumed, which avoids dirty reads),

• requires for each transaction a list of what it did.

• these lists could be kept separately for each transaction, or altogether in a “database log”
(which will prove useful also in more severe error situations)

313

DATABASE LOG

The database system maintains a log (also called “journal”) where all changes in the
database and all state changes of transactions (BOT/EOT) are recorded.

Entries (sequential):

(1) at begin of transaction: (T, begin)

(2) if a transaction T executes WX:

(T , X , Xold , Xnew)

value of X written by T (after image)

value of X before WX (before image)

(3) at commit: (T, commit)

(4) at abort: (T, abort)

314

TRANSACTION ROLLBACK WITH A DATABASE LOG

Consider the following “money transfer” transaction T1 which additionally sends a
confirmation e-mail to A.

T1 = R1A(x), x = x−100, W1A(x), R1B(y), y = y+100, W1B(y), R1C(m), send mail to m.

Given a0 = 1000, B0 = 2000, and assume that the sending of the mail fails, the log looks as
follows:

. . . (T1, begin) . . . (T1, A, 1000, 900) . . . (T1, B, 2000, 2100) . . .

Now, execution of T1 fails when sending the mail.

Scanning the log backwards for entries on T1: set B back to 2000, set A back to 1000, stop
going backwards when (T1, begin) is reached.

(preferable: have an index on the log for each active transaction)

315

SYSTEM ERRORS: REDO- AND UNDO-SITUATIONS

T4

T3

T2

T1

✲

TimeSystem error

redo-

Situation

undo-
Situation

• redo-Situation:
A transaction has committed, and an error occurs.

• undo-Situation:
A transaction already writes to the database before committing. During execution, an
error occurs.

316

DB SERVER ARCHITECTURE: SECONDARY STORAGE AND CACHE

runtime server system: accessed by user queries/updates

• parser: translates into algebra, determines the required relations + indexes

• file manager: determines the file/page where the requested data is stored

• buffer/cache manager: provides relevant data in the cache

• query/update processing: uses only the cache

Cache (main memory): pagewise organized
• Accessed pages are fetched into the cache

• pages are also changed in the cache

• and written to the database later ...

Secondary Storage (Harddisk): pagewise organized
• data pages with tuples

• index pages with tree indexes
(see later)

• database log etc. (see later)

x

x

x

317

CACHE VS. MATERIALIZATION IN SECONDARY MEMORY

• operations read and write to cache

• contents of the cache is written (“materialized”) in secondary storage at “unknown”
timepoints

• if a page is moved out from the cache, its modifications are materialized

• write immediate: updates are immediately written to the DB:
“simple” power failure cannot lead to redo situations; aborted transactions and power
failures require to undo materialized updates in the DB.

• write to DB (at latest) at commit time.
then, “simple” power failure can still not lead to redo situations

• undo-avoiding:
write (“materialize”) updates to the database only (at or) after committing.

– then, aborted transactions are only concerned with the cache
(recall that strict 2PL is assumed which prohibits dirty reads)

– any power failure ore media crash cannot lead to undo situations
(only committed data in DB)

318

Example 6.18
(write-immediate, no undo-avoiding)

T1: BOT LA RA WA CO UA

T2: BOT LB RB LA RA WB CO UA UB

T3: BOT LC RC WC

Buffers:

T1: A : f1(a0)

T2: B : f2(f1(a0), b0)

T3: C : f3(c0)

Database:

A: A0 f1(A0)

B: B0 f2(f1(a0), b0)

C: c0 f3(c0)

Log:
(T1, begin), (T2, begin), (T1, A, a0, f1(a0)), (T1, CO), (T2, B, b0, f2(f1(a0), b0)),

(T3, begin), (T2, CO), (T3, C, c0, f3(c0)) ✷

319

Transaction Errors

Consider a transaction T that is aborted before reaching its COMMIT phase.

If undo-avoiding is used, no error handling is required (simply discard its log entries),

Otherwise, process log file backwards up to (T, begin) and materialize for every entry
(T,X,Xold, Xnew) the (before-)value Xold for X in the database.

(Recall that due to strict 2PL, no other transaction could read values that have been written by
T)

320

System Errors

Restart-Algorithm (without savepoints, for strict 2PL)

• redone := ∅ and undone := ∅.

• process the logfile backwards until end, or redone∪ undone contains all database objects.

For every entry (T,X,Xold, Xnew):

If X 6∈ redone ∪ undone:
– If the logfile contains (T, commit) (then redo), then write Xnew into the database and

set redone := redone ∪ {X}.
– Otherwise (undo) write Xold into the database and set undone := undone ∪ {X}.

(“undo once” only correct for strict 2PL!)

If undo-avoiding is used, no undo is required.

321

Example 6.19
Consider again Example 6.18.

(write-immediate, no undo-avoiding) Sys.error state after restart

T1: BOT LA RA WA CO UA

T2: BOT LB RB LA RA WB CO UA UB

T3: BOT LC RC WC

Buffers:

T1: A : f1(a0)

T2: B : f2(f1(a0), b0)

T3: C : f3(c0)

Database:

A: A0 f1(A0) f1(A0)

B: B0 f2(f1(a0), b0) f2(f1(a0), b0)

C: c0 f3(c0) c0

Log:
(T1, begin), (T2, begin), (T1, A, a0, f1(a0)), (T1, CO), (T2, B, b0, f2(f1(a0), b0)),

(T3, begin), (T2, CO), (T3, C, c0, f3(c0)) ✷

322

Logging Requirements

Log granularity:

the log-granularity must be finer than (or the same as) the lock granularity. Otherwise, redo or
undo can also delete effects of other transactions than intended.

Example 6.20
Assume locking at the tuple level, and logging at the relation level, and two transactions:

T1 : . . . , insert(p(1)), . . . , eot
T2 : . . . , insert(p(2)), . . . , eot

and the Schedule BOT (T1), . . . , T1 : Lp(1), T1 : insert(p(1)), BOT (T2), T2 : Lp(2), T2 :

insert(p(2)), commit(T2), . . . , abort(T1)

The resulting log (initial state of p is p0) is

(T1, begin), (T1, p, p0, p0 ∪ {1}), (T2, begin), (T2, p, p0 ∪ {1}, p0 ∪ {1} ∪ {2}), (T2, commit)
Then the undo operation of T1 will erase the result of T2 by resetting p to p0. ✷

Write-ahead:

before a write action is materialized in the database, it must be materialized in the log file
(materialized means that it must actually be written to the DB, not only to a buffer – which
could be lost)

323

Savepoints

... processing the log backwards ...

until the most recent savepoint.

Generation of a Savepoint

• Do not begin any transaction, and wait for all transactions to finish (COMMIT or ABORT).

• Materialize all changes in the database (force write caches).

• write (checkpoint) to the logfile

324

Media Crash

Solution: Redundancy

Strategy 1: keep a complete copy of the database (incl log)

Probability that both are destroyed at the same time is low (keep them in different
computers in different buildings ...)

Writing of a tuple to the database means to write it also in the copy. Copy is written only
after write to original is confirmed to be successful (otherwise e.g. an electrical
breakdown kills both).

Strategy 2: periodical generation of an archive database (dump).

After generation of the dump, (archive) is written to the logfile.

In case of a media crash, restart as follows:

• Load the dump.

• apply restart-algorithm only wrt. redo of completed (committed) transactions back to
the (archive) entry.

325

Chapter 7
Design Theory of the Relational
Model

Goal: a relational schema that suitably represents an excerpt of the real world.

• Real world implies integrity constraints (we have seen e.g. keys and referential integrity
as relational concepts)

• Base of such concepts: data dependencies

• Representation must cope with these dependencies (from this design, keys are obtained,
and referential integrity constraints).

326

DESIGN STEPS

Real World

ER-schema

set of (preliminary) relation schemata,
set of dependencies

The more exact the ER model,
the better the preliminary rela-
tional schema.

equivalent set of “good” relation schemata

Application Analysis

Transformation

relational design

327

MOTIVATION

Example 7.1
Consider the following situation: a supplier has contracts with several customers to deliver
products regularly. For each product, the number of delivered items and the price is relevant.

Pizza-Service

Name Address Product Number Price

Meier Göttingen Pizza 10 5.00

Meier Göttingen Lasagne 15 6.00

Meier Göttingen Salad 20 3.00

Müller Kassel Pizza 12 5.00

Müller Kassel Salad 15 3.00

• Redundancy

• caused problems:

(1) anomalies when updating or inserting (potential inconsistencies),

(3) anomalies when deleting (delete Meier→ information about price of Lasagne is lost)

328

Example 7.1 (Continued)
Refined Schema:

Customer

Name Address

Meier Göttingen

Müller Kassel

Product

Product Price

Pizza 5.00

Lasagne 6.00

Salad 3.00

Shipment′

Name Product Number

Meier Pizza 10

Meier Lasagne 15

Meier Salad 20

Müller Pizza 12

Müller Salad 15

is the refined schema “better”?

• is it equivalent?

• anomalies removed? ✷

329

REQUIRED NOTIONS

1. Analysis of relevant dependencies

2. criterion when to decompose a relation schema (and when a decomposition is equivalent)
(based on (1))

3. measure for “quality” of a schema
(in terms of (1))

330

7.1 Functional Dependencies

• Data dependencies that describe a functional relationship.

Let V̄ a set of attributes and r ∈ Rel(V̄), X̄, Ȳ ⊆ V̄ .
r satisfies the functional dependency (FD) X̄ → Ȳ if for all t, s ∈ r,

t[X̄] = s[X̄]⇒ t[Ȳ] = s[Ȳ] .

For Ȳ ⊆ X̄, X̄ → Ȳ is a trivial dependency (satisfied by every relation r ∈ Rel(V̄)).

Refined Definition of “Relation Schema”

A relation schema R(X̄,ΣX̄) consists of a name (here, R) and a finite set
X̄ = {A1, . . . , Am}, m ≥ 1 of attributes:

• X̄ is the format of the schema.

• ΣX̄ is a set of functional dependencies over X̄.

A relation r ∈ Rel(X̄) is an instance of R if it satisfies all dependencies in ΣX̄ .
The set of all instances of R is denoted by Sat(X̄,ΣX̄).

331

Example 7.2
Consider again Example 7.1.

The given instance is in Sat(X̄,ΣX̄) for the following set ΣX̄ of FDs:

Name→ Address

Product→ Price

(Name, Product)→ Number

“Intuitive” ER-model of the problem:

Customer

AddressName

Product

NamePrice

buys

Number

✷

332

7.1.1 Decomposition Based on Functional Dependencies

• Does a “good” ER-model already guarantee all desirable properties of the relational
model?

NO
(at least not completely - The more exact the ER model, the better the preliminary
relational schema)

• is a formal dependency analysis necessary?

YES
• theory: based on normal forms of relational schemata

333

ANALYSIS OF ENTITY SETS

Example 7.3 (FDs of entity attributes)
Consider a staff database in a university. Persons (professors and lecturers) have names,
ranks, and salaries.

Person

name

rank

salary

Person

Name Rank Salary

G full prof. 5000

T full prof. 5000

S associate prof. 4000

W assistant 3000

P assistant 3000

There is a functional dependency Rank→ Salary.

Refined schema: Person(Name, Rank)

SalaryTable(Rank, Salary)

✷

334

ANALYSIS OF RELATIONSHIP SETS

Example 7.4 (FDs of ternary relationships)
Students attend courses that are given by lecturers.

Student attends Course

Lecturer

Name Name

Name

attends

Student Course Lecturer

Stud1 Telematics Ho

Stud2 Telematics Ho

Stud2 Mobile Comm Ho

Stud3 Mobile Comm Ho

Stud3 Databases WM

Stud4 Databases WM

Stud1 Databases WM

There is a functional dependency Course→ Lecturer.

Refined schema: reads(Course, Lecturer)

attends’(Student, Course)

✷

335

7.1.2 Functional Dependency Theory

Let R(V̄ ,F) a relation schema where X̄, Ȳ ⊆ V̄ , and F is a set of functional dependencies
over V̄ .
Definition 7.1

• F implies a functional dependency X̄ → Ȳ , written as F |= X̄ → Ȳ , if and only if every
relation r ∈ Sat(V̄ ,F) satisfies X̄ → Ȳ .

• F+ = {X̄ → Ȳ | F |= X̄ → Ȳ } is the closure of F . ✷

Definition 7.2
Let V̄ = {A1 . . . An}. X̄ is a key of V̄ (wrt. F) if and only if

• X̄ → A1 . . . An ∈ F+,

• Ȳ (X̄ ⇒ Ȳ → A1 . . . An /∈ F+.

For a key X̄, each Ȳ ⊇ X̄ is a superkey. ✷

For an attribute A such that A ∈ X̄ for any key X̄, A is a key attribute. If there is no key X̄
such that A ∈ X̄, then A is a non-key attribute.

336

CLOSURE OF FDS

Problem: How to decide whether X̄ → Ȳ ∈ F+? (Membership Test)

The test is based on the Armstrong-Axioms:

Let F a set of FDs over V̄ and r ∈ Sat(V̄ ,F).

(A1) Reflexivity: If Ȳ ⊆ X̄ ⊆ V̄ , then r satisfies X̄ → Ȳ .

(A2) Augmentation: If X̄ → Ȳ ∈ F and Z̄ ⊆ V̄ , then r satisfies XZ → Y Z.

(A3) Transitivity: If X̄ → Ȳ and Ȳ → Z̄ ∈ F , then r satisfies X̄ → Z̄.

The Armstrong-Axioms can be used as inference rules for FDs.

Theorem 7.1
The Armstrong-Axioms are correct, i.e., all derived FDs are in F+, and they are complete,
i.e., all FDs in F+ can be derived. ✷

337

CLOSURE OF FDS (CONT’D)

Armstrong Axioms can especially be used for searching which attributes depend on a given
X̄ ⊆ V .

Definition 7.3
For X̄ ⊆ V̄ , X̄+ is the set of all A ∈ V̄ such that X̄ → A can be derived by the Armstrong
axioms. X̄+ is called the (Attribute-)closure of X̄ (wrt. F). ✷

Exercise 7.1
Consider a relation schema R(V̄ ,F) such that K̄ is a key. What is K̄+? ✷

338

Proof of Theorem 7.1: correctness is obvious.
Completeness: it has to be shown that if X̄ → Ȳ ∈ F+, then X̄ → Ȳ can be derived by
(A1)–(A3) from F .

It will be shown: if X̄ → Ȳ is not derivable by (A1)–(A3), then X̄ → Ȳ 6∈ F+, i.e., there is an
r ∈ Sat(V̄ ,F) that does not satisfy X̄ → Ȳ .

Assume X̄ → Ȳ cannot be derived. Consider a relation r as below:

1 1 . . . 1 1 1 . . . 1

1 1 . . . 1︸ ︷︷ ︸ 0 0 . . . 0︸ ︷︷ ︸
attributes in X̄+ all other attributes

(i) First it will be shown that r satisfies F :
Assume that there is a Z̄ → W̄ ∈ F , such that r does not satisfy Z̄ → W̄ . This is only
possible if Z̄ ⊆ X̄+ and W 6⊆ X̄+. Since Z̄ ⊆ X̄+, there is X̄ → Z̄ and Z̄ →W , and thus
W ⊆ X̄+, a contradiction.

(ii) Next, it will be shown that r does not satisfy X̄ → Ȳ :
For any X̄ → Ȳ that is satisfied by r, Ȳ ⊆ X̄+. This would mean that X̄ → Ȳ can be
derived from (A1)–(A3).

339

MEMBERSHIP PROBLEM

Check whether X̄ → Ȳ ∈ F+?

Variant 1 :
Compute F+ from F using (A1)–(A3) until either X̄ → Ȳ is derived, or the process stops.
Then, F+, and X̄ → Ȳ 6∈ F+.

This algorithm is not efficient, since it has (systematically applied) at least the time complexity
O(2||F||).

Example 7.5
Consider V̄ = {A,B1, . . . , Bn, C,D} with F = {A→ B1, . . . , A→ Bn}. Then, A→ Ȳ ∈ F+ for
all Ȳ ⊆ {B1, . . . , Bn}. Thus, computation of F needs to compute 2n items (before a negative
answer for any other FD – e.g. the question whether C → D holds – can be stated). ✷

340

Membership Problem (Cont’d)

Variant 2 :
Goal-oriented approach for X̄ → Ȳ ∈ F+:

Compute X̄+ and check if Ȳ ⊆ X̄+.

• start with X → X (A1 - Reflexivity)

• (A2) allows X̄ → Ȳ ∈ F ⇒ XX → XY ∈ F+ which is equivalent to X̄ → XY ∈ F+

• for any Z̄ ⊃ X̄ and X̄ → XY ∈ F+, (A2) allows to conclude Z̄ → ZY (A2∗)

• “collect” X̄+ in this way: derive X̄ → XY1, then XY1 → XY2 by (A2∗) and apply (A3 -
transitivity) to them,

• until X̄ → Z̄ ∈ F+ for Ȳ ⊂ Z̄, then derive X̄ → Ȳ ∈ F+ by (A1).

341

Example 7.6
F = {AB → E,BE → I, E → G,GI → H}, check if AB → GH ∈ F+ ?

X → Y ∈ F and derive ...

(A1) AB → AB

(A2∗) AB → E AB → ABE

(A2∗) BE → I ABE → ABEI

(A2∗) E → G ABEI → ABEIG

(A2∗) GI → H ABEIG→ ABEIGH

(A3) transitivity: AB → ABEIGH

final step with (A1): AB → GH ✷

342

Membership Problem (Cont’d)

• consider each (A2∗) + (A3) step as one:

X̄+-Algorithm:

result := X̄; /* (A1) */
WHILE (changes to result) DO
FOR each W̄ → Z̄ ∈ F DO /* (A2∗) + (A3) */

IF (W̄ ⊆ result) THEN result := result ∪ Z̄ ;
end;

check if Ȳ ⊆ result /* (A1) */;

Theorem 7.2
The X̄+-algorithm computes X̄+ and terminates. Its time complexity is O((|F| · |V |)2).
There is an optimized variant in O(|F| · |V |). ✷

Example 7.7
Apply the X̄+-algorithm to Example 7.6 (same steps). ✷

343

AN EQUIVALENT SET OF RULES

Lemma 7.1
Consider a relation schema R(V̄ ,F) such that A ∈ V̄ and X̄, Ȳ , Z̄, W̄ ⊆ V̄ , and F is a set of
functional dependencies over V̄ , and r ∈ Sat(V̄ ,F). Then:

(A4) Union: If X̄ → Ȳ and X̄ → Z̄ ∈ F , then r satisfies X̄ → Y Z.

(A5) Pseudo-transitivity: If X̄ → Ȳ and WY → Z̄ ∈ F , then r satisfies XW → Z̄.

(A6) Decomposition: If X̄ → Ȳ ∈ F and Z̄ ⊆ Ȳ , then r satisfies X̄ → Z̄.

(A7) Reflexivity: r satisfies X̄ → X̄

(A8) Accumulation: If X̄ → Y Z and Z̄ → AW ∈ F , then r satisfies X̄ → Y ZA. ✷

Lemma 7.2
The rule sets {(A1), (A2), (A3)} and {(A6), (A7), (A8)} are equivalent, i.e., for given F , the
same set of FDs can be derived. ✷

• (A8) covers the combination of (A2∗) and (A3) (consider W̄ = ∅).

344

Example 7.8
F = {AB → E,BE → I, E → G,GI → H}, check if AB → GH ∈ F+ ?

Derivation by Intermediate result X̄i

(A7)–(A8) of the X̄+-algorithm

(A7) AB → AB X̄0 = {A,B}
(A8) [AB → E]

AB → ABE X̄1 = {A,B,E}
(A8) [BE → I]

AB → ABEI X̄2 = {A,B,E, I}
(A8) [E → G]

AB → ABEIG X̄3 = {A,B,E, I,G}
(A8) [GI → H]

AB → ABEIGH X̄4 = {A,B,E, I,G,H}
final step with (A6):

(A6) AB → GH ✷

345

DETERMINING A KEY

Consider a relation schema R = (V̄ ,F).

• The X̄+-algorithm allows for determining a key of R in time O(|F| |V̄ |2):
Start with the superkey V̄ and try to delete attributes as long as the closure of the
remaining attributes is still the whole V̄ . If no more attributes can be deleted, a key is
found.

• In the general case, it is not possible to determine all keys of a relation schema efficiently.
Note that the problem “is there a key with at most k attributes?” is NP-complete.

346

ASIDE: UNIQUE KEYS

Theorem 7.3
Let F = {X̄1 → Ȳ1, . . . , X̄p → Ȳp}.
Let Z̄i = Ȳi \ X̄i for 1 ≤ i ≤ p.
R(V̄) has a unique key if and only if V̄ \ (Z̄1 ∪ . . . ∪ Z̄p) is a superkey.
(note that K̄ is a superkey if K̄+ = V̄).
(Proof: next slide) ✷

Note:

• Z̄1 ∪ . . . ∪ Z̄p contains those attributes that are fd from any other attribute.

• V̄ \ (Z̄1 ∪ . . . ∪ Z̄p) contains those attributes that are not fd from any other attribute.

• V̄ \ (Z̄1 ∪ . . . ∪ Z̄p) is subset of all keys of a relation.

Example 7.9
Consider the relation Country(name,code,population, area) with FDs
name→ code,population,area and code→ name,population,area.
Here, name and code are keys.
V̄ \ (...) = ∅ ✷

347

ASIDE: UNIQUE KEYS (CONT’D)

Proof of Theorem 7.3:

“⇒” Assume K̄ to be the unique key of R. Then, K̄ is contained in every superkey. For each
1 ≤ i ≤ p, V̄ \ Z̄i is a superkey (since Z̄i is determined by X̄i).

Thus, K̄ ⊆ ∩pi=1(V̄ \ Z̄i). The right side is equivalent to V̄ \ (Z̄1 ∪ . . . ∪ Z̄p). Thus,
V̄ \ (Z̄1 ∪ . . . ∪ Z̄p) is a superkey (of K̄).

“⇐” Assume K̄ = V̄ \ (Z̄1 ∪ . . . ∪ Z̄p) a superkey. It will be shown that K̄ is contained in every
superkey, and thus it is the only key. Suppose a superkey L̄ such that there is an attribute
A ∈ K̄ \ L̄. Then, A 6∈ L̄+ (since it is not in any of the Z̄i). Thus, L is not a superkey
(since L̄+ (V̄) – contradiction.

348

SETS OF FDS

Consider sets F ,G of functional dependencies. F ,G are equivalent if and only if F+ = G+.

Definition 7.4
F is minimal if and only if

1. For every X̄ → Ȳ ∈ F , Ȳ consists of a single attribute,

2. For every X̄ → A ∈ F , F \ {X̄ → A} is not equivalent to F ,

3. If X̄ → A ∈ F and Z̄ ⊂ X̄, then F \ {X̄ → A} ∪ {Z̄ → A} is not equivalent to F . ✷

Theorem 7.4
For each set F of functional dependencies, there is an equivalent minimal set Fmin of
functional dependencies.
(Note: Fmin is not necessarily unique). ✷

Example 7.10
Consider again Example 7.9:
{name→ {code}, name→ {population}, name→ {area}, code→{name}}
and {code→ {name}, code→ {population}, code→ {area}, name→{code}}
are minimal. ✷

349

MINIMAL SETS OF FDS

• Fmin can be computed by the X̄+-algorithm (without computing F+) in polynomial time.

Consider a schema R(V̄ ,F) with |V̄ | = n and |F| = f .

1. Decompose all X → Y ∈ F such that each right side consists of a single attribute; get F ′

with |F ′| ≤ nf in O(f · n) steps.

2. Delete all ϕ ∈ F ′ that follow from the others (iteratively), using the X+ algorithm.
Each application of X+ requires O(f · n) steps, thus, altogether O(f2 · n2).

3. Delete in each remaining FD {x1 . . . , xn} → y stepwise as many attributes on the left side
as possible. For each step, check, whether y is still in the remaining {x1 . . . , xk}+.
The X+-algorithm is applied |F ′| · n = O(f · n2) times, thus, this step is in O(f2 · n3).

4. The algorithm is in O(f2 · n3), i.e., polynomial.

350

7.2 Decomposition of Relation Schemata

In Example 7.1 (Slide 328), a relation has been decomposed for yielding a better behavior.

Definition 7.5
• Let V̄ a set of attributes. Then, ρ = {X̄1, . . . , X̄n} s.t. X̄1 ∪ . . . ∪ X̄n = V̄ and for each i,
X̄i ⊆ V̄ is a decomposition of V̄ . ✷

Example 7.11
Consider again Example 7.1. There, V̄ = {Name,Address,Product,Number,Price}.
E.g., ρ = {{Name,Address}, {Product,Price}, {Name,Product,Number}}. is a
decomposition. ✷

Lemma 7.3
Consider a relation r ∈ Rel(V̄) and a decomposition ρ = {X̄1, . . . , X̄k} of V̄ .

Then,

r ⊆ π[X̄1](r) ⊲⊳ . . . ⊲⊳ π[X̄k](r) . ✷

351

PROPERTIES OF DECOMPOSITIONS

Losslessness: The complete tuples must be reconstructable by joining the decomposed
relations without getting additional tuples that have not been there originally.

Example 7.12
Consider again Example 7.4, now with a decomposition into hears(Student,Lecturer) and
attends’(Student, Course).

Then, the join hears ⊲⊳ attends’ yields a tuple (DStud1,Databases,Ho). ✷

Definition 7.6
Consider a relation schema R(V̄ ,F) and a decomposition ρ = {X̄1, . . . , X̄n} of R.

ρ is lossless if and only if for every relation r ∈ Sat(V̄ ,F),
r = π[X̄1](r) ⊲⊳ . . . ⊲⊳ π[X̄k](r) . ✷

352

PROPERTIES OF DECOMPOSITIONS (CONT’D)

dependency-preservation: the dependencies can be tested using the decomposed tables
only, i.e., without having to recompute the join.

Definition 7.7
Consider a relation schema R(V̄ ,F) and a decomposition ρ = {X̄1, . . . , X̄n} of R.

π[Z](F) = {X → Y ∈ F+ | XY ⊆ Z} is the projection of F to Z.

ρ is dependency-preserving if and only if for all i,
n⋃

i=1

π[X̄i](F) ≡ F .
✷

Dependency-preservation means that FDs can be distributed over the decomposition
without losing anything:
If the projections of F+ are asserted, the (joined) database contents satisfies F .

We will first discuss losslessness.

353

7.2.1 Lossless Decompositions

• The problem is not to lose tuples by (wrong) decompositions, but to lose “information”
about relationships.

Example 7.13
Consider again Examples 7.4 and 7.12.

1. attends = π[Course, Lecturer](attends)︸ ︷︷ ︸
reads

⊲⊳ π[Student,Course](attends)︸ ︷︷ ︸
attends′

2. attends (π[Student, Lecturer](attends)︸ ︷︷ ︸
hears

⊲⊳ π[Student,Course](attends)︸ ︷︷ ︸
attends′

(DStud1,Databases,Ho) ∈ hears ⊲⊳ attends’. ✷

354

TEST FOR LOSSLESSNESS (CHASE-ALGORITHM FOR FDS)

Input: a relation schema R(V̄ ,F), where V̄ = {A1, . . . , An}, ρ = {X̄1, . . . , X̄k}.

Algorithm: (Aho, Beeri, Ullman, TODS 1979)

Idea: take a tuple (a1, . . . , an), decompose it according to ρ. Create a “test table” that
represents the requirements of a tuple (a1, . . . , an) in the re-join of the decomposed tables.
Add the knowledge from the FDs about the attribute values of this tuple. The goal is to show
that this tuple must have been already present in the original table.

Construct a table T with n columns and k rows.
Column j stands for Aj , row i for X̄i as follows:

• T(i,j) = aj if Aj ∈ X̄i,

• otherwise T(i,j) = bij (“any value”).

(see next slide)

355

Chase-Algorithm for FDs (Cont’d)

As long as T changes, do the following:

Consider a FD X̄ → Ȳ ∈ F . If there are rows z1, z2 ∈ T which coincide for all X̄-columns, but
not in all Ȳ -columns, then make their Ȳ -values the same:

• For each Ȳ -column j:

• if one of the symbols is aj , then replace every occurrence of the other symbol globally by
aj .

• if both symbols are of the form bij, then replace arbitrarily one of them globally by the
other.

Note: The algorithm corresponds to enforcing the FDs.
(since they are known to hold in T , this constrains the occurrences of other values)

Result: ρ is lossless if and only if (a1, . . . , an) ∈ T .

356

Example 7.14 (Chase)
V̄ = ABCDE, ρ = (AD,AB,BE,CDE,AE);
F = {A→ B,B → D,DE → C,E → A}

A B C D E

from AD: a1 b12 b13 a4 b15

from AB: a1 a2 b23 b24 b25

from BE: b31 a2 b33 b34 a5

from CDE: b41 b42 a3 a4 a5

from AE: a1 b52 b53 b54 a5

chase−→

A B C D E

a1 a2 b13 a4 b15

a1 a2 b23 a4 b25

a1 a2 a3 a4 a5

a1 b42 a3 a4 a5

a1 b52 b53 b54 a5

The process is finished when the following table is reached:

A B C D E

a1 a2 a3 a4 b15

a1 a2 a3 a4 b25

a1 a2 a3 a4 a5

a1 a2 a3 a4 a5

a1 a2 a3 a4 a5

Note that only for columns that
do not occur on the right side of
a FD, the bs remain.

✷

357

Theorem 7.5
The above algorithm for testing losslessness is correct. ✷

Proof:

Notation:

• for a decomposition ρ = {X̄1, . . . , X̄k} of V̄ and a relation r, the re-join of the
decomposed tables is denoted by mρ(r) = ⊲⊳ki=1 π[X̄i](r).

• T0 and T ∗ denote the table before and after execution of the algorithm.

The algorithm terminates since the number of different symbols decreases with every step.

(A) It has to be shown that if ρ is lossless, (a1, . . . , an) ∈ T ∗.

Due to the construction of T0, each π[X̄i](T0) contains a row that consists only of ais. Thus,
(a1, . . . , an) ∈ mρ(T0).

This property is preserved by the chase steps, thus (a1, . . . , an) ∈ mρ(T
∗). The chase

process also guarantees that T ∗ ∈ Sat(V̄ ,F). From the assumption that ρ is lossless,
T ∗ = mρ(T

∗) and (a1, . . . , an) ∈ T ∗.

358

(B) (uses Relational Calculus)

It will be shown that if (a1, . . . , an) ∈ T ∗, ρ is lossless.

Consider relations r over R(V̄) (as structures). Consider the formula of the calculus

F0 = (∃b11) . . . (∃bkn)(R(w1) ∧ . . . ∧R(wk))

where wi is the i-th row of T0 and all ai and bjk’s are interpreted as variables. The free
variables in F0 are a1, . . . , an. Note that every member R(wi) of the conjunction in F0

corresponds to a projection to X̄i. Then,

mρ(r) = answers(F0(a1, . . . an)) .

Consider only relations r ∈ Sat(V̄ ,F). Since r satisfies F ,

F0(a1, . . . an) ≡F F1(a1, . . . an) ≡F . . . ≡ F ∗(a1, . . . an)

where each Fi corresponds to the table after i chase steps. For given r, the answer set to F ∗

is the same as the answer set to F0.

Since F ∗(a1, . . . an) is of the form (∃b11) . . . (∃bkm)(R(a1, . . . , an) ∧ . . .) ,
its answer set is a subset (or equal) of r.

Altogether, mρ(r) ⊆ r. Since mρ(r) ⊇ r by Lemma 7.3, mρ(r) = r, i.e., ρ is lossless.

359

Corollary 7.1 (Decomposition into two relations)
Consider a set V̄ of attributes, a set F of functional dependencies, and a decomposition
ρ = {X̄1, X̄2} of V̄ . ρ is lossless if and only if

(X̄1 ∩ X̄2)→ (X̄1 \ X̄2) ∈ F+, or (X̄1 ∩ X̄2)→ (X̄2 \ X̄1) ∈ F+ .
✷

Proof:
The table T for ρ is

X̄1 ∩ X̄2 X̄1 \ X̄2 X̄2 \ X̄1

X̄1 a . . . a a . . . a b . . . b

X̄2 a . . . a b . . . b a . . . a

1. Assume (a1, . . . , an) ∈ T ∗. Consider an attribute A whose column contains a b. If the
algorithm exchanges it by an a, then A ∈ (X̄1 ∩ X̄2)

+. Due to the assumption that
(a1, . . . , an) ∈ T ∗, there is one line where this happens for all attributes – thus all these
attributes are in (X̄1 ∩ X̄2)

+.

2. Assume (w.l.o.g.) that (X̄1 ∩ X̄2)→ (X̄1 \ X̄2) ∈ F+, i.e., X̄1 \ X̄2 ⊆ (X̄1 ∩ X̄2)
+.

Consider the steps for deriving this by the X̄+-algorithm. For each such step there is a
corresponding chase-step. Thus, the chase replaces each b of an attribute in X̄1 \ X̄2 by
an a, leading to (a1, . . . , an) ∈ T ∗.

360

Example 7.15
Consider again Examples 7.4, 7.12 and 7.13 whith the schema

attends((Student, Course, Lecturer), {Course→ Lecturer})

• ρ1 = {{Course, Lecturer}, {Student,Course}} is lossless.

• ρ2 = {{Student, Lecturer}, {Student,Course}} is not lossless. ✷

General conclusion for ternary relations:

• for any (useful) decomposition into two binary relations, there is one attribute A that is
contained in both relations.

• the decomposition is lossless if at least one of the other attributes is functionally
dependent only on A.

In the above example, the functional dependency Course→ Lecturer which made the
decomposition possible.

361

7.2.2 Dependency Preservation

Example 7.16
Consider again Examples 7.1 and 7.11 with the schema

Pizza-Service({Name,Address,Product,Number,Price},
{Name→ Address, Product→ Price, (Name,Product)→ Number})

and the decomposition

ρ = {{Name,Address}, {Product,Price}, {Name,Product,Number}} .

Recall that π[Z](F) = {X → Y ∈ F+ | XY ⊆ Z}

π[Name,Address](F) ⊇ {Name→ Address}
π[Product,Price](F) ⊇ {Product→ Price}
π[Name, Product, Number](F) ⊇ {(Name,Product)→ Number

So, all FD’s immediately survive. ✷

362

Another, abstract Example

Example 7.17
V = {A,B,C,D}, ρ = {AB,BC}
F = {A→ B,B → C,C → A}

ρ is dependency-preserving (check whether C → A is preserved).

Recall again that π[Z](F) = {X → Y ∈ F+ | XY ⊆ Z}

(F+ contains A→ ABC, B → ABC, C → ABC)

π[AB](F) ⊇ {A→ B,B → A}
π[BC](F) ⊇ {B → C,C → B}
C → A ∈ (π[AB](F) ∪ π[BC](F))+ ✷

363

DEPENDENCY PRESERVATION

There are lossless decompositions that are not dependency-preserving:

Example 7.18
Consider R = (V̄ ,F), where V̄ = {City, Address, Zip}, and
F = {(City,Address)→ Zip, Zip→ City}.
The decomposition R1(Address, Zip) and R2(City, Zip) is lossless since
(R1 ∩R2)→ (R2 \R1) ∈ F , but is not dependency-preserving.

(note that the keys of R are (Address, Zip) and (City, Address).)

R City Address Zip

FR Herdern 79106

FR Flughafen 79110

FR Mooswald 79110

S Flughafen 70629

R1 Address Zip

Herdern 79106

Flughafen 79110

Mooswald 79110

Flughafen 70629

R2 City Zip

FR 79106

FR 79110

S 70629

Insert (FR,Herdern,79100) and check the FDs:
The original FD (City,Address)→ Zip is not satisfied. ✷

364

... and now to a systematic characterization:

• some properties have been identified that should hold for a decomposition,

• algorithms have been giving for testing them;

• is it possible to express properties of such decompositions based on schema information?

• how to find such decompositions?

365

7.3 Normal Forms based on FDs

Task:

Consider a schema R = (V̄ ,F). Find a decomposition ρ = (X̄1, . . . , X̄n) of R such that

1. each Ri = (X̄i, π[X̄i](F)), 1 ≤ i ≤ n is in some normal form,

2. ρ is lossless and (if possible) dependency-preserving,

3. n is minimal.

366

Non-normalized Data

Nested Relations:
Nested_Languages

Code Name Languages

D Germany German 100

CH Switzerland German 65

French 18

Italian 12
...

...
...

Non-atomic values:
Products

Code GDP Products

D 1452200 steel, coal, chemicals, machinery, vehicles

CH 158500 machinery, chemicals, watches
...

...
...

367

1ST NORMAL FORM (1NF)

Definition 7.8
A relation schema is in 1NF if and only if its attribute domains are atomic. ✷

Non-normalized relations are transformed into 1NF by expanding groups.

Note that redundancy arises (expressed by functional dependencies).

Example 7.19

Languages

Code Name Language Percent

D Germany German 100

CH Switzerland German 65

CH Switzerland French 18

CH Switzerland Italian 12
...

...
...

...

F = {Code→ Name,

Name→ Code,

(Code, Language)→ Percent,

(Name, Language)→ Percent}

✷

368

Example 7.20

Economy

Code GDP Product

D 1452200 steel

D 1452200 coal

D 1452200 chemicals

D 1452200 machinery

D 1452200 vehicles

CH 158500 machinery

CH 158500 chemicals

CH 158500 watches
...

...
...

F = {(Code,Product)→ (Code, Product, GDP), Code→ GDP}

Key: (Code, Product) ✷

369

2ND NORMAL FORM (2NF)

• In Example 7.20, the GDP information (e.g., (D, 1452200)) is stored redundantly.

• Problem: Code→ GDP, but Code alone is not a key.

2NF forbids non-trivial FDs, where a non-key attribute A is functionally dependent on some X̄
that is a proper subset of a key. Such FDs cause the above redundancy.

Definition 7.9
A relation schema R = (V̄ ,F) is in 2NF if and only if every non-key attribute A is fully
dependent on each candidate key:

• Let K̄ be a candidate key of R, A an attribute that is not contained in any candidate key.
Then, there is no X̄ (K̄ s.t. X̄ → A ∈ F . ✷

Example 7.21
Consider again Example 7.20: Split the Economy relation into relations Economy’(Code,
GDP) and Products(Code, Product). ✷

370

2ND NORMAL FORM (CONT’D)

The above example was motivated by normalizing a multivalued attribute.

The same situation can occur when mapping a multivalued relationship inaccurately:

• non-key attributes of one of the participating entity types is mixed with the relationship.

Student Courseattends< 0, ∗ > < 4, ∗ >

Name Name room

attends

Student Course room

Alice Databases E105

Bob Databases E105

Alice Telematics E105

Carol Telematics E105

Bob Programming E203

(Student, Course) is (the only) candidate key.

F = { Course→ Room,

(Student, Course)→ Room }
• The table contains redundancies

• 2NF Decomposition: Separate the

relationship from the entity.

371

2ND NORMAL FORM (CONT’D)

Separate the relationship from the entity:

attends

Student Course room

Alice Databases E105

Bob Databases E105

Alice Telematics E105

Carol Telematics E105

Bob Programming E203

split

attends’

Student Course

Alice Databases

Bob Databases

Alice Telematics

Carol Telematics

Bob Programming

Course

Name room

Databases E105

Telematics E105

Programming E203

Is that all?

No. The idea is clear, but the formulation is not yet perfectly accurate.

372

... 2NF covers only FDs from keys.

Consider the following situation when mapping a multivalued, n : 1-relationship inaccurately:

Course Lecturerread_by< 1, 1 > < 1, ∗ >

Name Name phone

read_by

Course Lecturer phone

Telematics Ho 14401

Mobile Comm Ho 14401

Databases WM 14412

SSD&XML WM 14412

Course is (the only) candidate key.

F = { Course→ Lecturer

Course→ phone

Lecturer→ phone }

• the table contains redundancies

• the table is in 2NF

• Lecturer→ phone does not violate 2NF because Lecturer is not contained in any
candidate key – this case is not covered by 2NF.

373

3RD NORMAL FORM (3NF)

Definition 7.10
A relation schema R = (V̄ ,F) is in 3NF if and only if for each non-key attribute A:

• For each X̄ → A ∈ F such that A is not contained in any candidate key, X̄ contains a
candidate key. ✷

Now, all FDs for non key A must be “complete key → A”

3NF Decomposition: Split again.

Separate the relationship from the entity:

read_by

Course Lecturer phone

Telematics Ho 14401

Mobile Comm Ho 14401

Databases WM 14412

SSD&XML WM 14412

split:

read_by’

Course Lecturer

Mobile Comm Ho

Telematics Ho

Databases WM

SSD&XML WM

Lecturer

Lecturer phone

Ho 14401

WM 14412

3NF-Decomposition is always lossless and dependency-preserving.

374

NORMAL FORMS

Compare: why can the relationship and the entity be combined in in the following case?

Country Cityis_capital< 1, 1 > < 0, 1 >

name code name pop.

375

BOYCE-CODD NORMAL FORM (BCNF)

• In Example 7.19 (Languages), the name (e.g., D, Germany) is stored redundantly.
(Note that Name is a key attribute there – thus 3NF is not applicable.)

BCNF extends 3NF for key attributes:

Definition 7.11
A relation schema R = (V̄ ,F) is in BCNF if and only if for each attribute A:

• For each X̄ → A ∈ F such that A 6∈ X̄, X̄ contains a key. ✷

Example 7.22
Consider again Example 7.19: Name depends on Code, but Code does not contain a key.

Split the Languages relation into relations Country(Code,Name) and
Languages’(Code,Language,Percent).

In this case, the decomposition is lossless and dependency-preserving. ✷

376

BCNF (CONT’D)

• BCNF-Decomposition is always lossless, but not necessarily dependency-preserving.

Example 7.23
Consider again Example 7.18:

R = (V̄ ,F), where V̄ = {City, Address, Zip}, and F = {(City,Address)→ Zip, Zip→ City}.

R is in 3NF, but not in BCNF.

The decomposition R1(Address, Zip) and R2(City,Zip) transforms it in a BCNF schema.

It has been shown that this decomposition is lossless, but not dependency-preserving. ✷

377

PROPERTIES OF BCNF AND 3NF

Theorem 7.6
If a relation schema R has exactly one key, then R is in BCNF if and only if R is in 3NF.

Proof: Obviously, BCNF implies 3NF. Assume R in 3NF and K̄ its only key. Assume a FD
X̄ → A ∈ F .

We show that X̄ → A is trivial (i.e., A ∈ X̄). Since R is in 3NF, it is sufficient to consider the
case where A is a key attribute.

(K̄ − A) ∪ X̄ is a superkey (since X̄ → A and A is part of K̄). Thus, there is a key
K̄ ′ ⊆ (K̄ −A) ∪ X̄. Since there is only a single key, K̄ = K̄ ′. Thus, since A ∈ K̄, also A ∈ K ′

– thus it must be in X̄. ✷

378

PROPERTIES OF BCNF AND 3NF (CONT’D)

Lemma 7.4
A relation schema R = (V̄ ,F) is in BCNF if and only if for each non-trivial FD X̄ → A ∈ F+,
X̄ is a superkey.

Proof:

• “if” is obvious.

• It will be shown that if X̄ → A ∈ F+ and A /∈ X̄, then X̄ → V̄ ∈ F+.

Since A ∈ X̄+ \ X̄, there is a non-trivial FD Ȳ → A ∈ F that is used by the X̄+-algorithm
for adding A to X̄+. For this, Ȳ ⊆ X̄+, i.e., X̄ → Ȳ ∈ F+.

Since R is in BCNF, Ȳ is a superkey. Since X̄ → Ȳ ∈ F+, X̄ must already be a superkey
– i.e., X̄ → V̄ ∈ F+. ✷

Corollary 7.2
A relation schema R = (V̄ ,F) is in BCNF if and only if R′ = (V̄ ,F+) is in BCNF. ✷

• Lemma 7.4 and Corollary 7.2 analogously hold for 3NF.

379

PRACTICAL ASPECTS

• BCNF can be tested in polynomial time.

Sketch: Use the X̄+-algorithm for each FD X̄ → Ȳ to check if X̄ is a superkey.

• Testing 3NF is NP-complete

– polynomially check if BCNF – if “yes”, OK

– if ”no”, the check whether A is a key attribute is exponential.

• Consider a set F of FDs over V̄ , and X̄ ⊆ V̄ .

Then, for computing π[X̄](F), only algorithms are known that are (in the worst case)
exponential in |X̄|.
Sketch: For every Ȳ ⊆ X̄, compute Ȳ + and add Ȳ → (Ȳ + ∩ X̄) to π[X̄](F)+
(no way to compute π[X̄](F) without the closure).

380

PRACTICAL ASPECTS (CONT’D)

Lemma 7.5
For a relation schema R = (V̄ ,F) s.t. there is a FD X̄ → Ȳ where X̄ ∩ Ȳ = ∅, the
decomposition ρ = (R \ Ȳ , XY) is lossless. ✷

Proof Proof: Use Corollary 7.1 (Slide 7.1):
(R \ Ȳ) ∩XY = X̄, XY \ (R \ Ȳ) = Ȳ , and thus X̄ → Ȳ . ✷

... this can now be used for an algorithm.

381

7.3.1 BCNF-Analysis: lossless, but not dependency-preserving

Input: a relation schema R = (V̄ ,F) that is not in BCNF.

Consider a FD X̄ → A ∈ F that violates the BCNF condition.

• Decomposition of V̄ : ρ = (XA, V̄ −A) (A has been stored redundantly)

• R1 = (XA, π[XA](F))
• R2 = (V̄ −A, π[V̄ −A](F)),
• check whether R1 and R2 satisfy the BCNF condition, apply algorithm recursively.

Example 7.24
Let V̄ = {C,S,J,D,P}, F = {SD→ P, J→ S}.

C S J D P

SD→ P

S D P C S J D

J→ S

J S C J D

C S J D P

J→ S

J S C J D P

SD→ P is not preserved. ✷

382

7.3.2 3NF-Analysis: lossless and dependency-preserving

• Sketch: BCNF – and repair.

Consider a relation schema R = (V̄ ,F) such that

• F is minimal, and

• ρ = (X̄1, . . . , X̄k) is a decomposition of V̄ such that all schemata Ri = (X̄i, π[X̄i](F)) are
in BCNF.
(possibly not dependency-preserving)

• For each such FD X̄ → A that is not preserved, extend ρ with XA; the corresponding
schema is (XA, π[XA](F)).

• The resulting decomposition is obviously lossless and additionally
dependency-preserving. Each of the new schemata is in 3NF.

Proof Sketch: Since X̄ → A ∈ F and F minimal, there is no Ȳ → A for any Ȳ ⊂ X̄. Thus, X̄
is a key for XA and all other FDs over XA are defined only over X̄. Thus, they cannot violate
the 3NF-condition (but the BCNF-condition).

383

Example 7.25
Consider again Example 7.24.

V̄ = {C,S,J,D,P}, F = {SD→ P, J→ S}

• The first decomposition is dependency-preserving.

• The second decomposition

C S J D P

J→ S

J S C J D P

does not preserve SD→ P.

The 3NF-analysis algorithm adds S D P. ✷

384

7.3.3 3NF-Synthesis: lossless and dependency-preserving

Input: relation schema R = (V̄ ,F) and Fmin.

1. Consider maximal sets of FDs from Fmin with the same left hand side. Let
{X̄ → A1, X̄ → A2, . . .} such a set.
For every set, generate a schema with the format XA1A2

2. If none of the formats from (1) contains a key of R, take any key K̄ of R and add a
schema with format K.

• The 3NF-Synthesis-Algorithm is polynomial in time.

• the resulting ρ is not necessarily minimal:

Consider V̄ = {AB} with Fmin = {A→ B,B → A}. Then, ρ = (AB,BA).

• Recall that in contrast, it is NP-complete to check if a given schema is in 3NF.

385

Correctness

• Using Fmin, the generated schemata are in 3NF.

• ρ is dependency-preserving since for every X̄ → Ȳ ∈ Fmin, a format is generated that
contains XY .

• ρ is lossless since ρ contains a key of the original schema. Using this tuple, in T ∗ (cf.
Theorem 7.5) contains a row that consists of ais:

Consider the steps of the X̄+-algorithm that add – w.l.o.g. – the attributes A1, A2, . . . , Ak

from V̄ \ X̄ to X̄+. Show by induction that column of Ai in the row of X̄ is set to ai.

– i = 0: nothing to show.

– i− 1→ i: Ai is added to X̄+ due to a FD Ȳ → Ai where Ȳ ⊆ X̄ ∪ {A1, . . . , Ai−1}.
Furthermore, Y Ai ⊆ X̄ ′ for some X̄ ′ ∈ ρ (generated by step (1)) and the rows of X̄
and X̄ ′ coincide for Ȳ (only as). Then, the chase copies the ai from the row of X̄ ′ to
the row of X̄.

386

7.4 Join Dependencies and Multivalued Dependencies

Example 7.26

Consider the following Non-1NF table:

cco

Country Continents Organizations

D Europe NATO, EU, UN

TR Europe, Asia NATO, UN

R Europe, Asia UN

USA N.America UN

... expand the groups as before to 1NF ...

387

Join Dependencies and Multivalued Dependencies (Cont’d)

Example 7.26 (Continued)
the expanded table:

cco

Country Continent Organization

D Europe NATO

D Europe EU

D Europe UN

TR Europe NATO

TR Europe UN

TR Asia NATO

TR Asia UN

R Europe UN

R Asia UN

USA N.America UN

There is some redundancy ...
called multivalued dependencies
cco satisfies

• country→→ continent and

• country→→ organization.

388

Join Dependencies and Multivalued Dependencies (Cont’d)

Example 7.26 (Continued)

cco

Country Continent Organization

D Europe NATO

D Europe EU

D Europe UN

TR Europe NATO

TR Europe UN

TR Asia NATO

TR Asia UN

R Europe UN

R Asia UN

USA N.America UN

Actually, cco is a join of

encompasses

Country Cont.

D Europe

TR Europe

TR Asia

R Europe

R Asia

USA N.America

and

isMember

Country Org.

D EU

D NATO

D UN

TR UN

TR NATO

R UN

USA UN

cco = π[Country,Cont](cco) ⊲⊳ π[Country,Org](cco)

= encompasses ⊲⊳ isMember

✷

389

JOIN DEPENDENCIES (CONT’D)

Consider a set V̄ of attributes, a relation r ∈ Rel(V̄), and a decomposition ρ = {X̄1, . . . , X̄n}
of V̄ .

r satisfies the join dependency (JD) ⊲⊳ [X̄1, . . . , X̄n] if and only if

r = ⊲⊳ni=1 π[X̄i](r) .

In case that n = 2, the JD is also called a multivalued dependency (MVD), written as

X̄1 ∩ X̄2 →→ X̄1 \ X̄2, or, symmetrically X̄1 ∩ X̄2 →→ X̄2 \ X̄1 .

Note: X̄1 = (X̄1 ∩ X̄2) ∪ (X̄1 \ X̄2), and X̄2 = (X̄1 ∩ X̄2) ∪ (X̄2 \ X̄1).

390

7.4.1 4. Normal Form (4NF)

Goal: mutually independent facts should not be represented in a single relation.

Consider a relation schema R = (V̄ ,D) where D is a set of MVDs and FDs. Let D+ the
closure of D.

• for the closure D+ for MVDs see literature.

• FDs are special cases of MVDs.

• MVDs satisfy the following complement property:
If X →→ Y ∈ D+, then also X →→ (V \ (X ∪ Y)) ∈ D+.

• trivial MVDs are of the form X̄ →→ Ȳ for Ȳ ⊆ X̄, and X̄ →→ V \ X̄.

Definition 7.12
A relation schema R = (V̄ ,D) is in 4NF if and only if for every non-trivial X̄ →→ Y ∈ D+, X̄
contains a key. ✷

Example 7.27
Consider again Example 7.26. It is not in 4NF.
Decomposition is lossless and dependency-preserving. ✷

391

Exercise 7.2
Experiment with join dependencies using the following ER diagram that describes restaurants
that offer multiple choices of 2-course meals and accessoires (note that these attributes are
multivalued):

Restaurant

Name City

aperitifs

starters

1st courses 2nd courses

desserts

drinks

392

7.5 Summary

• Analogous considerations for join dependencies lead to 5NF.

• 1NF⇐ (2NF)⇐ 3NF⇐ BCNF⇐ 4NF (⇐ 5NF)
(other directions do not hold).

• 2NF is only of historical interest.

• In all cases there exists a lossless decomposition in 4NF (5NF).

• In the general case, all decompositions further than 3NF are not dependency-preserving.

393

7.6 Inclusion Dependencies

Consider sets X̄1 and X̄2 of attributes, and relations r1 ∈ Rel(X̄1) and r2 ∈ Rel(X̄2) with
Ȳ ⊆ X̄1 ∩ X̄2.

r1, r2 satisfy the inclusion dependency (ID) R1[Ȳ] ⊆ R2[Ȳ] if and only if

π[Ȳ](r1) ⊆ π[Ȳ](r2) .

394

7.7 Schema Design

1. Generate an ER-model. This means a thorough discussion of the data engineers and the
specialists of the application area.

2. Note that keys, functional dependencies, multivalued dependencies, and inclusion
dependencies belong to this stage!

Candidates can be found by data analysis, but the semantic aspect must be confirmed by
the domain specialists.

3. Transformation to a relational schema

4. Normalization to 3NF

5. Manual decomposition to 4NF

6. enhanced ER design.

395

IMPORTANCE OF A CORRECT ER-DESIGN

Example 7.28
Employees are associated (uniquely) with departments. For every employee, the id, name,
and the parking area must be stored. For each department, the name, the number, and the
budget of the department are stored, together with the hiring date of each of the employees.

(A) An ER model:

Employee

EmpNo

EName

PArea

Dept

DeptNo

DName

Budget

worksIn< 1, 1 > < 1, ∗ >

since

(B) Dependency Analysis

The FD DeptNo→ PArea is detected.

• Inter-relational FDs are not allowed.

• the universal relation of a database (a broad join of all its relations along all FK-PK
references) allows data analysis tools to detect such inter-relational FDs.

⇒ Re-Design ✷

396

Chapter 8
Relational Database Languages:
Relational Calculus
Overview
• the relational calculus is a specialization of first-order logic, tailored to relational

databases.

• straightforward: the only structuring means of relational databases are relations – each
relation can be seen as an interpretation of a predicate.

• there exists a declarative semantics.

Relational Calculus vs FOL

• FOL allows for reasoning, based on a model theory,

• the relational calculus does not require model theory,

• it is only concerned with validity of a formula in a given, fixed model (the database state).

397

8.1 Bridge Section: Motivation and Preparation for the
“Deductive Databases” Lecture

• The lecture “Database Theory” or “Deductive Databases” (MSc or advanced BSc) builds
upon the “Introduction to Databases” lecture and requires knowledge about First-Order
Logic (e.g., courses “Formal Systems” or “Artificial Intelligence”)

• for a diagram with the database concepts, notions and buzzwords related to the DBIS
lectures, see
https://www.dbis.informatik.uni-goettingen.de/Teaching/dbnotions.pdf

• This section summarizes that knowledge and motivates the main idea of the lecture.

• a database can be seen as a purely relational FOL structure

– predicate symbols of different arities,

– only 0-ary functions = constants

* in relational DB: these are the literals (numbers, strings, dates ...)

* in object-relational DB: also object identifiers

* in RDF: also URIs, which basically serve as object identifiers

398

Computer Science: Theoretical and Practical Aspects – illustrated with Deductive Databases
CS in Practice: Theoretical CS, maths, etc.:

Databases
Software Engineering,

Programming languages, ...

Formal Methods:
formalization of

commonsense reasoning

metalevel:
properties of the FMs

modeling,
symbolic reasoning,
deduction/calculi,
parsing, grammars,
semantics, ...

application-specific
formal methods:
• relational algebra
• normalization theory
• transaction theory

• polynomial
• equalities, complexity
→ optimization

SQL phil. & math. logic in general

• first-order logic • undecidable

• relational calculus • polynomial
• Datalog:

queries+rules
deductive DB∗

• polynomial,
• up to exponential

∗ I did not place deductive DB to completely practical CS

399

Relational Algebra, First-Order Logic, Relational Calculus, Datalog

Relational Model

named tables
n named columns (n ≥ 1)

First-Order Logic

n-ary predicates and functions
p(...)/n, f(...)/n (n ≥ 0)
S |= ψ S satisfies ψ
ϕ |= ψ ϕ entails ψ

Relational Algebra

n-tuples with named columns

π, σ, ρ, ⊲⊳, \,∪,∩

≡

(slotted) Relational Calculus

slotted n-records (n ≥ 1)
constants (data values)
dot-syntax (e.g. country.name)
∧,∨,¬, ∃,∀ over tuples
S |= ψ

≡

(positional) Relational Calculus

positional n-tuples/
n-ary predicates (n ≥ 1)

constants (data values)
∧,∨,¬, ∃, ∀ over values
S |= ψ , (S, β) |= ψ

SQL

tables with named columns

π, σ, ρ, ⊲⊳, \,∪,∩, ∃

Datalog

positional n-ary predicates (n ≥ 1)
Herbrand-style
queries ?− body
logical rules head← body

allows recursion/transitive closure

((

π, σ, ρ, ⊲⊳, \,∪,∩ tuple vars ∃,¬∃ ∧,→, ∃,¬∃ free vars

400

Declarative Querying & Algebraic Semantics

Query: all pairs country (name) and organization (name) such that the country is a member of
the organization.

SELECT c.name, o.name
FROM country c, organization o
WHERE (c.code, o.abbreviation) IN (SELECT country, organization

FROM ismember)

π[cname, oname]

⊲⊳

×

ρ[name→ cname,
code→ country]

country

ρ[name→ oname,
abbreviation→ organization]

organization

ismember

170
250

42500
10000

4.25 · 109 tests, 10000 results

• declarative query in SQL and as algebra tree (bottom-up inductive semantics)

• actual naive evaluation would be inefficient.

401

Declarative Querying & Algebraic Semantics

• algebraically equivalent rewriting of the tree,

• efficient evaluation using internal algorithms (more efficient, but correct wrt. the
set-oriented algebraic semantics of the operators) and indexes (physical layer):

• start with ismember, search ismember.country→country.code primary key index,
then join results.organization→organization.abbreviation primary key index

π[cname, oname]

⊲⊳

⊲⊳

ρ[name→ cname,
code→ country]

country

ismember

ρ[name→ oname, abbreviation→ organization]

organization

•❛❛✦✦❵❵✥✥
❵❵✥✥

•✦✦❛❛✥✥❵❵
✥✥❵❵

10000 results

10000

10000 results

402

RELATIONAL CALCULUS: LOGIC-BASED DECLARATIVE QUERYING

• positional matching of predicate patterns:

q(pop) ≡ ∃ cc, cap, capprov, area, country(“Germany”, cc, cap, capprov, pop, area).

q(cn, on) ≡ ∃ cc, cap, capprov, cpop, ca, abbrev, hq, hqc, hqprov, est, type :
country(cn, cc, cap, capprov, cpop, ca) ∧
organization(abbrev, on, hq, hqc, hqprov, est) ∧
ismember(cc, abbrev, type)

• purely declarative

• “conjunctive query”, translatable to relational algebra SPJR-query
(selection-projection-renaming-join)

• free variables (here, cn, on) create the result tuples,

answer = { {cn/“Germany”, on/“Europ.Union”}, {cn/“Germany”, on/“North.Atl.Tr.Org”}, . . . ,
{cn/“France”, on/“Europ.Union”}, {cn/“France”, on/“North.Atl.Tr.Org”}, . . . ,
...

}

403

Logic-Based Declarative Querying: Negation – not exists

Query: all (names of) countries that are not located in Europe:

SELECT c.name
FROM country c
WHERE NOT EXISTS (SELECT *

FROM encompasses
WHERE e.continent='Europe'
AND e.country = c.code)

q(cn) ≡ ∃ cc, cap, capprov, cpop, ca
country(cn, cc, cap, capprov, cpop, ca) ∧ ¬∃perc : encompasses(cc, “Europe”, p)

π[name]

⊲⊳

country minus

ρ[code→ country]

π[code]

country

π[country]

σ[continent = “Europe”]

encompasses

π[name]

antijoin

ρ[code→ country]

π[code]

country

π[country]

σ[continent = “Europe”]

encompasses

¬

antijoin:
successful
if not found

404

Closed-World-Assumption: Negation – not exists

• In databases, all tuples that are not there are implicit negative knowledge

• query from previous slide:
“all countries such that there is no tuple in the the database that states that the country
would be located in Europe”

⇒ “Negation by default”

⇒ consistent with the assumption that the database contains complete knowledge.

• as a first-order/predicate logic interpretation, for all answer bindings β (that bind the
variable cn),

(S, β) |= ∃ cc, cap, capprov, cpop, ca :

country(cn, cc, cap, capprov, cpop, ca) ∧ ¬∃perc : encompasses(cc, “Europe”, p)

• let ϕ the conjunction of all facts (=atoms) that are true in the database,

ϕ 6|= ∃ cc, cap, capprov, cpop, ca :

country(cn, cc, cap, capprov, cpop, ca) ∧ ¬∃perc : encompasses(cc, “Europe”, p)

since ¬∃perc : encompasses(cc, “Europe”, p) cannot logically be concluded
(“Open World”)

405

Negation: Safety of Variables

Consider just a binary isMember relationship for mondial without the membership type:

q(c) ≡ ¬ismember(c, “EU”)

• what are the answers?

• “USA”, “AUS”, . . . , but also “Moscow”, “Berlin”, 356000, 3.1415 etc., infinitely many, for
which the tuple is not true.

⇒ depends on the considered domain.

⇒ every query must be safe, i.e., the variables must have a positive occurrence that restricts
the possible values:

q′(c) ≡ ∃ name, c, cap, capprov, cpop, ca :

country(name, c, cap, capprov, cpop, ca) ∧ ¬ismember(c, “EU”)

406

Rule-Based Languages

head← body

• SQL: body = FROM ... WHERE ...,

head = SELECT ..., DELETE

similar: MODIFY <relname> WHERE ..., INSERT INTO ... (SFW ...)

• SQL views: derive new tuple(s) when body is satisfied

• An SQL view must not be recursive (i.e., contain itself in the “body” part)

Datalog: Queries and Logical Rules

?- country(N, _C, _Cap, _CapProv, _Pop, _Area), not isMember(_C, 'EU', _).

Two rules that together compute for each river, to which sea its water finally flows:

:- include(mondial).
tc(N,S) :- river(N,R,L,S,_,_,_,_,_,_,_,_,_), not (S = null).
tc(N,S) :- river(N,R,L,S2,_,_,_,_,_,_,_,_,_), not (R = null), tc(R,S).

[Filename: Datalog/tcRivers.P]

• Declarative “fixpoint” semantics: apply rules bottom-up as long as possible.

407

The Universal Quantifier in Query Languages

• SQL: EXISTS/NOT EXISTS has been integrated into the SQL syntax
(implemented via Join, Minus, Anti-Join)

• The universal quantifier must be rewritten as NOT EXISTS ... WHERE NOT EXISTS ...

• the relational calculus obviously allows it:

q(cn) ≡ ∃ cc, cap, capprov, pop, area :
(country(cn, cc, cap, capprov, pop, area) ∧
∀n, prov, cpoplat, long, el : (city(n, cc, prov, cpop, lat, long, el)→ cpop > 1000000))

• Datalog: universal quantifier must be encoded into rules

• XQuery (query language for XML data) has it:

//country[.//city/population
and
(every $cp in .//city/population satisfies $cp > 1000000)]/name

• note: null values and missing values (in XML) have been ignored here.

408

TYPES OF KNOWLEDGE

• (positive) atomic facts:

– DB: tuples in an n-column table of the database

– FOL: S = (I,D): for an n-ary predicate, I(p) ⊆ Dn

– atoms in a formula

⇒ conjunctions/sets of atomic facts

• negative atomic facts/knowledge:

– rather “implicit”: the n-tuples “not there” in a DB or not in I(p).

⇒ queries under CWA and S |= ϕ.

• atomic positive conclusions: INSERT into DB, Views

• atomic negative conclusions: DELETE, or inconsistencies

409

Disjunctive Knowledge

• “p(x) or q(y) does hold”

• cannot be represented by a database or a single FOL interpretation, only by formulas

⇒ conclusions in “knowledge base”

Disjunctive Knowledge in Human Reasoning: Sudoku

3 ∨ 6

6 here

3!

9

8

7

6

5

4

3

2

1

A B C D E F G H I

6 ∨ 7 B8:6 ∨ H8:6
(and “6” nowhere

else in row 8)7!

6 here

⇒ B8:3 ∨ H8:7

410

Existential Knowledge

• “every country has some city that is its capital (and which is located in this country)”
∀x:country(x)→ ∃y: (city(y) ∧ hasCapital(x, y) ∧ located_in(y, x))

– SQL: country.capital not null and a foreign-key-to-primary-key reference:
country.(code, capital, capprov) references city.(country, name, province)
only as a passive constraint, cannot conclude and insert the city (name is not known)

– ER-Diagram: minCardinality for capital, but not that isCapital ⊆ locatedIn

– OWL/Description Logic: Country ⊑ ∃ hasCapital.City and isCapitalOf ⊑ locatedIn

• “everything which is a parent has some child (which is a person)”
ER Diagram: Parent is a subclass of Person, minCardinality of hasChild is 1
OWL/Description Logic: Parent ≡ ∃hasChild.Person
⇐: SQL: view, FOL: conclude an atom

⇒: SQL: not possible
FOL, e.g. tableau calculus use a skolem function and derive

hasChild(alice, fchild(alice)) and Person(fchild(alice))

• “every person has two parents which are persons”

– would create/insert infinitely many new objects→ needs a blocking strategy

– in general, created objects may be equal or not (tableau calculus: → branching)

411

8.2 First-Order Logic

The relational calculus is a specialization of first-order logic.

8.2.1 Syntax

• each first-order language contains the following distinguished symbols:

– “(” and “)”, logical symbols ¬, ∧, ∨,→, quantifiers ∀, ∃,
– an infinite set of variables X,Y , X1, X2,

• An individual first-order language is then given by its signature Σ. Σ contains function
symbols and predicate symbols, each of them with a given arity.

412

Aside/Preview: First-Order Modeling Styles

• the choice between predicate and function symbols and different arities allows multiple
ways of modeling (see Slide 435).

For databases:

• the relation names are the predicate symbols (with arity),
e.g. continent/2, encompasses/3, etc.

• there are only 0-ary function symbols, i.e., constants;
in a relational database these are only the literal values (numbers and strings).

• thus, the database schema R is the signature.

413

Syntax (Cont’d)

Terms

The set of terms over Σ, TermΣ, is defined inductively as

• each variable is a term,

• for every function symbol f ∈ Σ with arity n and terms t1, . . . , tn, also f(t1, . . . , tn) is a
term.

0-ary function symbols: c, 1,2,3,4, “Berlin”,. . .

Example: for plus/2, the following are terms: plus(3, 4), plus(plus(1, 2), 4), plus(X, 2).

• ground terms are terms without variables.

For databases:

• since there are no function symbols,

• the only terms are the constants and variables
e.g., 1, 2, “D”, “Germany”, X, Y, etc.

414

Syntax (Cont’d): Formulas

Formulas are built inductively (using the above-mentioned special symbols) as follows:

Atomic Formulas

(1) For a predicate symbol (i.e., a relation name) R of arity k, and terms t1, . . . , tk,
R(t1, . . . , tk) is a formula.

(2) (for databases only, as special predicates)
A selection condition is an expression of the form t1 θ t2 where t1, t2 are terms, and θ is
a comparison operator in {=, 6=,≤,<,≥,>}.
Every selection condition is a formula.

(both are also called positive literals)

For databases:

• the atomic formulas are the predicates built over relation names and these constants,
e.g.,
continent(“Asia”,4.5E7), encompasses(“R”,“Asia”,X), country(N,CC,Cap,Prov,Pop,A).

• comparison predicates (i.e., the “selection conditions”) are atomic formulas, e.g.,
X = “Asia”, Y > 10.000.000 etc.

415

Syntax (Cont’d)

Compound Formulas

(3) For a formula F , also ¬F is a formula. If F is an atom, ¬F is called a negative literal.

(4) For a variable X and a formula F , ∀X : F and ∃X : F are formulas. F is called the scope
of ∃ or ∀, respectively.

(5) For formulas F and G , the conjunction F ∧G and the disjunction F ∨G are formulas.

For formulas F and G, where G (regarded as a string) is contained in F , G is a subformula
of F .

The usual priority rules apply (allowing to omit some parentheses).

• instead of F ∨ ¬G, the implication syntax F ← G or G→ F can be used, and

• (F → G) ∧ (F ← G) is denoted by the equivalence F ↔ G.

416

Syntax (Cont’d)

Bound and Free Variables

An occurrence of a variable X in a formula is

• bound (by a quantifier) if the occurrence is in a formula A inside ∃X : A or ∀X : A (i.e., in
the scope of an appropriate quantifier).

• free otherwise, i.e.,if it is not bound by any quantifier.

Formulas without free variables are called closed.

Example:

• continent(“Asia”, X): X is free.

• continent(“Asia”, X) ∧X > 10.000.000: X is free.

• ∃X : (continent(“Asia”, X) ∧X > 10.000.000): X is bound.
The formula is closed.

• ∃X : (continent(X,Y)): X is bound, Y is free.

• ∀Y : (∃X : (continent(X,Y))): X and Y are bound.
The formula is closed.

417

Outlook:

• closed formulas either hold in a database state, or they do not hold.

• free variables represent answers to queries:
?- continent(“Asia”, X) means “for which value x does continent(“Asia”, x) hold?”
Answer: for x = 4.5E7.

• ∃Y : (continent(X,Y)): means
“for which values x is there an y such that continent(x, y) holds? – we are not interested
in the value of y”
The answer are all names of continents, i.e., that x can be “Asia”, “Europe”, or . . .

... so we have to evaluate formulas (“semantics”).

418

8.2.2 Semantics

The semantics of first-order logic is given by first-order structures over the signature:

First-Order Structure

A first-order structure S = (I,D) over a signature Σ consists of a nonempty set D (domain;
often also denoted by U (universe)) and an interpretation I of the signature symbols over D
which maps

• every constant c to an element I(c) ∈ D,

• every n-ary function symbol f to an n-ary function I(f) : Dn → D
(note that for relational databases, there are no function symbols with arity > 0)

• every n-ary predicate symbol p to an n-ary relation I(p) ⊆ Dn.

General:

• constants are interpreted by elements of the domain

• predicate symbols and function symbols are not mapped to domain objects, but to rela-
tions/functions over the domain.
⇒ First-order logic cannot express relations/relationships between predicates/functions.

419

Aside/Preview: First-Order-based Semantic Styles

• There are different frameworks that are based on first-order logic that specialize/simplify
FOL (see Slide 435).

• Higher-Order logics allow to make statements about predicates and/or functions by
higher-order predicates.

420

First-Order Structures: An Example

Example 8.1 (First-Order Structure)
Signature: constant symbols: zero, one, two, three, four, five

predicate symbols: green/1, red/1, sees/2

function symbols: to_right/1, plus/2

Structure S:

1

23

4

5 0

Domain D = {0, 1, 2, 3, 4, 5}
Interpretation of the signature:
I(zero) = 0, I(one) = 1, . . . , I(five) = 5

I(green) = {(2), (5)}, I(red) = {(0), (1), (3), (4)}
I(sees) = {(0, 3), (1, 4), (2, 5), (3, 0), (4, 1), (5, 2)}
I(to_right) = { (0) 7→ (1), (1) 7→ (2), (2) 7→ (3),

(3) 7→ (4), (4) 7→ (5), (5) 7→ (0)}
I(plus) = {(n,m) 7→ (n+m) mod 6 | n,m ∈ D}

Terms: one, to_right(four), to_right(to_right(X)), to_right(to_right(to_right(four))),
plus(X, to_right(zero)), to_right(plus(to_right(four), five))

Atomic Formulas: green(one), red(to_right(to_right(to_right(four)))), sees(X,Y),

sees(X, to_right(Z)), sees(to_right(to_right(four)), to_right(one)),
plus(to_right(to_right(four)), to_right(one)) = to_right(three) ✷

421

SUMMARY: NOTIONS FOR DATABASES

• a set R of relational schemata; logically spoken, R is the signature,

• a database state is a structure S over R

• D contains all domains of attributes of the relation schemata,

• for every single relation schema R = (X̄) where X̄ = {A1, . . . , Ak}, we write
R[A1, . . . , Ak]. k is the arity of the relation name R.

• relation names are the predicate symbols. They are interpreted by relations, e.g.,
I(encompasses)

(which we also write as S(encompasses)).

For Databases:

• no function symbols with arity > 0

• constants are interpreted “by themselves”:
I(4) = 4, I(“Asia”) = “Asia”

• care for domains of attributes.

422

Evaluation of Terms and Formulas

Terms and formulas must be evaluated under a given interpretation – i.e., wrt. a given
database state S.

• Terms can contain variables.

• variables are not interpreted by S.

A variable assignment over a universe D is a mapping

β : V ariables→ D .

For a variable assignment β, a variable X, and d ∈ D, the modified variable assignment βd
X

is identical with β except that it assigns d to the variable X:

βd
X =





Y 7→ β(Y) for Y 6= X ,

X 7→ d otherwise.

Example 8.2
For variables X,Y, Z, β = {X 7→ 1, Y 7→ “Asia”, Z 7→ 3.14} is a variable assignment.

β3
X = {X 7→ 3, Y 7→ “Asia”, Z 7→ 3.14}. ✷

423

Evaluation of Terms

Terms and formulas are interpreted

• wrt. a given structure S = (I,D), and

• wrt. a given variable assignment β.

Every structure S together with a variable assignment β induces an evaluation S of terms and
predicates:

• Terms are mapped to elements of the universe: S : TermΣ × β → D

• (Closed) formulas are true or false in a structure: S : FmlΣ × β → {true, false}

For Databases:

• Σ is a purely relational signature,

• S is a database state for Σ,

• no function symbols with arity > 0, no nontrivial terms,

• constants are interpreted “by themselves”.

424

Evaluation of Terms

S(x, β) := β(x) for a variable x ,

S(c, β) := I(c) for any constant c .

S(f(t1, . . . , tn), β) := (I(f))(S(t1, β), . . . ,S(tn, β))
for a function symbol f ∈ Σ with arity n and terms t1, . . . , tn.

Example 8.3 (Evaluation of Terms)
Consider again Example 8.1.

• For variable-free terms: β = ∅.

• S(one, ∅) = I(one) = 1

• S(to_right(four), ∅) = I(to_right(S(four, ∅)) = I(to_right(4)) = 5

• S(to_right(to_right(to_right(four))), ∅) = I(to_right(S(to_right(to_right(four)), ∅))) =
I(to_right(I(to_right(S(to_right(four), ∅))))) =
I(to_right(I(to_right(I(to_right(S(four)), ∅))))) =
I(to_right(I(to_right(I(to_right(4), ∅))))) =
I(to_right(I(to_right(5)))) = I(to_right(0)) = 1 ✷

425

Example 8.3 (Continued)
• Let β = {X 7→ 3}.
S(to_right(to_right(X)), β) = I(to_right(S(to_right(X), β))) =

I(to_right(I(to_right(S(X, β))))) = I(to_right(I(to_right(β(X))))) =

I(to_right(I(to_right(3)))) = I(to_right(4)) = 5

• Let β = {X 7→ 3}.
S(plus(X, to_right(zero)), ∅) = I(plus(S(X, β),S(to_right(zero), β))) =
I(plus(β(X), I(to_right(S(zero, β))))) = I(plus(3, I(to_right(I(zero))))) =
I(plus(3, I(to_right(0)))) = I(plus(3, 1)) = 4 ✷

426

EVALUATION OF FORMULAS

Formulas can either hold, or not hold in a database state.

Truth Value

Let F a formula, S an interpretation, and β a variable assignment of the free variables in F
(denoted by free(F)).

Then we write S |=β F if “F is true in S wrt. β”.

Formally, |= is defined inductively.

427

TRUTH VALUES OF FORMULAS: INDUCTIVE DEFINITION

Motivation: variable-free atoms

For an atom R(a1, . . . , ak), where ai, 1 ≤ i ≤ k are constants,

R(a1, . . . , ak) is true in S if and only if (I(a1), . . . , I(ak)) ∈ S(R).
Otherwise, R(a1, . . . , ak) is false in S.

Base Case: Atomic Formulas

The truth value of an atom R(t1, . . . , tk), where ti, 1 ≤ i ≤ k are terms, is given as

S |=β R(t1, . . . , tk) if and only if (S(t1, β), . . . ,S(tk, β)) ∈ S(R) .

For Databases:

• the ti can only be constants or variables.

428

TRUTH VALUES OF FORMULAS: INDUCTIVE DEFINITION

• t1 θ t2 with θ a comparison operator in {=,6=,≤,<,≥,>}:
S |=β t1 θ t2 if and only if S(t1, β) θ S(t2, β) holds.

• S |=β ¬G if and only if S 6|=β G.

• S |=β G ∧H if and only if S |=β G and S |=β H.

• S |=β G ∨H if and only if S |=β G or S |=β H.

• (Derived; cf. next slide) S |=β F → G if and only if S |=β ¬F or S |=β G.

• S |=β ∀XG if and only if for all d ∈ D, S |=βd
X
G.

• S |=β ∃XG if and only if for some d ∈ D, S |=βd
X
G.

429

Derived Boolean Operators

There are some minimal sets (e.g. {¬,∧, ∃}) of boolean operators from which the others can
be derived:

• The implication syntax F → G is a shortcut for ¬F ∨G (cf. Slide 416):
S |=β F → G if and only if S |=β ¬F or S |=β G.
“whenever F holds, also G holds” – this is called material implication instead of “causal
implication”.
Note: if F implies G causally in a scenario, then all (possible) states satisfy F → G.

• note that ∧ and ∨ can also be expressed by each other, together with ¬:
F ∧G is equivalent to ¬(¬F ∨ ¬G), and F ∨G is equivalent to ¬(¬F ∧ ¬G).

• The quantifiers ∃ and ∀ are in the same way “dual” to each other:
∃x : F is equivalent to ¬∀x : (¬F), and ∀x : F is equivalent to ¬∃x : (¬F).

• Proofs: exercise.
Show e.g. by the definitions that whenever S |=β ∃x : F then S |=β ¬∀x : (¬F).

430

Example 8.4 (Evaluation of Atomic Formulas)
Consider again Example 8.1.

• For variable-free formulas, let β = ∅
• S |=∅ green(one) ⇔ S(one) ∈ I(green) ⇔ (1) ∈ I(green) – which is not the case.

Thus, S 6|=∅ green(one).

• S |=∅ red(to_right(to_right(to_right(three)))) ⇔
(S(to_right(to_right(to_right(three))), ∅)) ∈ I(red) ⇔ (0) ∈ I(red)

which is the case. Thus, S |=∅ red(to_right(to_right(to_right(three)))).

• Let β = {X 7→ 3, Y 7→ 5}.
S |=β sees(X,Y) ⇔ (S(X, β),S(Y, β)) ∈ I(sees) ⇔ (3, 5) ∈ I(sees)
which is not the case.

• Again, β = {X 7→ 3, Y 7→ 5}.
S |=β sees(X, to_right(Y)) ⇔ (S(X, β),S(to_right(Y), β)) ∈ I(sees) ⇔ (3, 0) ∈ I(sees)
which is the case.

• S |=β plus(to_right(to_right(four)), to_right(one)) = to_right(three) ⇔
S(plus(to_right(to_right(four)), to_right(one)), ∅) = S(to_right(three), ∅) ⇔ 2 = 4

which is not the case. ✷

431

Example 8.5 (Evaluation of Compound Formulas)
Consider again Example 8.1.

• S |=∅ ∃X : red(X) ⇔
there is a d ∈ D such that S |=∅d

X
red(X) ⇔ there is a d ∈ D s.t. S |={X 7→d} red(X)

Since we have shown above that S |=∅ red(6), this is the case.

• S |=∅ ∀X : green(X) ⇔
for all d ∈ D, S |=∅d

X
green(X) ⇔ for all d ∈ D, S |={X 7→d} green(X)

Since we have shown above that S 6|=∅ green(1) this is not the case.

• S |=∅ ∀X : (green(X) ∨ red(X)) ⇔ for all d ∈ D, S |={X 7→d} (green(X) ∨ red(X)).
One has now to check whether S |={X 7→d} (green(X) ∨ red(X)) for all d ∈ domain.
We do it for d = 3:
S |={X 7→3} (green(X) ∨ red(X)) ⇔
S |={X 7→3} green(X) or S |={X 7→3} red(X) ⇔
(S(X, {X 7→ 3})) ∈ I(green) or (S(X, {X 7→ 3})) ∈ I(red) ⇔
(3) ∈ I(green) or (3) ∈ I(red)

which is the case since (3) ∈ I(red).
• Similarly, S 6|=∅ ∀X : (green(X) ∧ red(X)) ✷

432

SOME NOTIONS

Consider a formula F with some free variables.

• S is a model for F under β if S |=β F .

• (for closed formulas: S is a model for F if S |= F)

• F is satisfiable if F has some model (e.g., F = ∃x, y : (p(x) ∧ q(x, y)) is satisfiable).

• F is unsatifisfiable if F has no model (e.g., F = ∃x : (p(x) ∧ ¬p(x) is unsatisfiable)

• F is valid (german: “allgemeingültig”) if F holds in every structure:
(e.g., F = (∀x : (p(x)→ q(x)) ∧ ∀y : (q(y)→ r(y)))→ ∀z : (p(z)→ r(z))) is valid)

Application: verification of a system has the goal to show that ϕ→ ψ is valid where ϕ is a
formula that contains the specification (usually a large conjunction) and ϕ is a conjunction
of guaranteed properties.

• two FOL formulas F and G are equivalent, F ≡ G if every model of F is also a model of G
and vice versa.

• a FOL formula F entails a FOL formula G, F |= G if every model of F is also a model of G.
(note the overloading of |= for S |= F and F |= G).

433

Example 8.6
For the following pairs F and G of formulas, check whether one implies the other (if not, give a
counterexample), and whether they are equivalent:

1. F = (∀x : p(x)) ∨ (∀x : q(x)), G = ∀v : (p(v) ∨ q(v)).

2. F = ∀x : ((∃y : p(y))→ q(x)), G = ∀v, ∀w : p(v)→ q(w).

3. F = ∀x : ∃y : p(x, y), G = ∃v : ∀w : p(v, w). ✷

434

8.3 FOL-based Modeling Styles and Frameworks

• Full FOL allows for several restrictions, shortcuts and extensions

• variants developed depending on the application and the intended reasoning
mechanisms.

Recall

• note: the FOL signature is disjoint from the domain D, e.g. germany is a constant symbol,
mapped to the element germany ∈ D.

• each FOL signature consists of

– predicate symbols

* 0-ary predicates: “boolean predicates”, just being interpreted as true/false
(formally I(p0) ⊆ D0, where D0 = 1 means true, while ∅ means false).

* n-ary predicates, interpreted as I(p) ⊆ Dn.

– function symbols

* 0-ary functions: constants, interpreted by elements of the domain.
(formally I(c) : D0 → D, e.g. for the constant germany: I(germany) : () 7→ germany;
S(germany) = I(germany()) = germany)

* n-ary functions, interpreted as I(f) : Dn → D.

435

8.3.1 FOL with (atomic) Datatypes

Common extension: FOL(D1, . . . , Dn) where D1, . . . , Dn are datatypes like strings, numbers,
dates.

• for these, the values are both 0-ary constant symbols and elements of the domain,

• appropriate predicates and functions are contained in the signature and as built-in
predicates and functions (i.e., are not explicitly mentioned when giving an interpretation).

Example 8.1 revisited

Example 8.1 can be formulated in FOL(INT):

• integers 0, 1, 2, . . . ∈ Σ as constant symbols (instead of one, two, . . .).

• I(0) = 0, I(1) = 1, . . . is implicit.

• no interpretation of the constant symbols one, two, . . . required.

• function +/2 (i.e., binary function “+”) instead of plus/2, its interpretation comes implicitly
from integers.

• interpretation of user-defined predicates green, sees, to_right as before (over the domain
D ⊇ INT) .

436

8.3.2 Purely Relational Object-Oriented Modeling

• Closely related with the ER Model:

• the domain D contains instances/individuals/“resources” germany, berlin, . . . and
datatype literals.

• – Entity types = Classes: unary predicates
germany ∈ I(Country), berlin ∈ I(City), eu ∈ I(Organization).

– Attributes: binary predicates
(germany, “Germany”) ∈ I(name),
(berlin, “3472009”) ∈ I(population)

– Relationships: binary predicates
(germany, berlin) ∈ I(capital),
(germany, eu) ∈ I(isMember).

• closely related: RDF – Resource Description Framework as the data model underlying
the Semantic Web (cf. Slide 440).

• closely related: Specific family of logics called “Description Logic” as a decidable subset
of FOL (cf. Slide 441)

437

Examples

The following sets specify answers to sample queries:

• Names of all countries such that there is a city with more than 1,000,000 inhabitants in
the country:

{n | ∃x : Country(x) ∧ name(x, n) ∧
∃y, p : (City(y) ∧ inCountry(x, y) ∧ population(y, p) ∧ p > 1, 000, 000) }

• Names of all countries such that all its cities have more than 1,000,000 inhabitants:

{n | ∃x : Country(x) ∧ name(x, n) ∧
∀y : (City(y) ∧ inCountry(x, y)→ ∃p : (population(y, p) ∧ p > 1, 000, 000)) }

• Names of all countries such that the capital of the country has more than 1,000,000
inhabitants:

{n | ∃x : Country(x) ∧ name(x, n) ∧
∃y, p : (City(y) ∧ capital(x, y) ∧ population(y, p) ∧ p > 1, 000, 000) }

• Names of all countries such that the country is a member of the organization with
abbreviation “EU”:

{n | ∃x : Country(x) ∧ name(x, n) ∧
∃o : (Organization(o) ∧ abbrev(o, “EU”) ∧ isMember(x, o)) }

438

Problem

⇒ attributed relationships (like isMember with membertype) can only be modeled via
reification.

Example

(deInEU) ∈ I(Membership),
(deInEU, germany) ∈ I(ofCountry).
(deInEU, eu) ∈ I(inOrganization).
(deInEU, “full member”) ∈ I(memberType).

Names of all countries such that the country is a member of the organization with
abbreviation “EU”:

{n | ∃x : (Country(x) ∧ name(x, n) ∧
∃o,m, t : (Organization(o) ∧ abbrev(o, “EU”) ∧

∧Membership(m) ∧ ofCountry(m,x) ∧ inOrganization(m, o) ∧memberType(m, t))) }

439

RDF – RESOURCE DESCRIPTION FRAMEWORK

• most prominent Semantic Web data model.

• graph-based: objects and literals are nodes, properties are the edges.

• instance data represented by (subject predicate object) triples that can be seen as unary
(class membership) and binary (properties and relationships) predicates:

:germany a mon:Country. – Country(germany)

:germany mon:name “Germany” – name(germany, “Germany”)

:germany mon:population 83536115. – population(germany, 83536115)

:germany mon:capital :berlin. – capital(germany, berlin)

• optional: XML serialization

• domain: URIs and literals (using the XML namespace concept)

– URIs serve as constant symbols and (web-wide) object/resource identifiers,

– property and class names are also URIs.

440

DESCRIPTION LOGICS

• traditional framework, became popular as a base for the Semantic Web,

• subset of FOL where the formulas are restricted,

⇒ modular family of logics, most of which are decidable.

• special syntax that can be translated into the 2-variable fragment of FOL (decidable).

• focus of DL is on the definition of concepts:

CoastCity ≡ City ⊓ ∃locatedAt.Sea .

FOL: ∀x : CoastCity(x)↔ City(x) ∧ ∃y : (locatedAt(x, y) ∧ Sea(y)).

441

8.3.3 FOL Object-Oriented Modeling with Functions

• S = (I,D) as follows:

• the domain D contains elements germany, berlin, . . . and datatype literals

• Predicates Country/1, City/1, Organization/1, ismember/2 etc. as before,

• functions capital/1, headq/1, population/1 for functional attributes and relationships:
(germany) 7→ berlin ∈ I(capital),
(eu) 7→ brussels ∈ I(headq),
(berlin) 7→ 3472009 ∈ I(population).

• some example formula that evaluates to true:

S |= ∃o, c : Organization(o) ∧ name(o) = “Europ.Union” ∧ isMember(c, o) ∧ headq(o) = capital(c)

(FOL with equality)

442

8.3.4 Relational Calculus (“Domain Relational Calculus”)

• The signature Σ is a relational database schema R = {R1, . . . , Rn}.
⇒ everything is modeled by predicates.

• the domain consists only of datatype literals (strings, numbers, dates, . . .).
• constant symbols are the literals themselves, with e.g. I(3) = 3 and I(“Berlin”) = “Berlin” .

⇒ a relational database state S = (I, (Strings + Numbers + Dates)) over R is an
interpretation of R. For every relation name Ri ∈ R, I(Ri) is a finite set of tuples:
(“Germany”, “D”, 356910, 83536115, “Berlin”, “Berlin”) ∈ I(country),
(“D”, “Europe”, 100) ∈ I(encompasses).

• I (and by this, also S) can be described as a finite set of ground atoms over predicate
symbols (= relation names): country(“Germany”, “D”, 356910, 83536115, “Berlin”, “Berlin”),
encompasses(“D”, “Europe”, 100).

• the purely value-based “modeling” without individuals/object identifiers/0-ary constant
symbols requires the use of primary/foreign keys.

• semantics and model theory as in traditional FOL;
quantifiers range over the literals – “Domain Relational Calculus”

• usage: theoretical framework for queries; mapped to nonrecursive Datalog with negation.
443

Examples

The following sets specify answers to sample queries:

• Names of all countries such that there is a city with more than 1,000,000 inhabitants in
the country:

{n | ∃cc, ca, cp, cap, capprov : Country(n, cc, ca, cp, cap, capprov) ∧
∃ctyn, ctyprov, ctypop, lat, long :
(City(ctyn, ctyprov, cc, ctypop, lat, long) ∧ ctypop > 1, 000, 000) }

• Names of all countries such that all its cities have more than 1,000,000 inhabitants:

{n | ∃cc, ca, cp, cap, capprov : Country(n, cc, ca, cp, cap, capprov) ∧
∀ctyn, ctyprov, ctypop, lat, long :
(City(ctyn, ctyprov, cc, ctypop, lat, long)→ ctypop > 1, 000, 000) }

• Names of all countries such that the country is a member of the organization with name
“Europ.Union”:

{n | ∃cc, ca, cp, cap, capprov : Country(n, cc, ca, cp, cap, capprov) ∧
∃abbr, hq, hqp, hqc, est, t :
(Organization(abbr, “Europ.Union”, hq, hqc, hqp, est) ∧ isMember(cc, abbr, t)) }

444

8.3.5 Relational Calculus (“Tuple Relational Calculus”)

• Logical connectives and quantifiers as in FOL,

• syntax and semantics different from FOL:
quantifiers range over tuples “Tuple Relational Calculus”

• Each relation name of R acts as unary predicate, holding tuples,

• attributes of tuples are accessed by path expressions variable.attrname,

Example

Names of all countries that have a city with more than 1,000,000 inhabitants:

{x.name | Country(x) ∧ ∃y : (City(y) ∧ y.country = x.code ∧ y.population > 1, 000, 000) }
• The Tuple Relational Calculus is a “parent” of SQL:

SELECT x.name
FROM country x, city y
WHERE y.country = x.code

AND y.population > 1000000

SELECT x.name
FROM country x
WHERE EXISTS (SELECT *

FROM city y
WHERE y.country = x.code
AND y.population > 1000000)

445

Examples

The following sets specify answers to sample queries:

• Names of all countries such that all its cities have more than 1,000,000 inhabitants:

{c.name | Country(c) ∧ ∀y : ((City(y) ∧ y.country = c.code)→ y.population > 1000000) }

• Names of all countries such that the capital of the country has more than 1,000,000
inhabitants:

{c.name | Country(c) ∧
∃y : (City(y) ∧ c.capital = y.name ∧ c.code = y.country ∧ c.capprov = y.province ∧

y.population > 1000000) }

• Names of all countries such that the country is a member of the organization with name
“Europ.Union”:

{c.name | Country(c) ∧ ∃o,m : (Organization(o) ∧ o.name = “Europ.Union” ∧
m.country = c.code ∧m.organization = o.abbrev) }

446

8.4 Formulas as Queries

Formulas can be seen as queries against a given database state:

• For a formula F with free variables X1, . . . , Xn, n ≥ 1, write F (X1, . . . , Xn).

• each formula F (X1, . . . , Xn) defines – dependent on a given interpretation S – an
answer relation S(F (X1, . . . , Xn)).

The answer set to F (X1, . . . , Xn) wrt. S is the set of tuples (a1, . . . , an), ai ∈ D,
1 ≤ i ≤ n, such that F is true in S when assigning each of the variables Xi to the
constant ai, 1 ≤ i ≤ n.

Formally:

S(F) = {{β(X1), . . . , β(Xn)} | S |=β F where β is a variable assignment of free(F)}.
Each β such that S |=β F is called an answer.

• for n = 0, the answer to F is true if S |=∅ F for the empty variable assignment ∅;
the answer to F is false if S 6|=∅ F for the empty variable assignment ∅.

447

Example

Consider the query F (X) = r(X) ∧ ∃Y : s(X,Y)

and the database state S:
r

1
2

s

1 a
1 b
3 a

The answer set is given by variable assignments β (for X), such that S |=β F :

S |=β F ⇔ S |=β r(X) and S |=β ∃Y : s(X,Y)

⇔ (β(X) ∈ r) and for a variable assignment β′ = βd
Y , that assigns Y with some d ∈ D

and which is identical with β up to Y , S |=β′ s(X,Y)

⇔ “ (β′(X), β′(Y)) ∈ s
⇔ “ (β(X), β′(Y)) ∈ s
⇔ (β(X) = 1 or β(X) = 2) and ((β(X) = 1 and β′(Y) ∈ {a, b}) or (β(X) = 3 and β′(Y) = a))

⇔ β(X) = 1 and β′(Y) ∈ {a, b}

So, the answer set is {{X/1}}.

448

Example 8.7
Consider the MONDIAL schema.

• Which cities (CName, Country) have at least 1,000,000 inhabitants?

F (CN,C) = ∃ Pr, Pop, L1, L2 : (city(CN,C, Pr, Pop, L1, L2) ∧ Pop ≥ 1000000)

The answer set is
{{CN/“Berlin”, C/“D”}, {CN/“Munich”, C/“D”}, {CN/“Hamburg”, C/“D”},
{CN/“Paris”, C/“F”}, {CN/“London”, C/“GB”}, {CN/“Birmingham”, C/“GB”}, . . .}.

• Which countries (CName) belong to Europe?

F (CName) = ∃ CCode, Cap, Capprov, Pop,A,ContName,ContArea, Perc :
(country(CName,CCode, Cap, Capprov, Pop,A) ∧
continent(ContName,ContArea) ∧
ContName = “Europe” ∧ encompasses(CCode, ContName, Perc))

✷

449

CONJUNCTIVE QUERIES

... the above ones are conjunctive queries:

• use only logical conjunction of positive literals
(i.e., no disjunction, universal quantification, negation)

• conjunctive queries play an important role in database optimization and research.

• in SQL: only a single simple SFW clause without subqueries.

450

Example 8.7 (Continued)
• Again, relational division ...

Which organizations have at least one member on each continent

F (Abbrev) = ∃O,HeadqN,HeadqC,HeadqP,Est :
(organization(O,Abbrev,HeadqN,HeadqC,HeadqP,Est)∧
∀Cont : ((∃ContArea : continent(Cont, ContArea))→

∃Country, Perc, Type : (encompasses(Country, Cont, Perc) ∧
isMember(Country, Abbrev, Type))))

• Negation
All pairs (country,organization) such that the country is a member in the organization, and
all its neighbors are not.

F (CCode,Org) = ∃CName,Cap, Capprov, Pop,Area, Type :
(country(CName,CCode, Cap, Capprov, Pop,Area)∧
isMember(CCode,Org, Type) ∧
∀CCode′ : (∃Length : sym_borders(CCode, CCode′, Length)→

¬∃Type′ : isMember(CCode′, Org, Type′)))

✷

451

8.5 Comparison of the Algebra and the Calculus

Algebra:

• The semantics is given by evaluating an algebraic expression (i.e., an operator tree)
“algebraic Semantics” (which is also some form of a declarative semantics).

• The algebraic semantics also induces a naive, but already polynomial bottom-up
evaluation algorithm based on the algebra tree.

Calculus:

• The semantics (= answer) of a query in the relational calculus is defined via the truth
value of a logical formula wrt. an interpretation
“logical Semantics” (which is some form of a declarative semantics)

• The logical semantics can be evaluated by a (FOL) Reasoner
FOL is undecidable.

⇒ translate “FOL” formulas over a simple database into the algebra ...

452

Example: Expressing Algebra Operations in the Calculus

Consider relation schemata R[A,B], S[B,C], and T [A].

(Note: [A,B] is the format of the relationships wrt. the relational model with named columns;
X and Y are variables used in the positional relational calculus)

Projection π[A](R): F (X) = ∃Y R(X,Y)

Selection σ[A = B](R): F (X,Y) = R(X,Y) ∧X = Y

Join R ⊲⊳ S: F (X,Y, Z) = R(X,Y) ∧ S(Y, Z)

Union R ∪ (T × {b}): F (X,Y) = R(X,Y) ∨ (T (X) ∧ Y = b)

Difference R− (T × {B : b}): F (X,Y) = R(X,Y) ∧ ¬(T (X) ∧ Y = b)

Division R÷ T : F (Y) = (∃X : R(X,Y)) ∧ ∀X : (T (X)→ R(X,Y)) or

F (Y) = (∃X : R(X,Y)) ∧ ¬∃X : (T (X) ∧ ¬R(X,Y))

453

SAFETY AND DOMAIN-INDEPENDENCE

• For some formulas, the actual answer set does not depend on the actual database state,
but on the domain of the interpretation.

• If the domain is infinite, the answer relations to some expressions of the calculus can be
infinite!

Example 8.8
Recall S = (I,D), usually D = Strings + Numbers + Dates (cf. Slide 443).

• Consider F (X) = ¬R(X) (“all a such that R(a) does not hold”)
where I(R) = {(1)}.
For every domain D, the answers to S(F) are all elements of the domain. For an infinite
domain, e.g., D = IN, the set of answers is infinite.

• Consider F (X,Z) = ∃Y (R(X,Y) ∨ S(Y, Z)),
where I(R) = {(1, 2)}, arbitrary S(S) (even empty).

How to determine Z? – return {X/1, Y/d} for every element d of the domain?

• Consider F (X) = ∀Y : R(X,Y)

where I(R) = {(1, 1), (1, 2)}. For D = {1, 2} the answer set is {{X/1}}, for any larger
domain, the answer set is empty. ✷

454

Example 8.9
Consider a FOL interpretation S = (I,D) of persons:

Signature Σ = {married/2}, married(X,Y): X is married with Y .

F (X) = ¬married(john,X) ∧ ¬(X = john).

What is the answer?

• Consider D = {john,mary}, I(married) = {(john,mary), (mary, john)}.
S(F) = ∅.
– there is no person (except John) who is not married with John

– all persons are married with John??? ✷

• Consider D = {john,mary, sue}, I(married) = {(john,mary), (mary, john)}.
S(F) = {{X/sue}}.
The answer depends not only on the database, but on the domain (that is a purely logical
notion)

Obviously, it is meant “All persons in the database who are not married with john”.

455

Active Domain

Requirement: the answer to a query depends only on

• constants given in the query

• constants in the database

Definition 8.1
Given a formula F of the relational calculus and a database state S = (I,D), ADOM(F)

contains

• all constants in F ,

• and all constants in I(R) where R is a relation name that occurs in F .

ADOM(F ∪ I) is called the active domain domain of F wrt. the interpretation I. ✷

ADOM(F ∪ I) is finite.

456

Domain-Independence

Formulas in the relational calculus are required to be domain-independent:

Definition 8.2
A formula F (X1, . . . , Xn) is domain-independent if for all interpretations I of the predicates
and constants, and for all D ⊇ ADOM := ADOM(F ∪ I),

(I, ADOM)(F) =

= {(β(X1), . . . , β(Xn)) | (I, ADOM) |=β F, β(Xi) ∈ ADOM for all 1 ≤ i ≤ n}
= {(β(X1), . . . , β(Xn)) | (I,D) |=β F, β(Xi) ∈ D for all 1 ≤ i ≤ n} = (I,D)(F).

✷

It is undecidable whether a formula F is domain-independent!
(follows from Rice’s Theorem).

Instead, (syntactical) safety is required for queries:

• stronger condition

• can be tested algorithmically

Idea: every formula guarantees that variables can only be bound to values from the database
or that occur in the formula.

457

Safety: SRNF

Definition 8.3
A formula F is in SRNF (Safe Range Normal Form) [Abiteboul, Hull, Vianu: Foundations of
Databases] if and only if it satisfies the following conditions:

• variable renaming: no variable symbol is bound twice with different scopes by different
quantifiers; no variable symbol occurs both free and bound.

• remove universal quantifiers by replacing ∀X : G by ¬∃X : ¬G,

• remove implication by replacing F → G by ¬F ∨G,

• push negations down through ∧ and ∨.
Negated formulas are then either of the form ¬∃F or ¬atom (push negations down
through ∧ and ∨),

• flatten ∧, ∨ and ∃ (i.e., replace F ∧ (G∧H) by F ∧G∧H, and ∃X : ∃Y : F by ∃X,Y : F).✷

... then, check, whether the formula is safe-range as defined on the next slide:

458

Safety Check for SRNF formulas

Definition 8.4 (Range-Restricted Variables, Safe-Range Formulas)
1. For a formula F in SRNF, rr(F) is defined (and computable) via structural induction:

(1) F = R(t1, . . . , tn) ⇒ rr(F) is the set of variables occurring in t1, . . . , tn

(2) F = x = a or a = b ⇒ rr(F) = {x}
(3) F = F1 ∧ F2 ⇒ rr(F) = rr(F1) ∪ rr(F2)

(4) F = F1 ∧X = Y ⇒





rr(F) = rr(F1) ∪ {x, y} if rr(F1) ∩ {x, y} 6= ∅
rr(F) = rr(F1) if rr(F1) ∩ {x, y} = ∅

(5) F = F1 ∨ F2 ⇒ rr(F) = rr(F1) ∩ rr(F2)

(6) F = ¬F1 ⇒ rr(F) = ∅

(7) F = ∃X̄ : F1 ⇒





rr(F) = rr(F1)− X̄ if X̄ ⊆ rr(F1)

return ⊥ if X̄ 6⊆ rr(F1)

2. if free(F) = rr(F) and no subformula returned ⊥, F is safe range. ✷

Note:
∗ The ∀-quantifier is not allowed in any formula in SRNF (i.e. replace ∀XF by ¬∃X¬F).
∗ The definition does not contain any explicit syntactical hints how to write such a formula.

459

Example 8.10
and Exercise

Consider the formulas

1. F (X,Y, Z) = p(X,Y) ∧ (q(Y) ∨ r(Z)),

2. F (X,Y) = p(X,Y) ∧ (q(Y) ∨ r(X)),

3. F (X) = p(X) ∧ ∃Y : (q(Y) ∧ ¬r(X,Y)),

4. F (X) = p(X) ∧ ¬∃Y : (q(Y) ∧ ¬r(X,Y)) – the relational division pattern,

5. F (X,Y) = p(X,Y) ∧ ¬∃Z : r(Y, Z),

Are they in SRNF, and are they safe-range?

Give rr(G) for each of their subformulas.

Translate the formulas into SQL and into the relational algebra. ✷

460

Safe Range and Domain Independence

Theorem 8.1
If a formula F is in SRNF and is safe-range, then it is domain-independent. ✷

... one can prove this by induction, but this will also follow in a more useful way.

How to evaluate calculus queries?

• the underlying framework is FOL, undecidable, no complete reasoners exist.
incomplete reasoners would do it, but they have high complexity and bad performance.

(this issue will be the same when continuing with Datalog “knowledge” bases.)

• the goal is that the relational calculus is equivalent with the relational algebra; i.e. much
weaker than full FOL, but polynomial.

(Datalog variants are also weaker than FOL, but some of them harder than polynomial)

⇒ get a translation to the relational algebra.

(this problem will be solved by algebra+fixpoint and Logic-Programming-based
implementations)

461

Comments on SRNF

• underlying idea: the formula can be evaluated from the database relations, never using
the (purely logical concept of) “domain”.

• subformulas of a conjunction F (. . . , X, . . .) ∧G(X,Y) whose evaluation would not be
domain-independent alone (i.e., rr(G) (free(G)) are “cured” by other parts of the
conjunction (cf. solution to Example 8.10);

– cf. correlated subqueries (SQL) or correlated joins in SQL/OQL/XQuery;

– cf. index-based join in SQL: compute E1 ⊲⊳ E2 by iterating over results of E1 and
accessing matching tuples in E2 via index.

– also called “sideways information passing strategy”.

• ... but the relational algebra does not have correlated subqueries (no subqueries in
selection conditions at all!) and no correlated joins.
The algebra’s theory is only bottom-up (cf. the relational algebra translations from
Example 8.10 which provide some insights into the next definition ...).

462

Self-Containedness of Subformulas

Definition 8.5
A formula F that is in SRNF and which is safe-range is in RANF (Relational Algebra Normal
Form) if:

1. (from SRNF) F does not contain ∀ quantifiers (replace ∀XG by ¬∃X¬G),

2. (from SRNF) negated formulas are either of the form ¬∃F or ¬atom (push negations
down through ∧ and ∨),

3. and if each subformula G of F is self-contained, where a subformula G is self-contained if

(0) if G is an atom, or if G = G1 ∧ . . . ∧Gk

(in this case, no additional explicit condition is stated, but requirements are made
whenever such a G is used as a subformula in (i)-(iii)),

(i) if G = H1 ∨ . . . ∨Hk and for all i, rr(Hi) = free(G)

(which implies that free(Hi) = free(G) = rr(Hi) for all i),

(ii) if G = ∃X̄ : H and rr(H) = free(H)

(which due to SRNF(7) is equivalent to rr(G) = free(G)),

(iii) if G = ¬H and rr(H) = free(H). ✷

(note: typo in [Abiteboul, Hull, Vianu: Foundations of Databases] in (ii) and (iii)!)

463

Self-Containedness of Subformulas

• Recall “correlated joins/subqueries” via F (. . . , X, . . .) ∧G(X,Y) that refer to an “outer”
query that provides bindings for –in this case– X.

• self-containedness requires that the evaluation of G does actually not depend on
propagation of bindings from “outside”.

• For that,
rr(G) = free(G) (∗)

would be a sufficient criterion
(i.e., each subformula G is in SRNF itself).
This criterion is enforceable, except for negated subformulas.

464

Self-Containedness

Consider again
rr(F) = free(F) (∗)

• The definition of “self-contained” does not state any explicit condition on conjunctions
G = G1 ∧ . . . ∧Gk.
For them, the property (∗) follows from the other requirements:
if G is in a disjunction (from (3a)), in a negated subformula (from (3b)), and in an
existence formula (from (3c) and SRNF (1.7)), and if G = F , then from SRNF (2).

• Self-containedness implies and requires that (∗) holds for all formulas that are not of the
form F = ¬G.

• For negations F = ¬G, rr(F) = ∅, and (∗) is implied and required only for their body:
rr(G) = free(G).
Negations as a whole and isolated cannot satisfy (∗) – they depend on propagation from
outside.

• idea: hardcode the subformula that generates the relevant bindings into the subformula.

465

From SRNF to RANF
Application of the following rewriting rules (recursively – top-down) translates safe-range
SRNF formulas to RANF.
[Abiteboul, Hull, Vianu: Foundations of Databases]

1. Assume that (∗) holds for the whole formula F : free(F) = rr(F).

2. This is the case for each safe-range SRNF formula, so the starting point is well-defined.

3. input to each rewriting rule is a conjunction F of the form F = F1 ∧ . . . ∧ Fn s.t.
free(F) = rr(F) where one or more of the Fi are not self-contained (let m the number of
such Fi).

⇒ Make them self-contained!

4. each application of a rewriting rule will handle one such conjunct.

5. after m applications, F has been transformed into a conjunction F ′ = F ′
1 ∧ . . .∧ F ′

k, k ≤ n,
where all F ′

i are self-contained.

6. then, the assumption in (∗) is valid for them (for negations: for their immediate
subformula), and the formulas on lower levels can be rewritten.

7. as seen above, rewriting rules must only care for conjunctions (where the bindings
propagation takes place).

466

From SRNF to RANF -2-

• W.l.o.g. assume that the conjunct to be treated is the rightmost one.

• Push-into-or: F = F1 ∧ . . . ∧ Fn ∧G where G = G1, . . . , Gm is a disjunction, G is not
self-contained, i.e., rr(G) (free(G) (which actually is the case if for some disjunct
rr(Gi) (free(G)).
(w.l.o.g., G is the last conjunct)

Known: rr(F) = free(F); the missing variable(s) must be in rr(F1, . . . , Fn).

Choose any subset Fi1 , . . . , Fik , k ≤ n such that
G′ = (Fi1 ∧ . . . ∧ Fik ∧G1) ∨ . . . ∨ (Fi1 ∧ . . . ∧ Fik ∧Gm) satisfies rr(G′) = free(G′).

– choosing all Fi is correct, but usually “inefficient”.

– note: rr(G′) ⊇ rr(G) (“=” in the best case), and for each disjunct G′
i in G′,

rr(G′
i) = free(G′

i) = free(G′) (before, free(Gi) 6= free(Gj) was possible)

Let j1, . . . , jn−k the indexes from {1, . . . , n} \ {i1, . . . , ik}; i.e., the non-chosen ones.

Replace F by F ′ = SRNF (Fj1 ∧ . . . ∧ Fjn−k
∧G′) and go on recursively.

(SRNF (_) for renaming vars, flattening, etc.)

• ... two more rewriting rules see next slide.

467

From SRNF to RANF -3-

Example 8.11
• Recall Example 8.10 (2) and its algebra translation.

• Recall Example 8.10 (3) for guessing the next rule.

• ... recall Example 8.10 (4) for guessing the third rule. ✷

... other rewriting rules in the same style:

• Push-into-exists: F = F1 ∧ . . . ∧ Fn ∧ ∃X̄ : G where rr(F) = free(F); rr(G) (free(G).

Choose again Fis such that G′ = Fi1 ∧ . . . ∧ Fik ∧G as above. Replace F by
F ′ = SRNF (Fj1 ∧ . . . ∧ Fjn−k

∧ ∃x : G′) and go on recursively.

• Push-into-not-exists: F = F1 ∧ . . . ∧ Fn ∧ ¬∃X̄ : G where rr(F) = free(F);
rr(G) (free(G).

Do the same as above for G′ = Fi1 ∧ . . . ∧ Fik ∧G, replace F by
F ′ = SRNF (F1 ∧ . . . ∧ Fn ∧ ¬∃x : G′) (keeping all Fi also outside!) and go on recursively.

• what about “Push-into-negation”?
Recall from Definition 8.5(2) that ¬ occurs only as ¬∃F (see above) or ¬atom (always
self-contained).

468

Exercise

Consider the formula

F (X,Y) = ∃V : (r(V,X) ∧ ¬s(X,Y, V)) ∧ ∃W : (r(W,Y) ∧ ¬s(Y,X,W))

• Give rr(F) for all its subformulas,

• is it in SRNF?

• if yes, transform it to RANF.

This is an example, where no conjunct of the original formula is self-contained.

Exercise

Give an algorithm that transforms RANF formulas to the Relational Algebra.

PREVIEW

RANF is not only necessary for the translation into the Relational Algebra, but also for
translation into (Nonrecursive Stratified) Datalog; cf. next section.

469

An Alternative Formulation

[Ullman, J. D., Principles of Database and Knowledge-Base Systems, Vol. 1]

Definition 8.6
A formula F is safe (SAFE) if:

1. F does not contain ∀ quantifiers (replace ∀XG by ¬∃X¬G),

2. if F1 ∨ F2 is a subformula of F , then F1 and F2 must have the same free variables,

3. for all maximal conjunctive subformulas F1 ∧ . . . ∧ Fm,m ≥ 1 of F :

All free variables must be limited, where limited is defined as follows:

• if Fi is neither a comparison, nor a negated formula, any free variable in Fi is limited,

• if Fi is of the form X = a or a = X with a a constant, then X is limited,

• if Fi is of the form X = Y or Y = X and Y is limited, then X is also limited.

(a subformula G of a formula F is a maximal conjunctive subformula, if there is no
conjunctive subformula H of F such that G is a subformula of H). ✷

Theorem 8.2
Safe formulas are domain-independent. ✷

470

Safety (Cont’d)

Example 8.12
• p(X,Y) ∨X = Y is not safe: X = Y is a maximal conjunctive subformula where none of

the variables is limited (it is also not domain-independent).

• p(X,Y) ∧X = Z is safe: p(X,Y) limits X and Y, then X = Z also limits Z.

• p(X,Y) ∧ (q(X) ∨ r(Y)) is not safe, but the equivalent formula
(p(X,Y) ∧ q(X)) ∨ (p(X,Y) ∧ q(Y)) is safe.

• p(X,Y, Z) ∧ ¬(q(X,Y) ∨ r(Y, Z)) is not safe, but the logically equivalent formula
p(X,Y, Z) ∧ ¬q(X,Y) ∧ ¬r(Y, Z) is safe.

• F (X) = p(X) ∧ ¬∃Y : (q(Y) ∧ ¬s(X,Y)) is not safe
because F ′(X) = ∃Y : (q(Y) ∧ ¬r(X,Y) is a maximal conjunctive subformula, but it does
not limit X);
the logically equivalent, but less intuitive formula
F (X) = p(X) ∧ ¬∃Y : (p(X) ∧ q(Y) ∧ ¬r(X,Y)) is safe.
(again the relational division pattern) ✷

471

Notes

• condition RANF(3b) is not required by SAFE. Nevertheless, since in ¬G, G is a maximal
conjunctive formula (maybe with m = 1), SAFE(3) applies to it and implies RANF(3b).

• condition RANF(3a) is stronger than SAFE(2), but implied by SAFE(3) since in G1 ∨G2

each disjunct is a maximal conjunctive subformula which implies that all its variables must
be limited.

• SAFE(3) explicitly requires for each negated formula ¬F (X̄) that it must occur in some
conjunction G = (. . . ∧ F (X̄) ∧ . . .) with positive formulas that limit the Xs:

Otherwise, if any non-conjunctive formula G contains ¬F (X̄) as an immediate
subformula, ¬F (X̄) would be a maximal conjunctive formula in F where X̄ are not limited.

• In contrast, RANF does not state an explicit condition on the occurrence of negated
subformulas. Implicitly, the same condition follows from the fact that rr(¬F (X̄)) = ∅
(SNRF(6)), and the remark on the bottom of Slide 463: X̄ ⊂ free(G), so there must be a
conjunct Gi “neighboring” the negated formula to such that rr(Gi) ⊆ X̄.

472

Safety: universal quantification

Consider again from Example 8.8:

F (X) = ∀Y : R(X,Y)

• This formula is not allowed to be considered since ∀ must be rewritten:

F2(X) = ¬∃Y : ¬R(X,Y)

is not safe since ¬R(X,Y) is a maximal conjunctive subformula.

• Start again with F : the problem in Example 8.8 was that it is not known which Y have to
be considered (the whole domain?)

• restrict to Y that satisfy some condition (e.g., all country codes).

An upper bound is to consider all elements of the active domain, let
(assume relations R/2, S/1, . . .)

ADOM(Z) = (∃Y : R(Z, Y) ∨ ∃X : R(X,Z) ∨ S(Z) ∨ . . .) :

F3(X) = ∀Y : (ADOM(Y)→ R(X,Y))

(continue next slide)

473

Safety: universal quantification (cont’d)

• ... and rewrite ∀:

F4(X) = ¬∃Y : ¬(ADOM(Y)→ R(X,Y))

push negation down and rewrite F → G as ¬F ∨G:

F5(X) = ¬∃Y : (ADOM(Y) ∧ ¬R(X,Y))

• ADOM(Y) ∧ ¬R(X,Y) is still not safe. X must be bound; use again ADOM :

F6(X) = ¬∃Y : (ADOM(X) ∧ADOM(Y) ∧ ¬R(X,Y))

• is safe, but unintuitive. Pulling out X yields ...

F7(X) = ADOM(X) ∧ ¬∃Y : (ADOM(Y) ∧ ¬R(X,Y))

... which is the relational division pattern!

474

Aside: Another Alternative Formulation
[Allen Van Gelder and Rodney W. Topor. Safety and translation of relational calculus queries.
ACM Transactions on Database Systems (TODS), 16(2):235-278, 1991.]

• based on two syntactical, inductively defined properties con(X) (“constrained”) and
gen(X) (“generated”),

• a formula is “evaluable” if

– for every free variable in Q(X) = F (X), gen(X,F) holds,

– for every subformula ∃X : F , con(X,F) holds,

– for every subformula ∀X : F , con(X,¬F) holds,

• claimed that this definition is the largest class of domain-independent formulas that can
be characterized by syntactical restrictions;

• proven that for queries without repetitions of predicate symbols the definition coincides
with domain-independence.

– The (simple) formula Q(x) = p(x) ∧ ∀y : ¬q(x, y) is in SRNF, and evaluable, but the
equivalent PLNF (prenex literal normal form) Q′(x) = ∀y : (p(x) ∧ ¬q(x, y)) is not in
SRNF (equivalent to ¬∃y : ¬(p(x) ∨ ¬q(x, y)), where y /∈ rr(¬(p(x) ∨ ¬q(x, y)))), but
still “evaluable”. Later, for Datalog always the (SRNF-compatible) variant where the
scope of the universal quantifier is only a single, negative literal is relevant.

475

SUMMARY: A HIGHER-LEVEL VIEW ON DOMAIN INDEPENDENCE/SAFETY

VS RANF

Domain Independence

• Domain independence is absolutely necessary for a query to have a well-defined meaning
(humans evaluate such queries when the context gives the domain, e.g. “who is not
registered for the exam?” [domain: the participants of the lecture]).

• Domain independence is undecidable.

Safety

• safety is defined purely syntactically,

• safety can be tested effectively,

• safety implies domain-independence.

476

METALEVEL: RECONSIDER FOL VS HERBRAND STYLE

• FOL:
Σ: predicate symbols p, q, r, . . ., function symbols f, g, . . ., constant symbols a, b, c, . . .,
I = (I,D); I(p) ⊆ Dn for n-ary p.
I |= p(a, b, c) ⇔ (I(a), I(b), I(c)) ∈ I(p).
– The abstraction level of I is needed in FOL model theory, especially if function

symbols are used.

– the notion of the domain D is needed for the semantics of the universal quantifier and
proving validity of a formula.

• Herbrand/DB with safe formulas:
Σ: predicate symbols p, q, r, . . . ,

constants a, b, c, . . . + datatype values 1, 2, 3, . . . , “D”,“CH”, . . .
Database state S over the relations p, q, r,. . . ;
with values from the constants and datatype values,
S |= p(a, b, c) ⇔ (a, b, c) ∈ p.
⇒ neither need the notions of I nor D – everything is immediately contained in S.

477

Domain Independence is inherent in the relational algebra and in SQL

Algebra

• Basic algebra expressions/leaves of the algebra tree are always relations (database
relations or constants),

• (non-atomic) “negation” in the relation algebra only via “minus”,

• proof by structural induction: the left subtree of “minus” is always domain-independent⇒
the whole expression is domain-independent.

SQL

• FROM clause always refers (positively) to relations or to SQL subqueries,

• (non-atomic) negation only in subqueries in the WHERE clause,
sideways-information-passing.

• whole SQL expression is domain-independent.

478

A Higher-Level View on Domain Independence/Safety vs RANF

• Logics: domain-independent formulas can be evaluated;

• Relational algebra: requires RANF for strict bottom-up evaluation;

• SQL:

– relaxed criterion (cf. Example 8.10) for (negated) existential quantification;

– not relaxed for disjunction/union;

⇒ internal compiler from SQL into an internal (relational) algebra that supports sideways
information passing;

• SPARQL (query language for RDF): also relaxed for disjunction/union.

• Datalog will require RANF since every subexpression is represented by an own “local”
rule;
“global” semantics and internal compilation by Logic Programming-based (Prolog)
top-down proof tree strategy supports sideways information passing.

479

8.6 Equivalence of Algebra and (safe) Calculus

As for the algebra, the attributes of each relation are assumed to be ordered.

Theorem 8.3
For each expression Q of the relational algebra there is an equivalent safe formula F of the
relational calculus, and vice versa; i.e., for every state S, Q and F define the same answer
relation. ✷

Proof Summary

• give mappings (A) “Algebra→ Calculus” and (B) “Calculus→ Algebra”

• (A) gives insights how to express a textual (or SQL) query by Datalog Rules,

• (B) gives insight how to write SQL statements for a given textual (or logical) query
(and how one could implement a Calculus evaluation engine via SQL).

480

Proof: (A) Algebra to Calculus

Let Q an expression of the relational algebra. The proof is done by induction over the
structure of Q (as an operator tree).

All generated formulas are safe.
As an invariant, the variable names A,B,C, . . . correspond always to the column names
A,B,C,. . . of the format of the respective algebra expression.

Induction base: Q does not contain operators.

• if Q = R where R is a relation symbol of arity n ≥ 1 with format A1, . . . ,An:

F (A1, . . . , An) = R(A1, . . . , An)
R

A1 A2

a 1

b 2

answer to R(A1, A2):

A1 A2

a 1

b 2

• otherwise, Q = {A:c} where c is a constant.
Then, F (A) = (A = c).

A:c

A

c

Answer to A = c: A

c

481

Induction step:

• Case Q = Q1 ∪Q2. Thus, ΣQ1
= ΣQ2

= A1, . . . ,An.

F (A1, . . . , An) = F1(A1, . . . , An) ∨ F2(A1, . . . , An)

Example: Q1

A1 A2

a b

c d

F1(A1 A2)

a b

c d

Q2

A1 A2

1 2

c d

F2(A1 A2)

1 2

c d

F (A1 A2)

a b

c d

1 2

482

• Case Q = Q1 −Q2. Analogously; replace . . .∨ . . . by (. . .)∧¬(. . .).

• Case Q = π[Ȳ](Q1) with Ȳ = {Ai1 , . . . , Aik} ⊆ ΣQ1 , k ≥ 1.
Let {j1, . . . , jn−k} = {1, . . . , n} \ {i1, . . . , ik} (the indices not in Ȳ).

F (Ȳ) = F (Ai1 , . . . , Aik) = ∃Aj1 , . . . , Ajn−k
: F1(A1, . . . , An) .

Example:

Q1

A1 A2

a b

c d

F1(A1 A2)

a b

c d

Let Ȳ = {A2}: F (A2) = ∃A1 : F1(A1, A2)

F (A2)

b

d

483

• Case Q = σ[α](Q1) where α is a condition over ΣQ1
= {A1, . . . ,An}.

F (A1, . . . , An) = F1(A1, . . . , An) ∧ α′ , where α′ is obtained by replacing

each column name Ai by the variable Ai in σ.

Example:

Q1

A1 A2

1 2

3 4

F1(A1 A2)

1 2

3 4

Let σ = “A1 = 3”: F (A1, A2) = F1(A1, A2) ∧A1 = 3

F (A1 A2)

3 4

484

• Case Q = ρ[A1 → B1, . . . ,Am → Bm](Q1), ΣQ1 = {A1, . . . ,An}, n ≥ m.

F (B1, . . . , Bm, Am+1, . . . , An) = ∃A1, . . . , Am : (F1(A1, . . . , An)∧B1 = A1 . . .∧Bm = Am)

Example:

Q1

A1 A2

1 2

3 4

F1(A1 A2)

1 2

3 4

Consider ρ[A1 → B1](Q1): F (B1, A2) = ∃A1 : (F1(A1, A2) ∧ A1 = B1)

F (B1 A2)

1 2

3 4

485

• Case Q = Q1 ⊲⊳ Q2 and ΣQ1
= {A1, . . . ,An}, ΣQ2

= {A1, . . . ,Ak,Bk+1, . . . ,Bm, },
n,m ≥ 1 and 0 ≤ k ≤ n,m.

F (A1, . . . , An, Bk+1, . . . , Bm) = F1(A1, . . . , An) ∧ F2(A1, . . . , Ak, Bk+1, . . . , Bk) .

Example:

Q1

A1 A2

1 2

3 4

Q2

A1 B2

5 6

1 7

F1(A1 A2)

1 2

3 4

F2(A1 B2)

5 6

1 7

F (A1, A2, B2) = F1(A1, A2) ∧ F2(A1, B2)

F (A1 A2 B2)

1 2 7

• Note that in all cases, the resulting formulas F are domain-independent, in SRNF, RANF,
and SAFE.
(which came up automatically, because it is built-in in the structure induced by the algebra
expressions)

486

(B) Calculus to Algebra

Consider a relational schema Σ = {R1, . . . , Rn} and a SAFE formula F (X1, . . . , Xn), n ≥ 1 of
the relational calculus.

First, an algebra expression ADOM that computes the active domain ADOM(S) of the
database state is derived:

For every Ri with arity ki,

ADOM(Ri) = π[$1](Ri) ∪ . . . ∪ π[$ki](Ri).

(where π[$i] denotes the projection to the i-th column).
Let

ADOM = ADOM(R1) ∪ . . . ∪ ADOM(Rn) ∪ {a1, . . . , am},

where a1, . . . , am are the constants occurring in F .

• For a given database state S over Σ, ADOM(S) is a unary relation that contains the
whole active domain of the database, i.e., all values occurring in any tuple in any position.

487

An equivalent algebra expression Q is now constructed by induction over the number of
maximal conjunctive subformulas of F .

Induction base: F is a conjunction of positive literals. Thus, F = G1 ∧ . . . ∧Gl, l ≥ 1.

(1) Case l = 1. F is a single positive safe literal.
Then, either is of the form F = Ri(a1, . . . , aik), where each aj is a variable or a constant,
or F is a comparison of one of the forms F = (X = c) or F = (c = X), where X is a
variable and c is a constant (note that all other comparisons would not be safe).

– Case F = R(a1, . . . , aik): contains some (free, maybe duplicate) variables, and some
constants that state a condition on the matching tuples.
⇒ encode the condition into a selection, and do a projection to the columns where

variables occur – one column for each variable and name the columns with the
variables:

e.g. F (X,Y) = R(a,X, b, Y, a,X). Then, let

Q(F) = ρ[$2→ X, $4→ Y](π[$2, $4](σ[Θ1 ∧Θ2](R))) ,

where Θ1 = ($1 = a ∧ $3 = b ∧ $5 = a) and Θ2 = ($2 = $6).

– Case F = (X = c) or F = (c = X). Let Q(F) = {X : c}
X

c

488

(2) Case l > 1 (cf. example below) Then, w.l.o.g.

F = G1 ∧ . . . ∧Gm ∧Gm+1 ∧ . . . ∧Gl

s.t. 1 < m ≤ l, where all Gi, 1 ≤ i ≤ m as in (1) and all Gj , m+ 1 ≤ j ≤ l are other
comparisons (i.e., unsafe literals like X = Y , X < 3).

For every Gi, 1 ≤ i ≤ m take an algebra expression Q(Gi) as done in (1). The format
ΣQ(Gi) is the set of free variables in Gi. Let

Q′ = ⊲⊳mi=1 Q(Gi).

With Θ the conjunction of the additional conditions Gm+1, . . . , Gl,

Q(F) = σ[Θ](Q′) .

Example 8.13
Consider F = R(a,X, b, Y, a,X) ∧ S(X,Z, a) ∧X = Y ∧ Z < 3

as F = G1 ∧G2 ∧G3 ∧G4:

Q(G1) = ρ[$2→ X, $4→ Y](π[$2, $4](σ[$1 = a ∧ $3 = b ∧ $5 = a ∧ $2 = $6](R)))

Q(G2) = ρ[$1→ X, $2→ Z](π[$1, $2](σ[$3 = a](S)))

Q(F) = σ[X = Y ∧ Z < 3](Q(G1) ⊲⊳ Q(G2))
✷

489

Structural Induction Step: For formulas G,G1, . . . , Gl, H the equivalent algebra expressions
are Q(G), Q(G1), . . . , Q(Gl), Q(H),

(3) F = G ∨H:
Q(F) = Q(G) ∪Q(H)

(safety guarantees that G and H have the same free variables, thus, Q(G) and Q(H)

have the same format).

(4) F = ∃X : G:
Q(F) = π[Vars(Q(G)) \ {X}](Q(G)) ,

(5) F = ¬G, where Q(G) has columns/variables X1, . . . , Xk:

Q(F) = ρ[$1→ X1, . . . , $k → Xk](ADOM
k)−Q(G)

(6) F = G1 ∧ . . . ∧Gl, l ≥ 2 is a maximal conjunctive subformula (difference to (2): now it’s
the induction step where the conjuncts are allowed to be complex subformulas):
Q(F) is then constructed analogously to (2) as a join.

490

Understanding the Proof: Negation as Minus

The ADOMk in “calculus to algebra” item (5) looks awkward. What is it good for? What does
it mean?

• according to Def. 8.3 (4) (max. conjunctive subformulas), all the variables X1, . . . , Xk in a
negative conjunct ¬G must occur positively in some other conjunct (and be bound by this).

⇒ instead of ADOMk, the cartesian product (or any overestimate of it) of the possible
values of X1, . . . , Xk can be used.

• Formal example next slide,

• practical MONDIAL example second next slide.

491

Understanding the Proof: Negation as Minus

Formal Example

F (X,Y) = p(X,Y, Z) ∧ ¬∃V : q(Y, Z, V) .

• F1(X,Y, Z) = p(X,Y, Z) ⇒ E1 = ρ[$1→X, $2→Y, $3→Z](p),

• F2(Y, Z, V) = q(Y, Z, V) ⇒ E2 = ρ[$1→Y, $2→Z, $3→V](q),

• F3(Y, Z) = ∃V : F2(Y, Z, V) ⇒ E3 = π[Y, Z](E2) =

π[Y, Z](ρ[$1→Y, $2→Z, $3→V](q)),

• F4(Y, Z) = ¬F3(Y, Z) ⇒ ρ[$1→Y, $2→Z](ADOM2)−E3 =

ρ[$1→Y, $2→Z](ADOM2)− π[Y, Z](ρ[$1→Y, $2→Z, $3→V](q))

(yields all possible (y, z) ∈ ADOM2 that are not in ...)

• F5(X,Y, Z) = F1 ∧ F4 ⇒ E1 ⊲⊳ E4 =

E1 ⊲⊳ (ρ[$1→ Y, $2→ Z](ADOM2)− π[Y, Z](ρ[$1→Y, $2→Z, $3→V](q)))

Only pairs (Y, Z) can survive the join that are in the result of the first component. Thus,
instead taking the “overestimate” ADOM2, π[Y, Z](E1) can be used:

E1 ⊲⊳ (π[Y, Z](E1)− π[Y, Z](ρ[$1→Y, $2→Z, $3→V](q))).

492

Negation as Minus - A practical example

• Ever seen this ADOM construct in exercises to the relational algebra? – No. Why not?

Consider relations country(name,country) and city(name,country,population):

F (CN,C) = country(CN,C) ∧ ¬∃Cty, Pop : (city(Cty, C, Pop) ∧ Pop > 1000000)

Structural generation of an equivalent algebra expression:

• F1(CN,C) = country(CN,C) ⇒ E1 = ρ[$1→ CN, $2→ C](country),

• F2(Cty, C, Pop) = city(Cty, C, Pop) ∧ Pop > 1000000

⇒ E2 = ρ[$1→ Cty, $2→ C, $3→ Pop](σ[$3 > 1000000](city)),

• F3(C) = ∃Cty, Pop : F2(Cty, C, Pop)

⇒ E3 = π[C](ρ[$1→ Cty, $2→ C, $3→ Pop](σ[$3 > 1000000](city))),

• F4(C) = ¬F3(C) ⇒ E4 = ρ[$1→ C](ADOM) − E3 (abbreviating π(ρ(...)) in E3)

= ρ[$1→ C](ADOM)− π[$2→ C](σ[$3 > 1000000](city))
(yields all possible C that are not in ...)
At this point, one knows that not the complete ADOM (all values anywhere in the
database) has to be considered, but that it is sufficient to consider all countrycodes:
E′

4 = π[$2→ C](country)− π[$2→ C](σ[$3 > 1000000](city))

493

Example (Cont’d)

And now, both parts of the outer conjunction are combined by a join:

F (CN,C) = F1(CN,C) ∧ F4(C)

⇒ E1 ⊲⊳ E
′
4 =

ρ[$1→CN, $2→C](country) ⊲⊳ (π[$2→C](country)− π[$2→C](σ[$3 > 1000000](city)))

494

8.7 Symbolic Reasoning

• Logics in general, and FOL are mathematical concepts.
Research mathematically investigates different logics and their properties.

• Symbolic Reasoning applies logic-based algorithms on concrete problems, e.g.,

– Software and hardware verification (e.g., correctness of automobile or airplane
systems)

– Answering queries against knowledge bases

• algorithms must operate on the syntax level:

– formulas (i.e., parse-trees of formulas)

– terms (i.e., parse-trees of terms)

– sets of variable bindings

* term unification,

* answer bindings (to unification/matching and to queries)

495

DATALOG: HERBRAND SEMANTICS

Logic programming (LP) frameworks (e.g., Prolog and Datalog) use the Herbrand Semantics
(after the French logician Jacques Herbrand):

• a Herbrand Interpretation H = (H,DΣ) for a given signature Σ uses always the Herbrand
Universe DΣ that consists of all terms that can be constructed from the function symbols
(incl. constants) in Σ: john, father(john), germany, capital(germany), berlin,

⇒ “every term is interpreted by itself”

• the relation names are the predicate symbols in Σ, and they are also “interpreted by
themselves (as a relation)”, i.e., H(encompasses) = encompasses.

• the Herbrand Base HBΣ is the set of all ground atoms over elements of the Herbrand
Universe and the predicate symbols of Σ.

⇒ A Herbrand Interpretation is a (finite or infinite) subset of the Herbrand Base.

• H |= hasAncestor(john,father(john)) if (john, father(john)) ∈ hasAncestor.

• in contrast, in traditional FOL:
(I,D) |= hasAncestor(john,father(john)) if (I(john), I(father(I(john)))) ∈ I(hasAncestor).

• if function symbols are allowed, usually with equality predicate ≈, e.g., father(john) ≈ jack.

496

Deductive Databases: Datalog

• the domain consists of constant symbols and datatype literals.

• an interpretation H is explicitly seen as a finite set of ground atoms over the predicate
symbols and the Herbrand Universe:
country(ger,“Germany”,“D”, berlin, 356910,83536115), encompasses(ger, eur, 100).

H |= encompasses(ger,eur,100) if and only if (ger, eur,100) ∈ H(encompasses)

if and only if encompasses(ger, eur,100) ∈ H .

• Unique Name Assumption (UNA): different symbols mean different things.

• Datalog restricts the allowed formulas (cf. Slides 557 ff.):

– conjunctive queries,

– Datalog knowledge bases consist of rules of the form head← body

(variants: positive nonrecursive, recursive, + negation in the body, + disjunction in the
head)

• special semantics/model theories for each of the variants: minimal model, stratified
model, well-founded model, stable models
– each of them characterized as sets of ground atoms.

497

SEMANTIC WEB: RDF, RDFS, AND OWL

• RDF data model (see also Slide 440)

– unary and binary predicates over literal values and URIs (Object (identifier)s; classes
and properties are also represented by URIs)

• RDFS (RDF Schema): adds second order flavour:

– RDF triples can have properties or classes as subject and object,

– then use predefined RDFS predicates:

– capital rdfs:domain Country; rdfs:range City.
capital rdfs:subPropertyOf hasCity

– semantics can be encoded in FOL rule patterns:
∀x, y : capital(x, y)→ Country(x) ∧ City(y)
∀x, y : capital(x, y)→ hasCity(x, y)

– mapped to FOL model theory.

– RDFS and “OWL Lite” (see next slide) can be mapped to positive recursive Datalog
⇒ polynomial

* just positive rules: CWA and OWA semantics coincide

498

Semantic Web: RDF, RDFS, and OWL (cont’d)

• OWL: additional specialized vocabulary for describing Description Logic concepts

• Second order predicates – predicates about predicates:

borders a owl:SymmetricProperty. SymmetricProperty(borders)

hasChild rdfs:subPropertyOf hasDescendant hasChild ⊑ hasDescendant

hasDescendant a owl:TransitiveProperty. TransitiveProperty(hasDescendant)

• many OWL (OWL Lite) constructs can be translated into FOL (and Datalog) rule patterns:
∀x, y : borders(x, y)→ borders(y, x).
∀x, y : hasChild(x, y)→ hasDescendant(x, y).
∀x, y, z : hasDescendant(x, y) ∧ hasDescendant(y, z)→ hasDescendant(x, z).

• Queries about data against RDF(+RDFS+OWL Lite) knowledge bases: algebraic
evaluation, polynomial.

• Queries against RDF+OWL DL knowledge base: reasoning, exponential.

499

Chapter 9
Reasoning
Queries vs. Conclusions
• Query: (for which X) does something hold in a given database state?

• Conclusions: given some facts and some knowledge, does something hold?

Knowledge Bases

• general statements/logic formulas (cf. human knowledge and reasoning)

• often definitions: “adults are persons who are at least 18 years old”,
“parents are persons who have children”, “every person is either male or female”,
“my uncles are the male siblings of my parents, and the husbands of the female siblings
of my parents”,

• can often, but not always, be represented as rules.

• Queries against knowledge bases are answered by reasoning, not by algebraic
evaluation (although some reasoning can be implemented on an algebraic base).

500

9.1 Model Theory and Logical Entailment

For formalizing (and applying) reasoning, logical entailment,

F |= ϕ

is needed:

• F : a set of formulas, the specification

• ϕ: a formula

• does F entail ϕ,
i.e., assumed that F holds, can we conclude that ϕ also holds?

• e.g. F the specification of the notion of “uncle”, and a given database of persons:

– does “Bob is an uncle of Alice” hold?

– which persons (in the database) are uncles of Alice?

– which persons (in the database!) are not uncles of Alice?

* remark on closed world vs. open world

501

DATABASES VS. KNOWLEDGE BASES

• A database (state) is a relational structure.

We can check whether a formula holds there, or for which values of X it holds (which is
then a query).

The semantics of a database is the current database state.

• A (first-order) knowledge base is a set of closed (first-order) formulas. It contains facts,
but also other formulas.

We are interested if a knowledge base K implies a fact or a formula F . This means, if for
all modelsM of K, F must be true inM:

WheneverM |= K, does thenM |= F hold?

The semantics of a knowledge base (or in general a set of formulas) is the set of all its
models.

• an intermediate form occurs when a database is extended by axiomatic formulas
(subclasses etc.) or rules that can be used to derive additional facts.
Then, the semantics is given by the model(s) of the database state and the rules.

502

EXAMPLE: ER DIAGRAM AS AN ONTOLOGY

Employee works-for

subordinate

Manager Dept

∪

AreaManager TopManager manages

name salary

name

< 1, 3 >

< 1, ∗ >

< 0, ∗ >

< 0, ∗ >

< 1, 1 >

< 1, 1 >

(TopManager: leads a department;
AreaManager: intermediate group leaders in a department)

What can be “models” of this ontology? How do you represent them? Give an example.

503

Semantics: Set theory

• a class is a set of instances,
Employee={alice, bob, john, mary, tom, larry} and Manager={alice, bob, john, mary},
AreaManager={mary} and TopManager={alice, bob, john},
Dept={sales, production, management}

Constraints from subclasses:
Manager = AreaManager ∪ TopManager
Manager ⊆ Employee
AreaManager ⊆ Manager and
TopManager ⊆ Manager (both redundant)

• an attribute is a set of pairs of (i) an instance and (ii) an element of a literal domain
(constraint!)
name =
{(alice, “Alice”), (bob, “Bob”), (john, “John”), (mary, “Mary”), (tom, “Tom”), (larry, “Larry”) }
salary =

{(alice, 70000), (bob, 60000), (john, 100000), (mary, 40000), (tom, 25000), (larry, 20000) }

analogously for department names.

504

Semantics: Set theory (Cont’d)

• a relationship is a pair of instances,
(or a set of n-tuples, in case of n-ary relationships)
works-for ⊆ Employee × Dept

works-for = {(alice, sales), (mary, sales), (larry, sales), (bob, production),

(bob, sales), (tom, production), (john, management) }

manages ⊆ TopManager × Dept
manages = {(alice, sales), (bob, production), (john, management) }
subordinate ⊆ Employee × Manager
subordinate = {(mary, alice), (bob, alice), (larry, mary), (larry, alice), (tom, bob) }

• not so obvious: constraints coming from the cardinality specifications, e.g.,
the set of top managers is a subset of the things that manage exactly one department,
the set of employees is a subset of the things that work for at least one and at most three
departments
(see later after the discussion of first-order logic)

505

Semantics: Set theory – Graphical Illustration

managers ⊆ employees departments

topmanagers

areamanagers

alice

bob

john

mary

tom

larry

sales

prod

mgm
works-for

manages

subordinate

• does manages ⊆ works-for hold in general?

• subordinate ⊇ works-for ◦ manages−1 ?

• subordinate ⊇ (works-for \ manages) ◦ manages−1 !! (“\” denotes set difference)

• the subordinates relationship wrt. area managers (larry→mary) cannot be derived but
must be stated explicitly.

506

Adequateness of (extended) ER Diagrams

An ontology should give a concise characterization of a domain and its constraints.

• classes, key constraints

• subclasses (specialization/generalization, disjointness)

• ranges and domains of properties (e.g., that the domain of “manages” is not all
employees but only the managers)

• cardinalities

• is manages ⊂ works-for ?

• is manages ∩ works-for = ∅ ?

• subproperty constraints cannot be expressed

• further constraints (e.g., employees that work for a department are subordinate to the
department’s manager) cannot be expressed.

Exercise

• Discuss alternatives for the cardinalities for “subordinate”.

507

ALTERNATIVE SEMANTICS: RELATIONAL MODEL

Exercise: give a relational schema and the corresponding database state to the above ER
diagram.

Relational Schema as an Ontology

• basically non-graphical, can be supported e.g. by dependency diagrams (cf. the Mondial
documentation)

• no distinction between “classes” and “relationships”

• key constraints, foreign key/referential constraints

• keys/foreign key allow to guess classes vs. relationships

• cardinality “1”: functional dependencies (adding n:1-relationships into a table like
department/manages country/capital)

• no general cardinality constraints

• sometimes: domain constraints (by foreign keys)

• no further (inter- and intra-relation) constraints

508

EXAMPLE: AXIOMATIZATION OF THE “COMPANY” ONTOLOGY

Consider again the ER diagram from Slide 503.

• give the first-order signature Σ of the ontology,

• formalize the constraints given in the

– subclass constraints

– range and domain constraints

– cardinality constraints

and

– additional constraints/definitions that cannot be expressed by the ER model.

(this set of formulas is called a first-order “theory” or “axiomatization” of the ontology)

• express the instance level as an interpretation of the signature Σ.

509

Example: Signature

• Classes are represented by unary predicates: Emp/1, Mgr/1, AMgr/1, TMgr/1, Dept/1.

• Attributes are represented by binary predicates: name/2, salary/2 (optionally, this could
be modeled by unary functions)

• (binary) relationships are represented by binary relationships: wf/2, mg/2, sub/2.

Thus,
Σcompany = {Emp/1, Mgr/1, AMgr/1, TMgr/1, Dept/1, name/2, salary/2, wf/2, mg/2, sub/2}.

Example: Subclass Constraints

∀x : Mgr(x)→ Emp(x) ,

∀x : AMgr(x)→ Mgr(x) ,

∀x : TMgr(x)→ Mgr(x) ,

∀x : Mgr(x)→ (AMgr(x) ∨ TMgr(x)) since declared as covering

510

Example: Domain and Range Constraints

∀x : (∃n : name(x, n)→ (Emp(x) ∨ Dept(x))) ,

∀x : (∃s : salary(x, s)→ (Emp(x))) ,

∀x, y : (sub(x, y)→ (Emp(x) ∧Mgr(y))) ,

∀x, d : (wf(x, d)→ (Emp(x) ∧ Dept(d))) ,

∀x, d : (mg(y, d)→ (Mgr(y) ∧ Dept(d))) .

Example: Cardinality Constraints

∀m : (TMgr(m)→ ∃d : mg(m, d)) ,

∀m, d1, d2 : ((mg(m, d1) ∧mg(m, d2))→ d1 = d2) ,

∀d : (Dept(d)→ ∃m : mg(m, d)) ,

∀d,m1,m2 : ((mg(m1, d) ∧mg(m2, d))→ m1 = m2) ,

∀d : (Dept(d)→ ∃x : wf(x, d)) ,

∀x : (Emp(x)→ ∃d : wf(x, d)) ,

∀x : ((∃d1, d2, d3, d4 : wf(x, d1) ∧ wf(x, d2) ∧ wf(x, d3) ∧ wf(x, d4))→
(d1 = d2 ∨ d1 = d3 ∨ d1 = d4 ∨ d2 = d3 ∨ d2 = d4 ∨ d3 = d4))

511

Example: Further Constraints

• a person is subordinate to the manager of each department he/she works for:

∀x, y, d : wf(x, d) ∧mg(y, d) ∧ x 6= y → sub(x, y)

• should we have mg ⊆ wf, or mg ∩ wf = ∅?
The first is OK: ∀y, d : mg(y, d)→ wf(y, d)

• add axioms that guarantee irreflexivity and transitivity for “subordinate”:
∀x : ¬sub(x, x) and ∀x, y, z : (sub(x, y) ∧ sub(y, z)→ sub(x, z)).

Constraints that are not added

• cardinality of “subordinate”? “Every employee has a boss”

∀x : Emp(x)→ ∃y : sub(x, y)

This causes a semantical problem with the boss: an infinite chain is needed - leading
either to only infinite models, or a cycle.

• add an axiom that guarantees that the company has at least one employee:
∃x : Emp(x) – then the set of axioms is unsatisfiable.

• such investigations help to validate an ontology.
Ontology design tools allow to check for inconsistency, empty classes etc.

512

Axiomatization of the “company” scenario

Denote the conjunction of the above formulas by Axiomscompany.

• For any database/knowledge base S using this scenario, S |= Axiomscompany is
required.

• a database then describes the individuals and their individual properties in this world.

513

Example: Instances

• The signature is extended by constant symbols for all named elements of the domain:

Σmy_company := Σcompany ∪ {Alice/f0, Bob/f0, John/f0, Mary/f0, Tom/f0, . . . , Sales/f0, . . . }

(Note: the signature symbols are capitalized, wereas alice, bob etc denote the elements
of the domain).

• first-order structure S = (I,D) as ...

• Domain D = {alice, bob, john, mary, tom, larry, sales, prod, mgm}

• map constant symbols (nullary function symbols) to D:
I(Alice) = alice, I(Bob) = bob, . . . , I(Sales) = sales,

• map unary predicates to subsets of the domain D:
I(Emp) = {alice, bob, john, mary, tom, larry}, I(Mgr) = . . . , I(Dept) = . . . , . . .,

• map binary predicates to subsets of D ×D:

I(wf) = {(alice, sales), (mary, sales), (larry, sales), (bob, prod), (bob, sales),

(tom, prod), (john, mgm) }
I(mg), I(sub), I(name), I(salary) see Slide 505.

514

AXIOMATIZATION OF A SCENARIO

The axiomatization of a scenario (general formulas + a given instance) consists of

• the general axiomatization of the entity types/classes and relationships,

• literals describing the individuals (class membership and relationships),

• closure formulas that state that no other things/relationships exist.

DB Queries vs. Reasoning

• queries:

– for which X,Y does S |= F (X,Y) hold?

– against a single instance,

– this allows algebraic evaluation (if the query can expressed in the algebra).

• reasoning:

– for which X,Y does a specification F logically imply that F (X,Y) holds?

– There are all models of F considered (although, if it is a complete specification with
closure axioms, there is only one model).

– allows “querying” general specifications for e.g. guaranteeing correctness properties.

515

Example: Company Ontology

The axiomatization of “my company” with the given individuals is then

Axiomscompany ∧ Emp(Alice) ∧ Emp(Bob) ∧ . . . ∧ Dept(Sales) ∧ . . . ∧
wf(Alice,Sales) ∧ . . . ∧mg(Alice,Sales) ∧ . . . ∧
∀x : Emp(x)→ (x = Alice ∨ x = Bob ∨ . . .) ∧
∀x : Dept(x)→ (x = Sales ∨ x = Prod ∨ . . .) ∧
∀x, y : wf(x, y)→ ((x = Alice ∧ y = Sales) ∨ . . .) ∧ . . .

Example: Instances (Alternative)

• alternatively, instead of constant symbols, all individuals can be described by existentially
quantified variables:

Axiomscompany ∧
∃alice, bob, . . . , sales, . . . : (name(alice, “Alice”)∧. . .∧Emp(alice)∧Emp(bob)∧. . .∧Dept(sales)∧
. . . ∧Mgr(alice) ∧ . . . ∧ wf(alice, sales) ∧ . . . ∧mg(alice, sales) ∧ . . . ∧ sub(mary, alice) ∧ . . .)

516

9.2 Logical Entailment

Definition 9.1
Let F and G two (closed) formulas over a signature Σ. We write

F |= G (F logically entails G)

if for each structure S over Σ, if S |= F then also S |= G. ✷

Example

∀x : ((p(x)→ q(x)) ∧ (q(x)→ r(x)))) |= ∀x : (p(x)→ r(x))

Logical Entailment as Proof

• usually F is a “large” conjunctive formula, containing the specification, and G is a “claim”
to be shown to be a logical consequence of F .

• note: for an interpretation I, the notation I |= F from the previous section can be
regarded as representing I by its axiomatization φI (cf. Slide 515) and then

I |= F ⇔ φI |= F .

517

LOGICAL ENTAILMENT IN A KNOWLEDGE BASE

• for a FOL knowledge base, it is not always necessary to give all facts explicitly,

• axioms and some “basic” facts are often sufficient,

• further facts can be proven/added to the KB by logical entailment,

• further universally quantified formulas can be derived,

• entailment is also relevant when verifying consistency (satisfiability) of an ontology
specification.

(most of this: see later)

How to Prove Entailment?

• it is not necessary (and not possible) to compute all models of F to check if F |= G,
instead

• prove it on the semantical level by symbolic reasoning ...

518

LOGICAL ENTAILMENT: EXAMPLE

Consider Axiomscompany ∧mg(Alice,Sales).

Does Emp(Alice) hold in each model S = (D, I) of Axiomscompany (= is it logically entailed by
the axioms)?

• S |= mg(Alice,Sales) implies (I(Alice), I(Sales)) ∈ I(mg), i.e., (alice, sales) ∈ I(mg).

• S |= ∀y, d : mg(y, d)→ wf(y, d) (axiom)
implies that for all d1, d2 ∈ D, S |={y/d1,d/d2} mg(y, d)→ wf(y, d) which means that if
S |={y/d1,d/d2} mg(y, d), then also S |={y/d1,d/d2} wf(y, d). The former is equivalent to
(d1, d2) ∈ I(mg) that we have shown above for (alice, sales). Thus, we know that
(alice, sales) ∈ I(wf).

• With the same argument as above, use the axiom
S |= ∀x, d : (wf(x, d)→ (Emp(x) ∧ Dept(d))) for concluding that alice ∈ I(Emp) which
means that S |= Emp(Alice).

519

REASONING

• prove by symbolic reasoning that a formula is implied by a knowledge base:
Algorithms for deriving entailed facts or formulas, or for checking entailment by
automated, symbolic reasoning.

VALIDITY AND DECIDABILITY

• preferably use a decidable logic/formalism

• with a complete calculus/reasoning mechanism

• Propositional logic: decidable

• First-order logic: undecidable

• Horn subset (= positive rules, with a special model theory) of FOL: decidable;
with negation in the body: still decidable

• 2-variable-subset of FOL: decidable

• Description Logic subsets of FOL: range from decidable to undecidable

520

A SIMPLE NATURAL REASONING SYSTEM

Inference rule “Modus Ponens”:

∀x̄ : (P → Q) , P ′

σ(Q)
where P ′ = σ(P) for a substitution σ.

Consider again the derivation from Slide 519:

∀y, d : (mg(y, d)→ wf(y, d)) , mg(Alice,Sales)

wf(Alice,Sales)

∀x, d : (wf(x, d)→ (Emp(x) ∧ Dept(d))) , wf(Alice,Sales)

Emp(Alice) ∧ Dept(Sales)

• forward-reasoning,

• uses only knowledge by implication rules “if . . . then . . . ”.

– no disjunction (disjunction is not part of daily common reasoning, but merely part of
puzzles like Sudoku),

– no existential quantification (reasoning with things that are known to exist but cannot
be named explicitly)

521

... towards automated symbolic reasoning:

Prenex Form

Definition 9.2
A formula F is in prenex form if it has the form

F = Q1x1 Q2x2 . . . Qnxn : G

where each Qi ∈ {∀, ∃} is a quantifier and the xi are variables, and G is quantifier-free. ✷

Theorem 9.1
For each formula F , there is an equivalent formula F ′ which is in prenex form. ✷

Proof: by induction. Pull quantifiers to the outside.

Next step: handling existentials:

• Consider ∀x : (Emp(x)→ ∃d : wf(x, d)) and ∀d : (Dept(d)→ ∃m : mg(m, d))

• for x = Alice: “the department Alice works for”, and “the person that manages this
department”

⇒ implicit way to name things: fdept(Alice) and fmanages(fdept(Alice)).

522

SKOLEMIZATION

Consider formula F from Example 8.6(3): F = ∀x∃y : p(x, y).

When talking about models of it, “given a certain x1, there is an y1 such that ...”.

One can imagine a (new) function f which returns “the (or one of them, if there are many) y
for a given x”: f(x1) := y1.

Definition 9.3 (Skolem Form)
[after Thoralf Skolem, a Norwegian Mathematician]

For a formula F in prenex form, its Skolem form sk(F) is defined as follows:

For each subformula of the form G = ∃y : H(x1, . . . , xn, y) where the xi are the free variables
of H that are universally quantified by a subformula F ′ of F that contains G, replace each
occurrence of y by the term f(x1, . . . , xn) where f is a new function symbol. ✷

Example 9.1
Consider F = ∀x∃y∀z : p(x, y, z).
For skolemizing y consider G(x) = ∃y∀z : p(x, y, z) and replace y by f(x).

sk(∀x∃y∀z : p(x, y, z)) = ∀x, z : p(x, f(x), z) ✷

523

Notes

• The definition is originally applied only to prenex normal form
(i.e. all quantifiers on top, quantifier-free body);

• it holds in the same way for formulas that are not in prenex form (but the proof uses
prenex form).

• There is an improvement:
take only those universally quantified variables that are free in the body of the respective
quantified subformula ∃y : F (xi1 , . . . , xim).

• Further examples: Slide 528.

Usage of Skolemization

The formula sk(F) is obviously not equivalent with F (it even uses an extended signature),
but:

Theorem 9.2
For every formula F (in prenex form), sk(F) is satisfiable if and only F is satisfiable. ✷

Idea: extend the interpretation I with the new function symbols by mapping f(d1, . . . , dn) to a
d ∈ D which exists for the given x1, . . . , xn.

524

Proof ... needs a definition and a lemma before:

Definition 9.4 (Substitution)
A substitution is a mapping σ : Variables→ TermΣ.

For a formula F , variables x1, . . . , xn and terms t1, . . . , tn, the application of
σ = [x1/t1, . . . , xn/tn] to F , written as F [x1/t1, . . . , xn/tn], replaces every free occurrence of
xi in F by ti.

A substitution is collision-free if the mapped variables do not occur in any of the replacement
terms. ✷

Example: σ = [x/f(a), y/g(v, 3), z/f(g(a, w))] is collision-free, and
σ(p(x, y, z)) = p(f(a), g(v, 3), f(g(a, w))).

Lemma 9.1 (Substitution Lemma)
For every structure S, and every variable assignment β, every terms s, t, every variable x, and
every formula F ,

• S(s[x/t], β) = I(s, βd
x) where d = S(t, β),

• S |=β F [x/t]⇔ S |=βd
x
F where d = S(t, β). ✷

(Proof by structural induction over s and F)

525

Proof of Theorem 9.2

Induction over the number of replacements, top-down (replacing outer ∃-quantifiers first).
Consider F in prenex form
F = ∀x1, . . . , xn∃y : G(x1, . . . , xn, y), and its skolemization
F ′ = ∀x1, . . . , xn∃y : G[y/f(x1, . . . , xn)].

“⇒”: Assume that F is satisfiable; there exists a structure S = (I,D) s.t. S |= F .

Thus, for all d1, . . . , dn ∈ D,
S |=β ∃y : G(x1, . . . , xn, y)

where β = {x1 7→ d1, . . . , xn 7→ dn}.
This is exactly the case if there is a d ∈ D (dependent on the di) s.t.

S |=βd
y
G(x1, . . . , xn, y) .

Define a new structure S ′ = (I ′,D) such that I ′ coincides with I wherever I is defined,
and defines the new n-ary function symbol f to map every n-tuple (d1, . . . , dn) to the
above d (which depends on the di).
(using the Axiom of Choice which guarantees the existence of this function).

526

Proof of Theorem 9.2

“⇒” (cont’d): By the substitution lemma,

S ′ |=β G(x1, . . . , xn, y)[y/f(x1, . . . , xn)

an since this holds for all d1, . . . , dn ∈ D,

S ′ |= ∀x1, . . . , ∀xn : G(x1, . . . , xn, y)[y/f(x1, . . . , xn)],

i.e., S ′ |= F ′ – and F ′ is satisfiable (and there is a constructive description how (a
possible) S ′ is obtained by extending S).

“⇐”: analogously.
S ′(f(x1, . . . , xn)) is the “witness” element of the domain that satisfies the ∃y.

What is this good for??

• symbolic reasoning: the skolemized formula is sufficient to develop a “typical” model of
the formula with the relationships between its constants in tableau proofs.

527

Example 9.2
Consider the formula

F = ∀x∃y : (p(x, y) ∧ ∃z : (r(z) ∧ ¬q(x, y, z)))

• prenex form: ∀x∃y∃z : (p(x, y) ∧ r(z) ∧ ¬q(x, y, z))
(aside: this is the same logical transformation as the “push-into-exists” rule of RANF)

• skolemize with fy and fz:
sk(F) = ∀x : (p(x, fy(x)) ∧ r(fz(x)) ∧ ¬q(x, fy(x), fz(x))).

• understand that it is sufficient to describe z as f(x), not as a function of x and y:
with y → f1(x) and z → f2(x, y), follows z → f2(x, f1(x)) which is effectively a function
only of x. ✷

528

Example 9.3
Consider the formula

F = (∀x1∃y : p(x1, y)) ∧ (∀x2∃z : (q(x2, z))

• prenex form (one alternative): ∀x1, x2∃y, z : (p(x1, y) ∧ q(x2, z))

• skolemize with fy and fz:
∀x1, x2 : (p(x1, fy(x1, x2)) ∧ q(x2, fz(x1, x2)))
which is a lot longer than necessary!

• skolemize without intermediate prenex step:
(∀x1 : p(x1, fy(x1))) ∧ (∀x2 : q(x2, fz(x2))) ✷

529

Aside: Skolem Normal Form

Definition 9.5 (Skolem Normal Form)
A formula is in Skolem Normal Form if it is

• closed (i.e., no free variables),

• of the form ∀x1 . . .∀xn : B,

• and B is in conjunctive normal form (CNF), i.e., of the form
(a11 ∨ . . . ∨ a1k1

) ∧ . . . ∧ (am1 ∨ . . . ∨ amkm
) ✷

• every formula F can be transformed in an equivalent formula F ′ in Skolem Normal Form.

• Skolem Normal Form is used for Resolution Proofs.

• in this lecture, we will not apply resolution to arbitrary inputs, but only to logical rules
(Datalog rules) – which come automatically in CNF (and without function symbols).

• the idea of skolemization “on demand” is also used in Tableau proofs.

530

REASONING

• prove by symbolic reasoning if a formula F is implied by a knowledge base K (which is a
set of closed formulas):

K |= F ?

• Equivalently, let K denote the conjunction of all formulas in K:

∅ |= K → F does K → F hold in all interpretations?

• Equivalently,
show that there is no interpretation where ¬(K → F) holds.

• Equivalently,
show that ¬(K → F) (which is the same as K ∧ ¬F , i.e. a model of K ∧ ¬F would be a
model of K and not of F) is unsatisfiable.

⇒ try to systematically develop a model of K ∧ ¬F .
If this fails, then, K ∧ ¬F is unsatisfiable.

531

9.3 First Order Tableau Calculus

• Systematic construction of a model of a formula.

• Goal: show that this is not possible. Otherwise a counterexample is generated.

• counterexamples can be interpreted as answers to a query.

Start the tableau with a set F of formulas:

input set F
F for all F ∈ F

The tableau is then extended by expansion rules.

532

TABLEAU RULES

Original Definition: Raymond Smullyan: First-Order Logic. Springer, New York, 1968.

α-rule (conjunctive): F ∧G
F

G

¬(F ∨G)
¬F
¬G

β-rule (disjunctive): F ∨G
F G

¬(F ∧G)
¬F ¬G

γ-rule (universal): ∀x : F

F [X/x]

¬∃x : F

¬F [X/x]

where X is a new variable.

Closure Rule:
σ(A)

¬σ(A)
⊥

(σ a substitution)

apply σ to the whole tableau.
(Notation usually ✷σ listing
the variable substitutions in
σ, see examples below)

δ-rule (existential): ∃x : F

F [f(free(F))/x]

¬∀x : F

¬F [f(free(F))/x]

where f is a new Skolem function symbol.
Note: δ-Rule according to Reiner Hähnle, Peter H. Schmitt: The Liberalized delta-Rule in
Free Variable Semantic Tableaux. J. Autom. Reasoning 13(2): 211-221 (1994)

533

RESULT

Definition 9.6
A branch T in a tableau T is closed, if it contains the formula ⊥.
A tableau T is closed if every branch is closed. ✷

CORRECTNESS

Definition 9.7
A Tableau T is satisfiable it there exists a structure S = (I,D) such that for every assignment
β of the free variables there is a branch T in T such that S |=β T holds. ✷

Theorem 9.3
If a tableau T is satisfiable, and T ′ is obtained from T by application of one of the above
rules, then T ′ is also satisfiable. ✷

Examples, Proof: to do in the lecture, sketch of two cases on Slide 535.

Issues: completeness of the method (only possible for decidable logics) and termination of
the algorithm: how to detect when a tableau cannot be closed, and to restrict the expansion to
promising rule applications.

534

CORRECTNESS OF THE FOL TABLEAU CALCULUS: PROOF SKETCH

Assume T satisfiable; T ′ obtained from applying a tableau rule. We show only two cases:

• Disjunction: Application of the rule to a formula of the form A ∨B. There is an
interpretationM such that for each assignments β of free variables, there is some branch
T (= the set of formulas on this branch) such thatM |=β T . If T is not the branch of T
that is extended in this step, T does not change. Otherwise, M |=β A ∨B . By definition,
M |=β A orM |=β B. Thus, for (at least one) one of the two branches, T ∗

1 or T ∗
2 obtained

from the application,M |=β T
∗.

• Existential: Application of the rule to a formula of the form ∃y : F (X1, . . . , Xn, y) to a
branch T . Again, consider any β (which assigns β(X1), . . . , β(Xn) to the free variables in
F) such thatM |=β T .

This means, for every β(X1), . . . , β(Xn), there is some element of the universe that “fits”
for the existential formula. Extend the signature with a new n-ary “Skolem” function fF
that takes the values of X1, . . . , Xn as input and is interpreted to return the appropriate
element (and that returns an arbitrary value for those β′ whereM 6|=β′ T).

The extended branch T ∗ appends F (X1, . . . , Xn, fF (X1, . . . , Xn)) to T .

For the extended interpretationM′ (which is the same asM except for the new function),
M′ |=β T

∗ wheneverM |=β T .

535

TABLEAU CALCULUS: EXAMPLE

Consider again the derivation from Slide 519: Does

Axiomscompany ∧mg(Alice,Sales). imply Emp(Alice)?

• start the tableau with Axiomscompany, mg(Alice,Sales), and the negated claim
¬Emp(Alice),

• see tableau next slide.

• this example: follow human reasoning:

– the proof steps are known,

– “apply” ∀y, d : (mg(y, d)→ wf(y, d)) with y/Alice, d/Sales, “obtain” wf(Alice,Sales)

– “apply” ∀x, d : (wf(x, d)→ (Emp(x) ∧ Dept(d))) for x/Alice, d/Sales and obtain
Emp(Alice).

• the tableau illustrates the application of “rules”:

– close left branch “not body” immediately, propagate closure substitution to the right
branch.

⇒ illustrative, but naive example driven by human forward reasoning.

536

Tableau Calculus: Example
∀y, d : (mg(y, d)→ wf(y, d))

∀x, d : (wf(x, d)→ (Emp(x) ∧ Dept(d)))

mg(Alice,Sales)

¬Emp(Alice) (∗∗)
|

mg(Y1, D1)→ wf(Y1, D1)

/

¬mg(Y1, D1)

✷{Y1 → Alice, D1 → Sales}

\
wf(Y1, D1)

wf(Alice,Sales)

|
wf(X2, D2)→ (Emp(X2) ∧ Dept(D2)))

/

¬wf(X2, D2)

✷{X2 → Alice, D2 → Sales}

\
Emp(X2) ∧ Dept(D2)

Emp(Alice) ∧ Dept(Sales)

Emp(Alice) (∗∗)
Dept(Sales)

✷(∗∗)

537

Automated Reasoning

• do not close branches immediately by replacing variables

– if there are multiple possible closing substitutions, keep the variable until the whole
tableau can be closed,

• this also illustrates the use of skolem functions better.

EXAMPLE: TABLEAU EXPANSION FOR AN EXISTENTIAL VARIABLE

Consider again the Company scenario. Show: for every employee x, there is an employee y
(x = y allowed) such that sub(x, y) holds. (sketch: for every employee x there is a at least a
“primary” department fdept(x) where this person works, and every department d has a
manager fmg(d) that manages the department and that thus is a subordinate of x).

Note that in case that x works in several departments, any of them can be chosen for fdept(x).
e is subordinate to fmg(fdept(x)).

Tableau: next slide.

• again: followed human reasoning steps.

• automated reasoning: how to choose which axioms to use?

538

∀x : (Emp(x) → ∃d : wf(x, d))

∀d : (Dept(d) → ∃m : mg(m,d))

∀x, d : (wf(x, d) → (Emp(x) ∧ Dept(d))) ,

∀x, y, d : wf(x, d) ∧ mg(y, d) → sub(x, y)

∃e : Emp(e) ∧ ¬∃y : sub(e, y) claim – refute it

|
Emp(e0) ∧ ¬∃y : sub(e0, y) e0 from Skolemization

Emp(e0)

¬∃y : sub(e0, y)

¬sub(e0, Y0)

|
Emp(X1) → ∃d : wf(X1, d))

/

¬Emp(X1)

close that only later ...

\
∃d : wf(X1, d))

wf(X1, fdept(X1))

wf(X2, D2) → (Emp(X2) ∧ Dept(D2)))

/

¬wf(X2, D2)

✷ {X2 → X1,D2 → fdept(X1)}

\
Emp(X2) ∧ Dept(D2)

Emp(X1)

Dept(fdept(X1))

/

Dept(D3) → ∃m : mg(m,D3))

/

¬Dept(D3)

✷ {D3 → fdept(X1)}

\
∃m : mg(m,D3))

mg(fmgr(D3), D3)

... and now replace D3

/

mg(fmgr(fdept(X1), fdept(X1))
/

(wf(X4, D4) ∧ mg(Y4, D4)) → sub(X4, Y4)

/

¬(wf(X4, D4) ∧ mg(Y4,D4))

/ \
¬wf(X4, D4) ¬mg(Y4, D4)

✷{X4 → X1,

D4 → fdept(X1)}
✷{Y4 → fmgr(fdept(X1)),

D4 → fdept(X1)}

\
sub(X4, Y4)

sub(X1, fmgr(fdept(X1)))

|
close now everything by

{X1 → e0,
Y0 → fmgr(fdept(e0))}

539

TABLEAU CALCULUS: EXAMPLE

Consider again the tableau proof from Slide 536:

Does Axiomscompany ∧mg(Alice,Sales) imply Emp(Alice)?

• again, start the tableau with Axiomscompany, mg(Alice,Sales), and the negated claim
¬Emp(Alice).

• automated reasoning: how to choose which axioms to use?

• consider the “goal” ¬Emp(Alice):
clearly, some formula (here: rule) that derives Emp(Alice) is needed. Start with
expanding ∀x, d : (wf(x, d)→ (Emp(x) ∧ Dept(d))).

• close the right branch with x/Alice, get a new “goal” ¬wf(Alice, D) in the left branch. Now,
some formula (here: rule) that derives wf(Alice, _) is needed. Expand
∀y, d : (mg(y, d)→ wf(y, d)).

• see tableau next slide.

540

Tableau Calculus: Example
Axiomscompany

mg(Alice,Sales)

¬Emp(Alice) (∗∗)
|

∀x, d : (wf(x, d)→ (Emp(x) ∧ Dept(d)))

wf(X1,D1)→ (Emp(X1) ∧ Dept(D1)))

/

¬wf(X1, D1)

|
¬wf(Alice, D1)

∀y, d : (mg(y, d)→ wf(y, d))

mg(Y2, D2)→ wf(Y2, D2)

/

¬mg(Y2, D2)

|
¬mg(Alice, D1)

✷{D1 → Sales}

\
wf(Y2, D2)

✷{Y2 → Alice, D2 → D1}

\
Emp(X1) ∧ Dept(D1)

Emp(X1) (∗∗)
Dept(D1)

✷{X1/Alice}(∗∗)

541

Comments

Consider again the tableaux from Slides 537 and 541.

• both used only formulas of the form P → Q where P and Q are conjunctions,

– forward reasoning: close left branch immediately,

– backward reasoning: close right branch immediately,

⇒ linear proofs (if the correct rule is always chosen)

⇒ preview:
the resolution calculus provides an efficient calculus for such cases where only rules are
used (Datalog)

• tableaux have higher expressiveness: can handle full disjunction etc.:
Description Logics and OWL (Semantic Web) use tableaux

542

NON-CLOSED TABLEAUX: (TYPICAL) SAMPLE MODELS

Is the axiom ∀x : ¬(p(x) ∧ q(x)) together with the “database” {p(a), q(b)} consistent?
p(a)

q(b)

∀x : ¬(p(x) ∧ q(x))

¬(p(X1) ∧ q(X1))

/

¬p(X1)

✷ {X1 → a}

\
¬q(X1)

¬q(a)

¬(p(X2) ∧ q(X2))

/

¬p(X2)

¬p(b)

\
¬q(X2)

✷ {X2 → b}

• there is no way to close the tableau

• its non-closed path describes a model of the input formula
(where ¬q(a) and ¬p(b) hold which are not specified in the database – open world
reasoning)

543

TABLEAU CALCULI: APPLICATION FOR QUERY ANSWERING

Consider the database {∀x : (p(x)→ q(x)), p(a), q(b)} and the query ?− q(X).

∀x : (p(x)→ q(x))

p(a)

q(b)

¬q(X) add the negated query with a free variable

• collect all substitutions of X that can be used to close the tableau.

• note: the substitution can comprise a the application of a Skolem function. Then, the
“answer” can only be described as a thing that satisfies a certain existential formula.

Consider ∀x : (person(x)→ (∃y : person(y) ∧ father(x, y))),
∀x, y, z : ((father(x, y) ∧ father(y, z))→ grandfather(x, z)),
person(john), person(jack), father(john,jack) and the query ?- grandfather(john,X).

544

TABLEAU CALCULI IN GENERAL

• intuitive idea

• can be designed in this way for any logic (modal logics, description logics etc.)

• implementations use more efficient heuristics

Examples + Exercises

• prove that
∀x : ((p(x)→ q(x)) ∧ (q(x)→ r(x)))) |= ∀x : (p(x)→ r(x))

and
∀x : ((p(x)→ q(x)) ∧ (q(x)→ r(x)))) |= (p(a)→ r(a))

• Consider the italian-vs-english ontology from Slide 546. Consider the statement “all
Italians are lazy”. Prove it or give a counterexample.

• Consider the italian-professors ontology from Slide 547. Is there anything interesting to
prove?

545

EXAMPLE: ITALIANS AND ENGLISHMEN

Person

Italian English

Lazy LatinLover Gentleman Hooligan

{disjoint}

{disjoint,covering}

Exercise: write down as concise as possible everything that is implied by this ontology in text,
set theory and first-order logic.

[by Enrico Franconi, REWERSE Summer School 2005]

[see Slide 548 for an excerpt and a relevant proof]

546

.

EXAMPLE: ITALIAN PROFESSORS

Italian

Lazy Mafioso LatinLover ItalianProf

{disjoint,complete}

disjoint

disjoint

Exercise: write down as concise as possible everything that is implied by this ontology in text,
set theory and first-order logic.

[by Enrico Franconi, REWERSE Summer School 2005]

547

Tableau Proof (Example)

Tableau for the italian-vs-english ontology from Slide 546 and
the statement “all Italians are lazy”.

∀x : italian(x)→ ¬english(x) [1]

∀x : english(x)→ ¬italian(x) [2]

∀x : italian(x)→ (lazy(x) ∨ latinlover(x)) [3]

∀x : lazy(x)→ ¬latinlover(x)) [4]

∀x : latinlover(x)→ ¬lazy(x) [5]

∀x : latinlover(x)→ gentleman(x) [6]

∀x : gentleman(x)→ english(x) [7]

∃x : italian(x) ∧ ¬lazy(x) [8] (negation of the claim)

| (skolemization of [8])

italian(c) ∧ ¬lazy(c)

italian(c)

¬lazy(c)

| (use [3])

∀x : italian(x)→ (lazy(x) ∨ latinlover(x))

italian(X1)→ (lazy(X1) ∨ latinlover(X1))

/

¬italian(X1)

✷ {X1 → c}

\
lazy(X1) ∨ latinlover(X1)

lazy(c) ∨ latinlover(c)

/

lazy(c)

✷

\
latinlover(c)

Continue right branch using [6], [7] and finally [1] or [2].

548

TABLEAUX AND CONJUNCTIVE QUERY ANSWERING

“All organizations that have their headquarters in the capital of a European member country”

Using a simplified Mondial signature:

F (org) = ∃cty, ctry(headq(org, cty, ctry) ∧ capital(ctry, cty) ∧
enc(ctry, “Europe”) ∧member(ctry, org))

Start the tableau with ¬F (X).

549

¬∃cty, ctry(headq(org, cty, ctry) ∧ capital(ctry, cty) ∧ enc(ctry, “Europe”) ∧member(ctry, org))

|
¬(headq(Org,Cty, Ctry) ∧ capital(Ctry,Cty) ∧ enc(Ctry, “Europe”) ∧member(Ctry,Org))

(β-rule + reordering)

/ / \ \
¬enc(Ctry, “Europe”) ¬capital(Ctry,Cty) ¬headq(Org,Cty, Ctry) ¬member(Ctry,Org))

• Close left branch by “local answer set” Ctry/’D’, Ctry/’B’, etc.

• propagate answer set to 2nd branch, close for each Ctry with appropriate value for Cty,
e.g. (Ctry/’D’, Cty/’Berlin’) and (Ctry/’B’, Cty/’Brussels’).

• propagate answer sets to 3rd branch, close for each (Ctry, Cty) with appropriate
organization: (Org/’EU’, Ctry/’B’, Cty/’Brussels’),
(Org/’NATO’, Ctry/’B’, Cty/’Brussels’), – no tuple for ’Berlin’.

• propagate answer sets to 4th branch, closes if Ctry is a member of Org.

⇒ in this “simple” case (conjunctive query), the evaluation results in
(σ[Continent=’Europe’](enc)) ⊲⊳ capital ⊲⊳ headq ✄< member

Exercise: do the same for “. . . of a European or Asian member country”.

550

Tableaux and body → head Rules

Consider again the tableaux from Slides 537 and 541.

• all used axioms are of the form ∀x1, . . . , xn : body → head,

• plus a (negated) query (“goal”) ¬F (X̄),

• standard tableau pattern:

∀x1, . . . , xn : body(x1, . . . , xn)→ head(x1, . . . , xn)

body(X1, . . . , Xn)→ head(X1, . . . , Xn)

¬body(X1, . . . , Xn) ∨ head(X1, . . . , Xn)

/ \
¬body(X1, . . . , Xn) head(X1, . . . , Xn)

• close one branch immediately (forward: left, backward: right),
obtain a set of tuples binding (X1, . . . , Xn) (i.e., that satisfy body), propagate to the other
branch,

• continue with next axiom.

• Again, the tableau is closed for all bindings of X̄ that are answers.

551

SUMMARY: TABLEAU REASONING

• covers full first-order logic,

• theoretically incomplete,

• most practical cases result in acceptable performance,

• reasons for more complex tableaux:

– search for proof tableaux/trees

– disjunction (explore several branches where only one contributes)

– multiple instantiations of universally quantified variables

* needed for self-joins, transitivity,

* especially in combination with skolemized ∃-terms.

• simple patterns (rules, conjunctive body/head) result in effectively nearly-algebraic
evaluation.

• But: for simple patterns one does not need a full first-order reasoner.

552

PROPERTIES OF FIRST-ORDER LOGIC DECISION PROCEDURES

• calculi (=algorithms) for checking if F |= G

(often by proving that F ∧ ¬G is unsatisfiable)

• write F ⊢C G if calculus C proves that F |= G.

• Correctness of a calculus: F ⊢C G⇒ F |= G

• Completeness of a calculus: F |= G⇒ F ⊢C G

• there are complete calculi and proof procedures for propositional logic (e.g., Tableau
Calculus or Model Checking)

• if a logic is undecidable (like first-order logic) then there cannot be any complete calculus!

What to do?

⇒ use an undecidable logic and a correct, but (theoretically) incomplete calculus.

• e.g. Software Verification.

⇒ use a decidable logic (i.e., weaker than FOL).

• often a restricted set of formulas (Description Logic [Semantic Web], Datalog Variants
[Database Theory])

553

ASIDE: WHY “FIRST-ORDER”-LOGIC?

Recall:

• there is a domain D. Functions and precidates talk about elements of D.

• there is no way to talk about functions or predicates.

Higher-Order-Logics

• the elements of the domain D are “first-order things”

• sets, functions and predicates are “second-order things”

• predicates about predicates are higher-order things

• higher-order logics can be used for reasoning about metadata

Example

• Transitivity as a property of predicates is second order:
∀p : transitive(p)→ (∀x, z : (∃y : (p(x, y) ∧ p(y, z))→ p(x, z)))

Note that transitivity of a certain predicate is first-order:
∀x, z : ((∃y : (ancestor(x, y) ∧ ancestor(y, z)))→ ancestor(x, z))

554

Aside: Induction Axiom as Example for Second Order Logic

• a well-founded domain d (i.e., a finite set of minimal elements (for which min(d,x) holds)
from which the domain can be enumerated by a successor predicate
(Natural numbers: 1, succ(i,i+1))

• well-founded: unary 2nd-order predicate over sets

• The induction axiom as a 2nd order logic formula:

∀p, d : (well-founded(d) ∧ (∀x : min(d, x)→ p(x)) ∧ (∀x, y : p(x) ∧ succ(x, y)→ p(y)))→
(∀x : d(x)→ p(x))

For natural numbers:

∀p : (p(1) ∧ (∀x : p(x)→ p(x+ 1)))→ (∀x ∈ IN : p(x))

555

Aside: Paradoxes can be formulated in 2nd Order Logic

“X is the set of all sets that do not contain themselves”

X = {z : z /∈ z}
A set “is” a unary predicate: X(z) holds if z is an element of X
(for example, classes, i.e., Person(x), City(x))

Logical characterization of X: X(z)↔ ¬z(z),

applied to z := X – is X in X? X(X)↔ ¬X(X).

... can neither be true nor false.

How to avoid paradoxes

Paradoxes can be avoided if each variable either ranges over first-order things (elements of
the domain) or over second-order things (predicates).

556

... now, back into the database area:

Chapter 10
Datalog Knowledge Bases I

In this section:

• Nonrecursive Datalog with Negation:
equivalent to the relational algebra, to the relational calculus and to SQL.

• Stratified Recursive Datalog with Negation
equivalent to the relational algebra or SQL with recursion (e.g., transitive closure)

In later sections:

• the really new things: well-founded and stable model semantics.

557

CONJUNCTIVE QUERIES

• F (X1, . . . , Xn) = ∃Y1, . . . , Ym : p1(. . .) ∧ . . . ∧ pk(. . .) (note constants and variables may
occur in the pi arguments)

• Note: most systems allow also atomic comparisons over built-in datatypes:
F (X1, . . . , Xn) = ∃Y1, . . . , Ym : p1(. . .) ∧ . . . ∧ pk(. . .) ∧ atomic comparisons

• equivalent: SPJR-Algebra (selection, projection, join, renaming)

• SQL: broad SELECT X1,...,Xn FROM p1, . . . , pn WHERE cond

where cond contains the join conditions and selection conditions

• efficient evaluation using indexes etc.

• Restricted expressiveness:

– only very restricted negation (if at all) of the form xiθxj , xiθc where θ ∈ {6=, <,≤, >,≥}
– no negation/set difference,

– no universal quantification,

– no disjunction/set union,

– no recursion/no transitive closure.

558

XSB: LET’S START WITH CONJUNCTIVE QUERIES

• a PROLOG dialect developed at State Univ. of NY at Stony Brook (SUNYSB).
(so one can actually do everything that is allowed in PROLOG, but we use only Datalog)

• XSB extends the original SB-PROLOG with tabled resolution and HiLog (higher-order
logic programming).

• open source: http://xsb.sourceforge.net/

559

Starting XSB at IFI

Installed in the CIP Pool:

• alias xsb=’rlwrap ~dbis/LP-Tools/XSB/bin/xsb’ ← put this into .bashrc

• user@bla:∼$ xsb

[xsb_configuration loaded]
[sysinitrc loaded]
XSB Version 3.3.4 (Pignoletto) of July 2, 2011
[i686-pc-linux-gnu 32 bits; mode: optimal; engine: slg-wam; scheduling: local]
[Patch date: 2011/07/08 04:32:08]
| ?-

• ?- [mondial]. loads the content of a file (from the current directory).

• ?- country(CN,C,Pop,Area,Cap,CapProv). state a query

• <return>to return to XSB shell

• any key + <return>to get next answer

• CTRL-D: leave XSB

560

Datalog Syntax

Consider a CQ with only atoms in the body (i.e., positive!)

F (X1, . . . , Xn) = ∃Y1, . . . , Ym : cq(X1, . . . , Xn, Y1, . . . , Ym)

Write
?- cq(X1, . . . , Xn, _Y1, . . . , _Ym).

where

• the Xi are the free variables,

• replace Yi by _Yi if it occurs in more than one atom,

• replace Yi by _ if it occurs only once (“don’t-care-variables”).

Example: countries whose population is > 1000000 and the capital population is not known:

?- country(CN,C,_Cap,_CapProv,_,_Pop), city(_Cap,C,_CapProv,null,_,_,_),
_Pop > 1000000.

Note: null is not a built-in XSB term, but just a constant like 1, bla, ’Bla’.

561

10.1 Datalog Positive Conjunctive Queries – Formal
Semantics

Definition 10.1
Given a relational schema R and a (safe) “pure” CQ with only relational atoms in the body
(i.e., positive!, no comparisons)

F (X1, . . . , Xn) = ∃Y1, . . . , Ym : r1(ū1) ∧ . . . ∧ rk(ūk) ri ∈ R

whose Datalog syntax is q(X1, . . . , Xn) :- r1(v̄1), . . . , rk(v̄k) .
(note that the v̄j contain Xi and “_Yi”-variables, the “_” don’t-care, and constants),
its answer relation wrt. a database state S is

S(q) := {(β(X1), . . . , β(Xn)) | β(ūi) ∈ S(ri) for all 1 ≤ i ≤ k} .
✷

Proposition 10.1
• S(q) contains only values from ADOM(S ∪ q),

• For positive conjunctive queries, the Datalog semantics coincides with the classical FOL
semantics:

S(q) := {(β(X1), . . . , β(Xn)) | S |=β F (X1, . . . , Xn)} ✷

562

10.2 Positive Datalog: Views as Rules

Conjunctive queries as View Definitions

A Datalog “knowledge base” K (also called a Datalog program) consists of

• facts of the form: r(c1, . . . , cn) (SQL equivalent: the tuples in the database),

• rules of the form p(X1, . . . , Xk)← ∃Xk+1, . . . , Xn : Q(X1, . . . , Xn)

where p is a k-ary predicate and Q is a conjunctive (positive!) query.

– means: “whenever Q(X1, . . . , Xn) holds for some Xk+1, . . . , Xn, also p(X1, . . . , Xk) is
assumed to hold”.

– SQL equivalent: p is a view.

The signature Σ is partitioned into two sets:

• ΣEDB: predicates that occur only in the body of rules
(“extensional database” – the interpretation of these predicates is given as facts in the
knowledge base)

• ΣIDB: predicates that occur in the head (and possibly also in the body) of rules
(“intensional database” – the interpretation of these predicates is derived from the rules)

563

XSB Example

• compiler directive: :- include(filename).
(note: no “-” in the filename allowed)

• comments: %

:- include(mondial).
% if special characters in filename: include('bla-blubb.P')
europeanCountry(C) :- encompasses(C,'Europe',_).
asianCountry(C) :- encompasses(C,'Asia',_).
result(O) :- europeanCountry(C), country(_,C,Cap,CapP,_,_), isMember(C,O,_),

organization(O,_,Cap,C,CapP,_).
result(O) :- asianCountry(C), country(_,C,Cap,CapP,_,_), isMember(C,O,_),

organization(O,_,Cap,C,CapP,_).

[Filename: Datalog/headquartercaps.P]

> xsb
?- [headquartercaps].
?- result(X).
X = EU

564

SEMANTICS OF A DATALOG KNOWLEDGE BASE

The formal semantics is given by Herbrand Interpretations (cf. Slide 497):

Herbrand Interpretation

• the domain consists of constant symbols and datatype literals.

• an interpretation H is explicitly seen as a finite set of ground atoms over the predicate
symbols and the Herbrand Domain:
country(ger,“Germany”,“D”, berlin, 356910,83536115), encompasses(ger, eur, 100).

H |= encompasses(ger,eur,100) if and only if (ger, eur,100) ∈ encompasses

if and only if encompasses(ger, eur,100) ∈ H .

Examples

• {country(ger,“Germany”,“D”, berlin, 356910,83536115), country(aut, “Austria”, “A”,
vienna, 83850,8023244), . . . , border(aut,ger,784), border(aut,hun,366), ...}

• the file mondial.P has the same schema as Mondial for SQL and uses only atomic values
with keys/foreign keys.

565

Three Approaches to Semantics

• a model-theoretic approach (that differs from traditional FOL model theory),

• a fixpoint approach (effectively computable, “bottom-up”),

• a proof-theoretic approach (efficiently computable, “top-down”, same as for PROLOG)

⇒ all of them turn out to be equivalent.

566

10.2.1 The Fixpoint Approach to Positive Datalog

Consider a positive program (i.e., rules without negation).

• facts of the form p(a1, . . . , an) can also be seen as rules:
p(a1, . . . , an) :- true

“if true holds (which is always the case) then also p(a1, . . . , an) must hold”.

• application of rules:

The set of ground atoms that is derivable by a rule H ← B1 ∧ . . . ∧Bk wrt. a given
Herbrand Interpretation H is formally specified as follows:

{ σ(H): σ is a ground substitution and there is a rule

H ← B1 ∧ . . . ∧Bk in P such that σ(B1), . . . , σ(Bk) ∈ H }

Example

Let H contain the facts from mondial.P. The rule

orgOnCont(O,Cont) :- isMember(C,O,_), encompasses(C,Cont,_).

with σ = {C 7→ “D”, O 7→ “EU”, Cont 7→ “Europe”} where isMember(“D”,“EU”,“member”) ∈ H
and where encompasses(“D”,“Europe”,100) ∈ H derives the atom orgOnCont(“EU”,“Europe”).

567

Bottom-Up-Semantics of Positive Datalog Programs

Consider a positive program P (i.e., facts, and rules without negation).

• (ground (i.e. without variables)) facts of the form p(a1, . . . , an),

• (non-ground) rules of the form head :- body.

Definition 10.2 (TP -Operator)
For a (positive) Datalog program P and a set I of ground atoms,

TP (I) := { σ(H): σ is a ground substitution and there is a rule
H ← B1 ∧ . . . ∧Bk in P such that σ(B1), . . . , σ(Bk) ∈ I }

TP (I) is called the “immediate consequence operator” since it takes I and applies the rules
once. T 0

P (I) := I

T 1
P (I) := TP (I)

Tn+1
P (I) := TP (T

n
P (I))

Tω
P (I) :=

⋃

n∈IN

Tn
P (I) infinite union!

• Tω
P := Tω

P (∅) – usually, start with ∅

• Intuition: The set Tω
P contains all ground facts that can be derived from the program.

• note: T 1
P (∅) contains the ground facts listed in the program. ✷

568

TP : Some Straightforward Examples

• Consider the program P = {p, q← p, r← q, s← r ∧ q}:
T 1
P (∅) = TP (∅) = {p},
T 2
P (∅) = TP ({p}) = {p, q}, – note: p is derived again

T 3
P (∅) = TP ({p, q}) = {p, q, r}
T 4
P (∅) = TP ({p, q, r}) = {p, q, r, s}
T 5
P (∅) = TP ({p, q, r, s}) = {p, q, r, s}

• Consider the program Q =

{p(1,2), p(2,3), p(3,4), p(3,5), p(1,6), tc(X,Y)← p(X,Y), tc(X,Y)← tc(X,Z) ∧ p(Z,Y)}:
Let EDB := T 1

P (∅) = {p(1,2), p(2,3), p(3,4), p(3,5), p(1,6)} for the ground facts.

T 2
Q(∅) = EDB ∪ {tc(1,2), tc(2,3), tc(3,4), tc(3,5), tc(1,6)},
T 3
Q(∅) = EDB ∪ {tc(1,2), tc(2,3), tc(3,4), tc(3,5), tc(1,6), tc(1,3), tc(2,4), tc(2,5)},
T 4
Q(∅) = EDB ∪ {tc(1,2), tc(2,3), tc(3,4), tc(3,5), tc(1,6), tc(1,3), tc(2,4), tc(2,5),

tc(1,4), tc(1,5)} = T 5
Q(∅)

569

TP : Non-Straightforward Examples

Obvious: (Positive) programs with no facts will not derive anything when started with ∅.

• Consider the program P = {p← p}:
– T 1

P (∅) = TP (∅) = ∅ = T 2
P (∅) = Tω

P (∅)
– when not starting with ∅, but with {p}:
T 1
P ({p}) = {p} = T 2

P ({p}) = Tω
P ({p})

• Consider the program P = {p← q, q← p, r← p ∧ q}:
– T 1

P (∅) = {∅} = T 2
P (∅) = Tω

P (∅) .

– T 1
P ({p, q}) = {p, q, r} = T 2

P ({p, q}) = Tω
P ({p, q}) .

– T 1
P ({p}) = {q} ,
T 2
P ({p}) = TP (T

1
P ({q})) = {p} ,

T 3
P ({p}) = TP (T

2
P ({p})) = TP ({p}) = {q} ,

... the sequence then alternates ...
Tω
P ({p}) =

⋃
n∈IN T

n
P ({p}) = {p, q}, which is not a model of P ! (r is missing!)

– T 1
P ({r}) = {∅} = T 2

P ({r}) = Tω
P ({r}) .

⇒ Starting with I 6= ∅ might show strange behaviour.
Don’t do that. The argument is used only for the iteration TP (Tn

P (∅)).

570

Some Theoretical Properties of TP

Proposition 10.2
Tω
P |= P . ✷

Proof:

• for all facts R(c1, . . . , cn) contained in P , Tω
P |= R(c1, . . . , cn), i.e., R(c1, . . . , cn) ∈ Tω

P

(R(c1, . . . , cn) ∈ T 1
P (∅)).

• for all rules p(X1, . . . , Xk)← ∃Xk+1, . . . , Xn : Q(X1, . . . , Xn) contained in P ,
Tω
P |= ∀X1, . . . , Xn : p(X1, . . . , Xk)← ∃Xk+1, . . . , Xn : Q(X1, . . . , Xn):

If Tn
P (∅) |=β ∃Xk+1, . . . , Xn : Q(X1, . . . , Xn), then Tn+1

P (∅) |=β p(X1, . . . , Xk) by definition
of TP .

... so Tω
P looks good. Is it special? What about the infinite union?

571

Some Theoretical Properties of TP

Proposition 10.3
TP is monotonous (recall, for positive P), i.e., if I1 ⊆ I2 then TP (I1) ⊆ TP (I2). ✷

• As a consequence of this, Tn+1
P (∅) ⊇ Tn

P (∅).

•
⋃

n∈IN

Tn
P (∅) = lim

n→∞
Tn
P (∅) ... (infinite?) iteration – does it stop somewhere?

• Let HBP denote the Herbrand Base of P , i.e., the set of all ground instances of
predicates in P over the Herbrand universe (which consists of all constants occurring in
the atoms in P).
Then, HBP |= P for every positive P .

• Tn
P (∅) ⊆ HBP for all n ∈ IN.

. a monotonously growing sequence is bounded from above:

Theorem 10.1
For some (finite) n ∈ IN, a fixpoint, i.e., TP (Tn

P (∅)) = Tn
P (∅) is reached after finitely many steps.

For this n, Tω
P = Tn

P (∅). ✷

• Tω
P can effectively be computed (“bottom-up”),

• queries are then stated against Tω
P .

572

Some Theoretical Properties of TP

This is the general definition of the term “fixpoint”:

Definition 10.3
For an operator Ψ mapping from any mathematical domain X to X , a fixpoint is any x such
that Ψ(x) = x. ✷

Example:
√
. is an operator IR→ IR.

√
1 = 1 is a fixpoint of it.

TP is an operator from sets of ground atoms (i.e., Herbrand interpretations) to sets of ground
atoms.

573

Some Theoretical Properties of TP

Proposition 10.4
For a Datalog program P ,

a) every fixpoint F of TP , i.e., TP (F) = F , is a model of P (but not every model is a
fixpoint!), and

b) for every model H of a Datalog program P , TP (H) ⊆ H. ✷

Proof:

a) Since F is a fixpoint, TP (F) ⊇ F , i.e. it contains all facts in P , and all instances of heads
of applicable rule instances. Thus, it is a model of P .

b) by definition of TP : H is a model of P , so it already contains all ground instances of heads
of applicable rule instances.

Note: a model can also contain additional ground atoms (=facts) that are not required
(“supported”) by the program, as long as it contains also their consequences. It is still a
model.
[Example see next slide]

Outlook: the “Minimal Model” will be a distinguished model (later, the “Well-Founded Model”
and “Stable Models” continue this idea of minimality).

574

Models of a Program
Further models of a program can be obtained by adding additional facts (they must be
complete wrt. consequences from these).
Example 10.1
Consider P = {q(X) :- p(X); r(X) :-q(X); p(a)}.

• LetM := Tω
P (∅) = {p(a), q(a), r(a)}.

• Other, bigger models areM1 = {p(a), q(a), r(a), r(b)} and
M2 = {p(a), q(a), r(a), q(b), r(b)}.

• Note that N = {p(a), q(a), r(a), q(b)})M, but it is not a model.
Since N ⊆M2, it can obviously be extended to a model (cf. Slide 579).

• TheMi are not fixpoints of TP :
TP (M1) = {p(a), q(a), r(a)} =M (M1, and
TP (M2) = {p(a), q(a), r(a), r(b)} =M1 (M2.

– in both cases, according to Proposition 10.4, TP (Mi) ⊆Mi, shows that they are
models, i.e., all rules are satisfied.

– The “(” shows that some fact has been “invented” which is not forced (“supported”) by
the rules.

• Usually, fixpoints which are non-minimal models occur if the program contains some
“self-supporting” rule p← p. ✷

575

Some Theoretical Properties of TP

Definition 10.4
For two Herbrand interpretations, H1 and H2, H1 ≤ H2 if H1 ⊆ H2. ✷

Proposition 10.5
Tω
P is the least fixpoint of TP . ✷

Proof:

By Proposition 10.4, every fixpoint F is a model of P . To be a model of P , F contains all facts
in P , i.e., F ⊇ TP (∅). By induction, F ⊇ Tn

P (∅) for each n ∈ IN. Thus, F ⊇ Tω
P .

(the full PROLOG case, where the HBP argument does not hold and Tω
P is not necessarily

finite, follows from monotonicity by the Knaster-Tarski Theorem (fixpoint theory over complete
lattices).)

Aside: Tω
P in PROLOG

• PROLOG allows function symbols.

• Consider the program P := { p(a), p(f(X))← p(X) }:
Tω
P = {p(fn(a))|n ∈ IN} is infinite.

576

Example/Exercise

Consider the following (recursive) program (including atomic facts and rules):

P = { country(a). country(b). country(ch). country(d). country(e). country(f). . . .

border(a, d). border(a, h). border(a, i). border(d, f). border(i, f).

border(ch, f). border(ch, a). border(ch, d). border(ch, i). border(e, f). border(p, e).

border(h, ua). border(ua, r). border(ra, br). border(bol, ra). border(bol, br).

border(Y,X)← border(X,Y).

reachable(X,Y)← border(X,Y).

reachable(X,Y)← reachable(X,Z), border(Z, Y). }

• Give T 0
P (∅), T 1

P (∅), T 2
P (∅), . . . , Tω

P (∅).

• for any derived fact reachable(c1, c2) ∈ Tω
P (∅), characterize the least i such that

reachable(c1, c2) ∈ T i
P (∅).

577

10.2.2 Model-Theoretic Characterization: Minimal Model

• Note: simple “Datalog” usually means “positive Datalog”

Definition 10.5
For a (positive) Datalog program P , the minimal model is defined as the smallest Herbrand
interpretation (wrt. ≤ as in Def. 10.4) that is a model of P . ✷

Theorem 10.2
For a positive Datalog program P and its minimal modelM, for all ground atoms p(c1, . . . , cn):

• M |= p(c1, . . . , cn)⇔ p(c1, . . . , cn) ∈ Tω
P .

• M |= p(c1, . . . , cn) if and only if for all models S of P , S |= p(c1, . . . , cn) .

(recall: |= denotes the models-relation from First Order Logic) ✷

Proposition 10.6
The minimal modelM of a (positive) Datalog program P is the intersection of all models (i.e.,
models wrt. First Order Logic model theory) of P . ✷

Proof: same as for Proposition 10.5.

578

Non-minimal Models

Let P a positive Datalog program with minimal modelM = Tω
P = Tω

P (∅), and q /∈M some
ground atom.

• there exists a modelM′ of P that makes q true.
(i.e., a positive program cannot force anything to be false; there is only “negation by
default”).

• Recall Slide 570: starting with q, i.e., Tω
P ({q}) is not appropriate (it might forget q, or even

run into an alternating sequence).

• ComputeM′′ = Tω
P∪{q} = Tω

P∪{q}(∅) to obtain the solution, which is the minimal model of
P ∪ {q}.

• For Example 10.1, Tω
P∪{q(b)} =M∪ {q(b), r(b)}.

579

Some comments on Negation

• Negative Literals:

– The minimal model implements the Closed-World-Assumption (CWA): any atom that is
not contained or implied by P is assumed not to hold.

– For the minimal modelM,
if a ground atom is not inM, i.e.,M |= ¬p(a1, . . . , an), classical FOL semantics
(open-world) does not entail that P |=FOL ¬p(a1, . . . , an).
Note that P |=FOL ¬p(a1, . . . , an) does not hold for any ground atom – from a positive
program P no negative statements are entailed at all under FOL semantics.

– this coincides with the SQL semantics “WHERE NOT EXISTS ...”.

• Negative literals in rule bodies:

– The TP evaluation is not applicable for rules with negation in the body.

– Consider the previous example extended by the rule
{ unreachable(X,Y)← country(X) ∧ country(Y) ∧ ¬reachable(X,Y). }.
How would the TP evaluation proceed for it?

• derivation of negative facts/negative facts in rule heads:
not applicable since CWA assumes all negative facts that are consistent with P
(“negation by default”)

580

10.2.3 Proof-Theoretic Approach: Resolution Calculus

Given: a positive Datalog program P

Question: does p(c1, . . . , cn) hold?

• bottom-up computation of TP provides a correct and complete (wrt. the minimal model)
procedure for checking if some fact holds in the minimal model.

Every atom that is true in the minimal model has a “proof history” (tree) via the rules and facts
that have been used for deriving it.

581

GENERAL RESOLUTION CALCULUS

• an Inference System.

• a clause is a set of literals (semantics: disjunctive).
Clause resolution takes two clauses that contain contradictory literals:

ℓ1 ∨ . . . ∨ ℓi ∨ . . . ∨ ℓk , ℓk+1 ∨ . . . ∨ ¬ℓk+j ∨ . . . ∨ ℓk+m , σ(ℓi) = σ(ℓk+j)

σ(ℓ1 ∨ . . . ∨ ℓi−1 ∨ ℓi+1 ∨ . . . ∨ ℓk ∨ ℓk+1 ∨ . . . ∨ ℓk+j−1 ∨ ℓk+j+1 ∨ . . . ∨ ℓk+m)

• rules of the form
h(x̄)← b1(x̄) ∧ b2(x̄) ∧ . . . ∧ bn(x̄)

are equivalent to Horn Clauses (named after the logician Alfred Horn)

h(x̄) ∨ ¬b1(x̄) ∨ ¬b2(x̄) ∨ . . . ∨ ¬bn(x̄)
(Disjunction with only one positive literal).

582

ASIDE: GENERAL RESOLUTION CALCULUS: COMMENTS AND EXAMPLES

• Tableau calculus:

– one rule for each FOL construct (∧,∨, ∀, ∃, and the closure rule as the rule for ¬).

– applicable to all kinds of FOL formulas.

⇒ intuitive, very general, but a high number of possible expansions in each step.

• Resolution calculus:

– only a single inference rule,

– applicable to a set of (arbitrary) disjunctions.

• Any FOL formula φ can be translated as follows:

– Prenex Normal Form: pull quantifiers in front (“prefix”): ∀a, b ∃c, d ∀e . . . : φ′ where φ′ is
quantifier-free (“matrix”),

– transform the matrix into conjunctive normal form (i.e., a conjunction of disjunctions of
literals).

⇒ resolution calculus has the same expressiveness as tableau calculus.

– it is intuitive, if a problem has a natural representation as a set of disjunctions.

583

Disjunctive Reasoning: Sudoku

Typical Sudoku situation: “cell (x, y1) is either 2 or 7, cell (x, y2) is either 2 or 6, so the “2” can
only be in one of them, there is 7 in (x, y1) or 6 in (x, y2). As 6 is already in (x2, y2), the 2 must
be in (x, y2), and the 7 must be in (x, y1).”

Consider the following example (sudoku taken from (german) wikipedia):

9 3

8 1 9 5

7 8 6

6 8 6

5 4 8 1

4 2

3 6 2 8

2 ? ? ? 4 1 9 3 5

1 7

A B C D E F G H I

• 3-ary predicate p (“position”), e.g. for B9:
p(b, 9, 3):

• exclusion clause patterns like:
{¬p(x1, y, n),¬p(x2, y, n), x1 = x2}
for rows; analogously for columns and for
subsquares.

• H2: must be 3 (all other numbers are al-
ready present in column H, in row 2 or in
the lower right subsquare).

• A2: 2 or 3 or 7.; B2: 2 or 7 or 8.

• C2: 2 or 3 or 7.

⇒ A2 and C2: 2 or 7⇒ B2: 8

584

Sudoku (cont’d)

• Query: answer(X,Y,N)← p(X,Y,N).

• Whenever the empty clause can be derived, an answer is given by the applied
substitutions. E.g. for an already known cell, {¬p(X,Y,N)} with {p(b, 9, 3} and
σ = {X ← b, Y ← 9, N ← 3} yields the first solution.

• Simple cases like H2 (must be 3):
{p(h, 2, 1), p(h, 2, 2), p(h, 2, 3), p(h, 2, 4), p(h, 2, 5),

p(h, 2, 6), p(h, 2, 7), p(h, 2, 8), p(h, 2, 9)}, {p(e, 2, 1)}, {¬p(e, 2, 1),¬p(h, 2, 1)}

{¬p(h, 2, 1)}

{p(h, 2, 2), p(h, 2, 3), p(h, 2, 4), p(h, 2, 5), p(h, 2, 6), p(h, 2, 7), p(h, 2, 8), p(h, 2, 9)} ,
...

{p(h, 2, 3)} which closes with the negated query {¬p(X,Y,N)}
• analogous reduction for cells A2, B2, C2:

– {p(a, 2, 2), p(a, 2, 3), p(a, 2, 7)}, with {¬p(a, 2, 3),¬p(h, 2, 3)} and {p(h, 2, 3)} to
{p(a, 2, 2), p(a, 2, 7)};

– {p(b, 2, 2), p(b, 2, 7), p(b, 2, 8)},
– {p(c, 2, 2), p(c, 2, 3), p(c, 2, 7)} analogously to {p(c, 2, 2), p(c, 2, 7)}

585

Sudoku (cont’d)

• Situation

– {p(a, 2, 2), p(a, 2, 7)};
– {p(b, 2, 2), p(b, 2, 7), p(b, 2, 8)},
– {p(c, 2, 2), p(c, 2, 7)}

• Both A2 and C2 are 2 or 7

• B2 (2, 7, or 8) must be 8

• no direct conclusion possible ...

• note: resolving to clauses with 2 literals usually yields two literals:
{a, b} with {¬b, c} yields {a, c}.
Unary clauses can be derived by matches like
{a, b} with {a,¬b} yields {a}.

⇒ not only clauses that are connected by a pair of contradictory literals are interesting, but
also clauses that contain the same literals can be useful.

⇒ a resolution reasoner maintains a connection graph for choosing its strategy.

• human reasoners must have a plan how to proceed ...

586

Sudoku (cont’d: Example proof for the contents of cell B2)

• write xyn for p(x, y, n):

– this is not only a notational shortcut, but also a mapping to Boolean Logic:

– the second line is assumed to contain all ground instances of the exclusion clause (cf.
Slide 584) stating which cells must not have the same value.
Note: the smodels tool for stable models is based on the same idea of creating all
ground instances and running boolean Model Checking.

{c22, c27} {a22, a27}

{¬a22,¬c22} {¬a27,¬c27} {¬b22,¬c22} {¬a22,¬b22} {¬a27,¬b27} {¬b27,¬c27}

{¬a22, c27} {¬a27, c22} {a27,¬b22} {a22,¬b27}

{¬b22, c22} {¬b27, c27}

{¬b22} {b22, b27, b28} {¬b27}

{b27, b28}

{b28}

587

General (FOL) Resolution Calculus

• Recall: open-world, with explicit negative literals.

• there are always multiple possibilities to choose pairs of clauses to be resolved

⇒ proof search strategy?

• ... not the right thing for deductive databases (closed-world-assumption, equivalence to
the relational algebra and SQL),

• ... but a good basis ...

• ... go back first to consider positive rules as a special case of disjunction head ∨ ¬body.

588

RESOLUTION CALCULUS FOR (POSITIVE) RULES

• a derivation rule head(x̄)← b1(x̄) ∧ b2(x̄) ∧ . . . ∧ bn(x̄) is equivalent to
¬b1(x̄) ∨ ¬b2(x̄) ∨ . . . ∨ ¬bn(x̄) ∨ head(x̄), or, written as a Horn clause,

{¬b1(x̄),¬b2(x̄), . . . ,¬bn(x̄), head(x̄)}

• such a Horn clause can be seen as a directed disjunction with a single distinguished
positive (head) literal.

• a fact p(c̄) corresponds to a unary clause consisting of a single positive literal {p(c̄)}.

589

Bottom-Up: Resolution as Forward Reasoning

Example:

Consider the rule subordinate(x, y)← works-for(x, d) ∧manages(y, d)
(forget about x 6= y for now)

The corresponding clause is

{subordinate(X,Y),¬works-for(X,D),¬manages(Y,D)} .
Consider the (unary) fact clauses {works-for(mary,sales)} and {manages(alice,sales)}.

{sub(X,Y), ¬wf(X,D), ¬mg(Y ,D)} {wf(m,s)} {mg(a,s)}

{sub(m,Y),¬mg(Y ,s)}

{X → m, D → s}

{sub(m,a)}

{Y → a}

... derives subordinate(mary,alice).

• obviously, for every ground atom p(a1, . . . , an), P ⊢Res p(a1, . . . , an) if and only if
p(a1, . . . , an) ∈ Tω

P .

590

TOP-DOWN: RESOLUTION CALCULUS AS BACKWARD REASONING

• used in PROLOG systems:
SLD Resolution (Selection-Rule-Driven Linear Resolution for Definite Clauses)

• given: a “program” P of rules and facts, and a claimed fact answer(c̄). Show:
P |= answer(c̄)?

• Resolution as a refutation strategy: prove that ¬answer(c̄) is inconsistent with P .

• a negated atom can be refuted if it matches the head of a rule and all of the body atoms
of the rule can be proven. Apply recursively:

– get a new “goal clause” (i.e., a clause containing only negative literals)
[⇒] linear proof;

– note that multiple rule heads can match (SLD: first rule first);

– note that multiple literals can match: resolve literals from left to right (i.e., depth-first).

• try to derive the empty (goal) clause: then it is shown that P ∪ {¬answer(c̄)} is
unsatisfiable, i.e., P |= answer(c̄).

591

SLD RESOLUTION: EXAMPLE

Consider again the rule

subordinate(x, y)← works-for(x, d) ∧manages(y, d)

and the corresponding clause

{subordinate(X,Y),¬works-for(X,D),¬manages(Y,D)} .
and e.g. ground fact clauses {works-for(mary,sales)} and {manages(alice,sales)}. For which
V,W does subordinate(V ,W) hold?

{¬sub(V,W)} {sub(X,Y), ¬wf(X,D), ¬mg(Y ,D)} {wf(m,s)} {mg(a,s)}

{¬wf(V ,D), ¬mg(W ,D)}

{X 7→ V , Y 7→W }

{¬mg(W,s)}

{V 7→ m, D 7→ s}

✷
{W → a}

derives the answer substitution {V 7→ m,W 7→ s}
(in Prolog style written as {V/m,W/s})
With a bigger database, further answers can be derived by other matches.

592

SLD RESOLUTION FOR ANSWERS

• the initial goal (=query) contains free variables,

• collect the union/concatenation of all substitutions applied

• if the empty clause is derived, the restriction of the resulting substitution to the variables
in the query is the answer substitution.

• do backtracking (alternative closing substitutions with other facts, alternative rules with
the same head),

• compute further answers.

593

SLD RESOLUTION WITH ANSWERS: EXAMPLE

“All organizations that have their headquarters in the capital of a European member country
with more than 10000000 inhabitants”

:- include(mondial).
europeanBigCountry(C) :- encompasses(C,'Europe',_),

country(_,C,_,_,_,Pop), Pop > 10000000.
hqInCapOf(O,C) :- country(_,C,Cap,CapP,_,_), organization(O,_,Cap,C,CapP,_).
result(O) :- europeanBigCountry(C), isMember(C,O,_), hqInCapOf(O,C).
?- result(X).

[Filename: Datalog/headquartercapsbig.P]

C1 : {¬res(X)}
C2 : {eBC(C),¬enc(C, “Europe”, _),¬c(_, C, _, _, _, P),¬P > 10000000}
C3 : {hC(O,C),¬c(_, C, Cap, CapP, _, _),¬org(O, _, Cap, C,CapP, _)}
C4 : {res(O),¬eBC(C),¬isM(C,O, _),¬hC(O,C)}

Resolve C1 with C4 (the only rule that matches) by σ1 : {O → X}:
C5 : {¬eBC(C),¬isM(C,X, _),¬hC(X,C)} .

594

Resolve C5 with C2 (first literal):

C6 : {¬enc(C, “Europe”, _),¬c(_, C, _, _, _, P),¬P > 10000000,¬isM(C,X, _),¬hC(X,C)} .
Resolve C6 with fact enc(“B”, “Europe”, 100) (one out of many candidates) by σ2 : {C → “B”}:
C7 : {¬c(_, “B”, _, _, _, P),¬P > 10000000,¬isM(“B”, X, _),¬hC(X, “B”)} .
Resolve with fact c(“Belgium”,“B”,“Brussels”,“Brabant”, _, 10170241) by σ6 : {P → 10170241}
and remove the (false) instantiated literal ¬10170241 > 10000000:

C8 : {¬isM(“B”, X, _),¬hC(X, “B”)} .
Resolve with fact isM(“B”,“EU”,“member”) by σ4 : {X → “EU”}:
C9 : {¬hC(“EU”, “B”)} .
Resolve with C3 by σ5 : {O → “EU”, C → “B”}:
C10 : {¬c(_, “B”, Cap, CapP, _, _),¬org(“EU”, _, Cap, “B”, CapP, _)} .

Resolve with fact c(“Belgium”,“B”,“Brussels”,“Brabant”, _, _):

C11 : {¬org(“EU”,“Brussels”,“B”,“Brabant”, _)} .

Resolve with fact org(“EU”, _, “Brussels”, “B”, “Brabant”, _) and obtain the empty clause.

This generates the first answer X/“EU”.

Backtracking ... resolve C8 with fact isM(“B”, “UN”) to obtain

595

C11 : {¬hC(“UN”, “B”)} .

Resolve again with C3 by {O → “UN”, C → “B”} and continue as above. The empty clause
cannot be derived (the headquarters of the UN are in New York). Backtrack again, resolve C8

with NATO, return X/“NATO”, analogously check all organizations where Belgium is a
member, and return all organizations located in Brussels.

Backtracking then to C5, try the next european country etc.

• Note that all intermediate clauses only con-
tain negative literals (“goal clauses”).

• at each timepoint there is exactly one
(open) goal clause.

Comparison

The evaluation is actually an iterator-based
evaluation of the algebra tree shown on the
right.

Exercise

Do the same for European and Asian Big Coun-
tries.

π[abbrev]

⊲⊳

⊲⊳

⊲⊳

π[code]

σ[pop>10000000]

⊲⊳

σ[cont=“Europe”]

encompasses

country

isMember

country

org

596

10.3 Aside: Full Prolog

• allows function symbols

• not just matching, but unification of terms (that contain variables someewhere):
p(f(X, g(Y))) unifies with ¬p(f(h(Z), Z)) via σ = {Z → g(Y), X → h(g(Y))}.

• derives the empty clause and an answer substitution
e.g. when asking ?-subordinate(X,alice).

X/mary

X/bob

• uses backtracking:

– if search for an answer is not successful, try another way,

– if an answer is found, report it and try another way (next substitution, next rule),

– generates a proof search tree.

• Prolog Programming goes even further: “cut” and “fail” to control the exploration of the
search space.
Then, the order of rules and literals becomes extremely important.

597

Aside: Prolog Programming: Cut

The “cut” predicate (written as “!”) fixes the bindings up to that literal and does not search for
other proofs (e.g., for alternative bindings for existential variables):

F (C) ≡ ∃CN,Cap, CapP,A, Pop : country(CN,C,Cap, CapP,A, Pop) ∧
∃Org,Abbr, Est, T : organization(Org,Abbr, Cap, C,CapP,Est), isMember(C,Org, T).

• ?-res(C) returns every result country several times – for each organization that has its
city in the capital.

• ?-res2(C) returns every result country only once, since there is no backtracking in rule
hqInCap2 that would cause to search other proofs for e.g. hqInCap2(“B”)

:- include(mondial).
res(C) :- country(_,C,Cap,CapP,_,_), hqInCap(C,Cap,CapP).
hqInCap(C,Cap,CapP) :- organization(Org,_,Cap,C,CapP,_), isMember(C,Org,_).
res2(C) :- country(_,C,Cap,CapP,_,_), hqInCap2(C,Cap,CapP).
hqInCap2(C,Cap,CapP) :- organization(Org,_,Cap,C,CapP,_), isMember(C,Org,_),!.

[Filename: Datalog/prologcut.P]

• cut san serve –declaratively– as a SQL DISTINCT

• in combination with EXISTS (each existing thing would otherwise be checked),

• and for optimization of traversing proof trees.

598

Aside: Prolog Programming: Output

• the “cut” predicate fixes the bindings up to that literal and does not search for other proofs:

• write any term to stdout with write(term),

• the nl predicate outputs a newline to stdout.

• tell me, when Paris is investigated ...

:- include(mondial).
res(C) :- country(_,C,Cap,CapP,_,_), hqInCap(C,Cap,CapP).
hqInCap(C,Cap,CapP) :- organization(Org,_,Cap,C,CapProv,_), check(Cap,Org),

country(_,C,Cap,CapProv,_,_), isMember(C,Org,_).
check(X,Y) :- X = 'Paris', write('test '), write(X), write(' '),

write(Y), nl.
check(X,Y) :- X \= 'Paris'.

[Filename: Datalog/prologparis.P]

• in check(X,Y), Y must be bound upon calling it (XSB warns) – the rules are not safe,

• but “safe” is a bottom-up Datalog issue, in Prolog Programming, such unsafe procedural
rules are common. (when called, the variables are already bound from atoms evaluated
before)

599

Aside: Prolog Programming: Input and fail

• read(X) reads a term. The input must be finished by a “.”.

• predicate fail is used when Prolog should “execute” the rule as “proof search” to do
something, and then ... fail:

• below, shouldI fails if “N” is input. Then, also shouldICheck(X) fails, and the body for
res(C) is not satisfied for this C. Try next C.

:- include(mondial).
res(C) :- country(_,C,_,_,_,_), shouldICheck(C), hqInCap(C).
hqInCap(C) :- country(_,C,Cap,CapProv,_,_), write('CAP found ... '),

isMember(C,Org,_), write('check Org: '), write(Org), nl,
organization(Org,_,Cap,C,CapProv,_).

shouldICheck(X) :- write('Should I check '), write(X),
write(' ("y."/"n.")?'), read(Z), shouldI(Z,X).

shouldI(Z,X) :- write('test if yes ... '), nl, Z = 'y'.
shouldI(Z,X) :- write('here ... country is still '), write(X), nl, fail.
shouldI(Z,X) :- Z \= 'y', write('OK, I will skip '), write(X), nl, fail.

[Filename: Datalog/prologask.P]

600

Aside: Prolog Exercise

Consider again the program prologask.P from the previous slide.
When running it, the output “here ... country is still ...” when it is actually already finished with
the respective country, demonstrates that useless work is done.
Where to place a cut to avoid this?

Aside: Prolog Documentation

• see XSB Manual Part I, Section 6 “Standard Predicates and Predicates of General Use”.

601

10.4 Positive Recursive Datalog

• a Datalog Program is called recursive if ...

Dependency Graph

Definition 10.6
For a positive Datalog program P over a (relational) signature R = {R1, . . . , Rn}, its
Dependency Graph G = (V,E) is defined as follows:

• V = {R1, . . . , Rn} is the set of vertexes,

• Ri → Rj ∈ E if P contains a rule with head predicate Rj and Ri occurs in its body
(“Rj depends on Ri”). ✷

Definition 10.7
A Datalog program is called recursive if its dependency graph contains a cycle. ✷

602

Consequences

... the definitions up to now hold for nonrecursive programs and for recursive ones:

• the minimal model is defined as usual,

• TP and Tω
P are defined as usual,

• the resolution proofs exist.

– Systems based on PROLOG’s SLD resolution potentially run into infinite proof search
trees
(can be blocked by (expensive) bookkeeping)

– XSB supports “tabling” which makes it more efficient and prevents it from infinite loops
(tabling stores derived facts for reuse),

– must be activated (see below).

603

Example: Transitive Closure

• tc(x,y)← p(x,y).
tc(x,y)← ∃ z: tc(x,z) ∧ tc(z,y).

• XSB: % as comment sign,

• :- auto_table. for activating automatic tabling,

• manual tabling can be switched on with
:- table R1/k1, ..., Rn/kn.
for ki-ary table Ri.

% :- auto_table.
:- table borders/3, reachable/2.
:- include(mondial).
borders(Y,X,Z) :- borders(X,Y,Z). % make it symmetric.
reachable(X,Y) :- borders(X,Y,_).
reachable(X,Y) :- reachable(X,Z), borders(Z,Y,_).

[Filename: Datalog/transitiveclosure.P]

Exercise
Complete the program from Slide 407 such that it also includes rivers flowing through lakes
into others.

604

Additional Syntax, Built-Ins

• arithmetic operations: + - * /

• assignment by var is term in the body

• comparisons: as usual, \= for 6=, =< and >= for ≤ and ≥.

• see also XSB Manual Part I Sections 3.10.5 (Inline Predicates) and 4.3 (Operators).

:- include(mondial).
cview(N,C,Pop,A,Density) :- country(N,C,_,_,A,Pop), Density is Pop/A.

[Filename: Datalog/arithmetics.P]

605

10.5 Datalog with Negation

Consider conjunctive queries that include negative Literals.

• e.g. F (C) = ∃CN,Cap, CapP,A, Pop :
(country(CN,C,Cap, CapP,A, Pop) ∧ ¬ismember(C, “EU”, “member”))

.

• the database contains only positive facts, so no negative information can be logically
implied!

• SQL:

SELECT code FROM country
WHERE NOT (code,'EU','member') IN (SELECT * FROM ismember);

yields 214 results.

• Databases: “Closed World Semantics” – tuples that are not stored are assumed not to
hold.

⇒ database query semantics deviates from standard FOL model theory.

⇒ a different model theory applies!

606

Closed World/Default Negation

• actually known + used in SQL without problems,

• the idea of the Minimal Model is analogous:
everything that cannot be proven is false in the Minimal Model.

– But the Minimal Model is not well-defined in presence of negation:
Consider P = {p← ¬q}:
BothM1 = {p} andM2 = {q} are minimal models of P .

• Prolog: SLD-resolution extended to SLD-NF-resolution:

– NF: Negation (of p(c1, . . . , cn)) as “(finite) failure” to prove p(c1, . . . , cn) (only for ground
atoms; cf. safety):

– Open a resolution proof for ¬p(c1, . . . , cn) as usual and show that after finitely many
steps there is no more progress towards the empty clause.

– Example: For P = {p← ¬q}, SLD-NF for ?- p starts a proof for the body, i.e., for ¬q
which fails (the rule is equivalent to the clause {p, q}) immediately.
Thus ¬q is “proven” and p is confirmed – the answer to ?- p is “yes”.

• Preview: both {p← ¬q} and {q ← ¬p} are logically equivalent to p ∨ q, but, as programs,
have different semantics!

607

NEGATION IN THE BODY: DATALOG¬

The language Datalog¬ extends positive Datalog as follows:

• the rule body is allowed to contain also negative literals:
Rules are now of the form

H ← L1 ∧ . . . ∧ Lk

where each Li is a positive (p(a1, . . . , an)) or negative (¬p(a1, . . . , am)) literal.

• Safety requirement: every variable that occurs in a negative literal must also occur in a
positive one before, e.g.

unreachable(X,Y)← country(X) ∧ country(Y) ∧ ¬reachable(X,Y).

608

Formal Semantics

The TP operator (cf. Slide 568) is extended as follows:

For a set I of ground atoms,

TP (I) := { σ(H): σ is a ground substitution and there is a rule
H ← L1 ∧ . . . ∧ Lk in P such that for each i = 1..k

σ(pi(ā)) ∈ I if Li = pi(ā) is positive,

σ(pi(ā)) /∈ I if Li = ¬pi(ā) is negative }

• The plain Tω
P computation is not suitable: In the first “round” things are false that will

become true later

⇒ “wait” before evaluating a negative literal ¬p(c1, . . . , cn) until the predicate p is
completely computed.

(note: SLD resolution does automatically “stratify” when it opens the subproof for
¬p(c1, . . . , cn) and tries to complete it with the rules for p.)

609

STRATIFICATION

Dependency Graph with Negation

Extend Definition 10.6:

Definition 10.8
For a Datalog¬ program P over a (relational) signature R = {R1, . . . , Rn}, its Dependency
Graph G = (V,E) is defined as follows:

• V = {R1, . . . , Rn} is the set of vertexes,

• Ri → Rj ∈ E if P contains a rule with head predicate Rj and Ri occurs positively in its
body (“Rj depends positively on Ri”).

• Ri
¬→ Rj ∈ E if P contains a rule with head predicate Rj and Ri occurs negatively in its

body (“Rj depends negatively on Ri”). ✷

If the dependency graph does not contain a negative cycle (i.e., a cycle where at least one
edge is negative) then there exists a simple, intuitive semantics
(note that positive cycles are allowed).

610

Stratification

Definition 10.9
Given a Datalog¬ program P without negative cycles over a signature Σ, a stratification is a
partitioning of Σ into strata S1, . . . , Sn by a stratification mapping σ : Σ→ {1, . . . , n} such that

• if p depends positively on q, then σ(p) ≥ σ(q),
• if p depends negatively on q, then σ(p) > σ(q),

• if such a stratification is possible, P is called stratifiable.

Define Pi to be the set of rules in P whose head predicate is in Si. ✷

Properties

• S1: predicate symbols (incl. facts) that do not depend negatively on any other predicate,

• Si: predicate symbols that depend positively only on predicate symbols in S0, . . . , Si,

• Si: predicate symbols that depend negatively only on predicate symbols in S0, . . . , Si−1.

• predicates that are positively cyclic dependent on each other belong to the same stratum.

• {P1, . . . , Pn} is a partitioning of P .

Note: there may be several stratifications of a program (any partitioning that is compatible
with the priority order given by the negative dependencies).

611

Stratification

Proposition 10.7
• every nonrecursive Datalog¬ program is stratifiable,

• many recursive Datalog¬ programs are also stratifiable.
(cf. reachable, non-reachable) ✷

612

STRATIFIED MODEL

Stratification allows to compute a model incrementally (bottom-up): Compute each stratum by
“freezing” the IDB predicates defined in the previous stratum like EDB relations/facts:

Definition 10.10
Let P = {P1, P2, . . . , Pn} be a stratified program. Then, S(P) defined as follows is the
stratified model of P :

I0 = ∅
Ik = Tω

Pk∪Ik−1
(∅) for 1 ≤ k ≤ n

S(P) = In
(with every Pi a set of rules and every Ii a set of ground atoms, Pk ∪ Ik−1 is a Datalog
program that fits into stratum Sk). ✷

Proposition 10.8
• S(P) does not depend on the chosen stratification,

• S(P) is a model of P ,

• S(P) is minimal (i.e., noM′ (S(P) is a model of P),

• for programs containing negation, there are in general several models that are minimal. ✷

613

Comments

• bottom-up stratified evaluation is the counterpart to top-down SLD-NF evaluation,

• tabling fits well with stratification,

• XSB does stratification automatically if a program contains negation.

Exercise

Prove that Definition 10.10 is equivalent to the following characterization:

J0 = ∅
Jk = Tω

P1∪...∪Pk
(Jk−1) for 1 ≤ k ≤ n

S ′(P) = Jn

614

Monotonic vs. Nonmonotonic Reasoning

Definition 10.11
For a given set of input formulas φ, and a reasoning mechanism M , let ThM (φ) denote the
“theory of φ wrt. M ”, i.e., the set of conclusions ψ such that φ |=M ψ.

A reasoning mechanism M is monotonic if

φ1 ⊆ φ2 ⇒ ThM (φ1) ⊆ ThM (φ2) ✷

• FOL is monotonic,

• The Minimal Model semantics is monotonic,

• Default Logic and Human Reasoning is nonmonotonic (allowing conclusions in presence
of incomplete knowledge that can be revised upon additional information),

• Stratified semantics is nonmonotonic.

Exercise

• Give an example for the nonmonotonicity of the stratified semantics,

• show that for a stratifiable program P there can be multiple minimal models.

615

10.5.1 (Stratified) Nonrecursive Datalog with Negation vs. Relational
Algebra and SQL

Theorem 10.3
Nonrecursive Datalog with (stratified) negation with a single-predicate result is equivalent to
the relational calculus and to the relational algebra. ✷

• Means: every nonrecursive Datalog¬ program that defines a single n-ary result predicate
res/n can be expressed by a calculus query with n free variables, and equivalently by a
relational algebra expression with an N -ary result relation, and

• every n-ary relational algebra expression can be expressed by a nonrecursive Datalog¬

program that defines a single n-ary result predicate res/n.

Exercise:

• prove the “Algebra→ Datalog” direction (by structural induction).

• Given a (safe) rule H ← C1 ∧ . . . ∧ Cn ∧Dn+1 ∧ . . . ∧Dn+k

where the Ci are positive literals and the Di are negative literals, give a relational algebra
expression that returns the relation defined by it.

616

Example: Relational Division

• recall: the relational division is defined in the relational algebra by two negations

Organizations that have at least one member on each continent:

% :- auto_table. % here not necessary
:- include(mondial).
orgOnCont(O,Cont) :- isMember(_C,O,_), encompasses(_C, Cont,_).
notResult(O) :- organization(O,_,_,_,_,_), continent(_Cont,_),

not orgOnCont(O,_Cont).
result(O) :- organization(O,_,_,_,_,_), not notResult(O).
% ?-result(O).
% ?- findall(_O, result(_O), L).

[Filename: Datalog/orgOnContsDiv.P]

• note: call of the PROLOG standard predicate

?- findall(_O, result(_O), L).

returns all answers as a PROLOG list.

• compare with expressing this query in SQL.

617

PROLOG FINDALL

Syntax:
findall(variable, predicate(many variables), listvariable)

• the variable must be bound in the predicate query; all other variables in the predicate
query are local to it,

• listvariable does not occur in the predicate query.

?- findall(A,continent(N,A),L).

A = _h44
N = _h66
L = [9562488,45095292,8503474,30254708,39872000]

?- findall(N,city(N,'D',P,Pop,La,Lo,El),L).
% all names of german cities.

Large lists sometimes lead to a crash:

?- findall(Pop,city(N,C,P,Pop,La,Lo,El),L).

618

AGGREGATION

• example see next slide.

• PROLOG dialects supports aggregation

• XSB: via PROLOG collections:

– collect values in a bag:
bagof(var1, var2 ˆ. . .ˆvarnˆ pred(var1, . . . , varn), collvar)

for collvar := bagof{var1 | ∃var2, . . . , varn : pred(var1, . . . , varn)}
– explicitly program the aggregation operator recursively over the collection.

– collection is a PROLOG list organized as head, tail:
Syntax: [H|T] or .(H,T), empty list is [].

• Note: aggregation operations also require stratification – the predicates used in the
subquery must be computed before.

619

:- include(mondial).
citypops(C,B) :- bagof(Pop,N^P^Lo^La^El^city(N,C,P,Pop,La,Lo,El),B).

% citypops('A',L).
% L = [1583000,10102,87321,null,144000,203000,118000,238000,51102]
% citypops('A',.(H,T)).
% H = 1583000
% T = [10102,87321,null,144000,203000,118000,238000,51102]

sum(X,[H|T]) :- sum(Y,T), H \= null, Y \= null, X is H + Y.
sum(H,[H|T]) :- sum(null,T), H \= null.
sum(X,[null|T]) :- sum(X,T).
sum(null,[]).

% Test: ?- sum(N,[1,2,3,4,5]). yields 15

citypopsum(C,X) :- citypops(C,B), sum(X,B).

% citypopsum('A',X).
% X = 2434525 [Filename: Datalog/aggregation.P]

620

Demonstrate both collection syntaxes:

:- include(mondial).
citypops(C,B) :- bagof(Pop,N^P^Lo^La^El^city(N,C,P,Pop,La,Lo,El),B).

sum1(X,[H|T]) :- sum1(Y,T), H \= null, Y \= null, X is H + Y.
sum1(H,[H|T]) :- sum1(null,T), H \= null.
sum1(X,[null|T]) :- sum1(X,T).
sum1(null,[]).

sum2(X,.(H,T)) :- sum2(Y,T), H \= null, Y \= null, X is H + Y.
sum2(H,.(H,T)) :- sum2(null,T), H \= null.
sum2(X,.(null,T)) :- sum2(X,T).
sum2(null,[]).

citypopsum(C,X,Y) :- citypops(C,B), sum1(X,B), sum2(Y,B).

[Filename: Datalog/aggregation2.P]

621

Aside: Tabling with Answer Subsumption

• XSB Documentation, Section 5.4

• tabling with subsumption: “subsumed” (wrt. some ordering) answers are not stored

⇒ only “maximal” ones remain.

:- include(mondial).
:- table citypopmax(_,po(> /2)). %% blank before "/" is important!
citypopmax(C,N) :- city(_,C,_,N,_,_,_), N \= null.
?- citypopmax('D',P).

[Filename: Datalog/aggrsubsumpt.P]

• works only for min/max, not count/sum (these are not idempotent)

• see documentation: shortest paths

622

10.5.2 (Stratified) Recursive Datalog with Negation

• The stratified semantics seamlessly covers stratifiable recursive Datalog¬ programs.

• expressiveness covers Algebra/Calculus + Recursion.

% :- auto_table.
:- table borders/3, reachable/2.
:- include(mondial).
borders(Y,X,Z) :- borders(X,Y,Z). % make it symmetric.
reachable(X,Y) :- borders(X,Y,_).
reachable(X,Y) :- reachable(X,Z), borders(Z,Y,_).
notReachable(X,Y) :- country(_,X,_,_,_,_), country(_,Y,_,_,_,_),

not reachable(X,Y).
[Filename: Datalog/transitiveclosure2.P]

Exercise

• Give the intermediate steps of the Tω
P -based stratified evaluation for the above program.

623

Summary

• bottom-up inefficient when regarding a single query.

• IDB predicates can be seen as views:

– materialization of views not unusual in DB
(when frequently used, seldomly changing)

– view maintenance strategies (upon updates of underlying tables) in LP exist:

– seminaive evaluation of Tn
P : consider only rule instantiations where at least one atom

has been derived in the previous round for computing the next one.

• tabling is already a mixture between bottom-up and top-down.

• data transformation/integration applications:

– transform the whole input database(s),

– export certain IDB relations as “resulting database”,

– (e.g. generation of the MONDIAL database from Web sources with F-Logic in 1998).

624

Summary: Expressiveness of Datalog¬

• negation in the body restricted to stratifiable knowledge bases

• no existentials
note: it is e.g. not possible to express that every country has a capital if not all of them are
explicitly known.
Datalog is a database language, not an ontology language.
⇒ Semantic Web uses different languages.

• no disjunction in the head P → (Q ∨R)

• unique name assumption, no equality

625

Chapter 11
Datalog Knowledge Bases II

NEGATION IN THE BODY: CYCLIC NEGATIVE DEPENDENCIES

A program whose dependency graph contains a negative cycle cannot be stratified.

• Consider the program P = {p(b)← ¬p(a)} (without any assured facts). It has three
models,M1 = {p(b)}, M2 = {p(a)}, andM3 = {p(a), p(b)}.
BothM1 andM2 are minimal.

Which of the models is “preferable”, given P as a knowledge base?

• well-founded semantics (still polynomial)

• stable semantics (answer set programming) (exponential)

• the rule is logically equivalent to p(a) ∨ p(b) – but as a rule, it can be read to have a more
“directed” meaning:
“if p(a) cannot be shown, then assume p(b)”.

626

Example: Win-Move-Game

• 2 players,

• positions on a board that are connected by (directed) moves (relation “move(x,y)”),

• first player puts a pebble on a position,

• players alternately move the pebble from x to a connected y,

• if a player cannot move, he loses.

• Question: which positions are “winning” positions, “losing” position, or “drawn” positions?

The following program “describes” the game:

win(X) :- move(X,Y), not win(Y).

• the dependency graph contains a negative
cycle:

win move

¬

a b k n

f e c g

d l h i

m j

627

WELL-FOUNDED SEMANTICS: MOTIVATION

... switch from “stupid” bottom-up to well-founded argumentation “why or why not”.

• every fact has an individual finite proof
(positive/existential part: linear; not-exists/forall part: multiple ((finitely) failed) subproofs)

• but not stratified (but “dynamically stratified”/“locally stratified”/“ground-stratified”)

1. basic facts,

2. apply rules based on existing knowledge

3. additional facts,

4. continue with (2);

5. including “negative facts” – under closed-world assumption (CWA).

• Does this need full reasoning? (tableau proofs obviously cover it)

• is resolution sufficient? (yes, it’s only rule applications)

• theory: how to characterize the model?

• three-valued logic: yes-no-undefined (win-move: lost/won/drawn)

• how to compute the model efficiently?

628

ANALYSIS

• which atoms are definitely true?

– the facts

– instantiations σ(H) of rule heads of rules H ← C1 ∧ . . . ∧ Cn ∧ ¬D1 ∧ . . . ∧ ¬Dk

* where all σ(Ci) are definitely true, and

* where all σ(Di) are definitely false.

• which atoms are definitely false (under CWA)?

– instances of EDB predicates that are not amongst the given facts,

– ground instances p(...) of IDB predicates such that for all rules whose rule head H
unifies with p(...) as σ(H) (there might be several such rules with p(...) in their head):
H ← C1 ∧ . . . ∧ Cn ∧ ¬D1 ∧ . . . ∧ ¬Dk

* some σ(Ci) is definitely false, or

* some σ(Di) is definitely true.

• idea: start with nothing. Derive some definitively true things and some definitively false
ones.

• based on the obtained knowledge, do “next round”,

• care for “still unknown” things.

629

Well-Founded Semantics: For What

• Many real problems are stratified.

• Most (relational/SQL) queries are stratified.

• WFS goes beyond classical queries:
many problems can be encoded in Datalog wrt. well-founded semantics

Non-Stratified examples:

• logical puzzles ;)

• planning problems
can_start(Y)← completed(X), additional conditions.

• argumentation contexts
holds(...) ← holds(...), ¬ holds(...), additional conditions.

Let’s have a look at the theory ...

630

REDUCT OF A PROGRAM

Consider a Herbrand interpretation (i.e., a set of ground facts) H.

Definition 11.1 (Reduct of a Program)
The reduct PH of a program P wrt. a Herbrand interpretation H is obtained as follows:

• let Pg denote the grounding of P , i.e. the set of all ground instances of rules in P over
elements of the Herbrand universe of H ∪ P .

• delete from Pg all rules that contain a negative literal ¬a in the body such that a ∈ H,
(these rule bodies cannot be satisfied in H)

• delete all remaining negative literals in the bodies of the remaining rules.
(for those ¬a, a /∈ H, i.e., these literals are satisfied in H) ✷

Properties of PH

• PH is a (ground) positive program.

• If H is a model of P , then TPH(H) ⊆ H.
(note: use TPH(H here, not Tω, but run it on H)

631

11.1 Stable Models I

Definition 11.2 (M. Gelfond, V. Lifschitz, ICLP 1988)
A Herbrand interpretation H is a stable model of a Datalog¬ program P , if

Tω
PH(∅) = H.

✷

• note that a program P can have several stable models.

Remark and Exercise

Note that the definition of stable models is based on Tω
PH(∅).

Consider P = {p(a) :- p(a)} and H = {p(a)}; PH = P .
H is a model of P , and Tω

PH(H) = H.

But, Tω
PH(∅) = ∅, i.e., H is not a stable model (p(a) is not “supported”).

H′ = {p(a), p(b), q(b)} is also a model of P , which is also (obviously) not stable.

Obviously, ∅ is a stable model of P – and thus, is the only one.

Note that the above example is a positive Datalog program. For positive Datalog programs P ,
and any H, PH = ground(P) (i.e., all ground instances of rules of P) and
Tω
ground(P)(∅) = Tω

P (∅) is the only stable model.

632

Stable Models – Example

Consider the following program P :

q(a) :- not p(a).

[Filename: Datalog/qnotp.s]

Logically, the rule is equivalent to p(a) ∨ q(a).

• The program has one stable model:

> lparse -n 0 qnotp.s|smodels
Answer: 1
Stable Model: q(a)
True

For H = {q(a)}, PH = {q(a) :- true} and Tω
PH(∅) = {q(a)}, thus H is stable.

• Consider H′ = {p(a)}. It is a model of P .
PH′

= ∅ and Tω
PH′ (∅) = ∅.

The derivation of p(a) is “not supported” by P ; H′ is not stable.

• so, in Stable Models Semantics, the rule does not mean disjunction, but is directed.

633

Stable Models – Example

Consider the following program:
q(a) :- not p(a).
p(a) :- not q(a).

[Filename: Datalog/porq.s]

Logically, each of the rules is equivalent to p(a) ∨ q(a).

• The program has two total stable models, and one partial (which is the well-founded
model):

> lparse -n 0 --partial porq.s|smodels
Answer: 1
Stable Model: q(a)
Answer: 2
Stable Model: p(a)
Answer: 3
Stable Model: q'(a) p'(a)

• thus, both rules together represent disjunction.

• Note that {p(a), q(a)} is a model, but not a stable model.

• There is no possibility in Datalog¬ to assert ¬q(a) to forbid one of the models.
(in smodels, this will be allowed)

634

Stable Models – Example

Consider the following program:

p(a).
q(a) :- not p(a).
p(a) :- not q(a).

[Filename: Datalog/pporq.s]

• The program has only one stable model: {p(a)}.

• This model is also the well-founded model.

635

WinMove with Stable Models

• lparse does not accept don’t-care-variables.

pos(a). pos(b). pos(c). pos(d). pos(e). pos(f). pos(g).
pos(h). pos(i). pos(j). pos(k). pos(l). pos(m). pos(n).
win(X) :- move(X,Y), not win(Y).
lose(X) :- pos(X), not win(X).
move(a,b). move(a,f).
move(b,c). move(b,g). move(b,k).
move(c,d). move(c,l).
move(d,e).
move(e,a).
move(g,i). move(g,h).
move(h,m).
move(i,j).
move(l,d).
move(m,h).

[Filename: Datalog/winmove.s]

a b k n

f e c g

d l h i

m j

• lparse -n 0 -d none winmove.s | smodels yields two total two-valued stable models.

• drawn cycle between h and m: once w/l, other l/w

• wfm = intersection of stable models, minimal 3-valued model.

636

Stable Models – First Summary

• A Datalog¬ program may have several stable models.

• Finding the stable models of a program is exponential
(optimization strategies exist)

• come back to the well-founded semantics

– cheaper (polynomial),

– returns a unique reasonable result in cases where disjunction is not needed or not
intended,

– cf. win-move game: drawn positions are neither lost nor won.

• ... a closer investigation of stable models semantics will be given on Slides 671 ff.

637

11.2 Well-Founded Semantics

• recall the considerations from Slides 628 ff.:
well-founded non-stratified “argumentation” which facts can be derived to be true or false

Main Problem:

How to deal with true-unknown-false:

• model-theoretic: three-valued logic

• practically: apply a trick to be able to use the existing 2-valued TP operator for positive
Datalog.

Definition

Definition 11.3 (A. Van Gelder, K.A. Ross, J.S. Schlipf, PODS 1988)
Given a Datalog¬ program P , the well-founded model of P is the minimal 3-valued stable
model of P . ✷

• from the practical view not very promising ...
not only to guess stable models, yet even 3-valued.

• have a look at this definition later.

638

ALTERNATING FIXPOINT COMPUTATION FOR WFS

The Alternating Fixpoint Computation [A. Van Gelder, PODS 1989] mirrors the
well-foundedness of the derivation:

Definition 11.4
Given a Datalog¬ program P over a signature Σ, define the sequence I0, I1, . . . of Herbrand
interpretations over Σ als follows:

I0 := ∅
Ii+1 := Tω

P Ii
(∅)

✷

• Does ((Ik)) converge?
No. And Yes.

• Is there a fixpoint?
Yes. There are two fixpoints!

... let’s have a look ...

Exercise

Evaluate ((Ik)) for the win-move example.

639

Alternating Fixpoint: Analysis

• Consider first the program P facts which consists only of the facts (= fact rules) in P :

– Tω
P facts(∅) = T 1

P facts(∅) makes all facts true that are contained in the program.

• Consider next the program P+ which is obtained from ground(P) by deleting all rules that
contain any negative literal:

– P+: corresponds to “all negative literals are false”.
Recall that HBP denotes the interpretation that makes all possible atoms over the
Herbrand Universe of P true. With this, P+ = PHBP .

– (P+ can be equivalently obtained by first deleting all rules that contain a negative
literal and then grounding the remaining (positive) rules)

– P+ is the smallest possible reduct of P ,

– Tω
P+(∅) derives all atoms that can be derived by only the remaining purely positive

rules,

– this includes all facts (recall fact rules of the form p(...) :- true.)

⇒ these are atoms that hold in all models of P (facts+positive rules force them).

⇒ a safe and very careful underestimate of true atoms.

∅ ⊆ T 1
P facts(∅) ⊆ Tω

P+(∅) ⊆ Tω
PanyI (∅) ⊆ HBP

640

Alternating Fixpoint: Analysis

Consider now the program P− which is obtained from ground(P) by simply deleting all
negative literals from all rules (corresponds to “all negative literals are satisfied”):

• P− is the reduct wrt. the empty interpretation, the starting point of the whole process,

• P− it is the biggest possible reduct of P

• Tω
P−(∅) derives all atoms that can be derived by P if all negative literals are assumed to

be satisfied.

• this includes again all facts (recall fact rules of the form p(...) :- true.)

• and everything that could by derived from them under “optimal” conditions

⇒ an overestimate of true atoms.

⇒ atoms that are not in TP−(∅) can definitely not be derived by P ,

⇒ a safe underestimate of false atoms (in any stable model/wrt. Closed-World Assumption).

• Example: Consider P = {p(a), p(b):- not p(a)}. Then, P− = {p(a), p(b):-true} and
Tω
P−(∅) = {p(a), p(b)}.

• use this for starting with I0 = ∅ and thus considering P ∅ = P−:

∅ ⊆ T 1
P facts(∅) ⊆ Tω

P+(∅) ⊆ Tω
PanyI (∅) ⊆ Tω

P−(∅) = Tω
P∅(∅) ⊆ HBP

641

Well-Founded Semantics Computation: Intuitive Analysis

⇒ coming back to the inductive definition:
I0 = ∅,
I1 = Tω

P∅(∅) is an overestimate of true atoms and an underestimate of false atoms.

• observation: the larger I, the smaller the reduct P I (delete non-satisfied negative
literals), the smaller Tω

P I (∅) (“antimonotonic”)

• P I1 is a “small” reduct program, Tω
P I1

is a “small” interpretation, but ⊇ Tω
P+(∅)

• P I2 is a “large” reduct program, Tω
P I2

is a “large” interpretation, but ⊆ Tω
P∅(∅)

lower bound upper bound

P I2 • • Tω
P I2 (∅) “large”

P I1 • • Tω
P I1 (∅)=: I2 “small”

P I0=P ∅ • • Tω
P∅(∅)=: I1

I0=∅ T 1
P facts(∅) Tω

P+(∅) HBP

size of interpretation (number of true atoms)

642

Alternating Fixpoint: Analysis

I0 := ∅
Ii+1 := Tω

P Ii
(∅)

• in each step, P Ii encodes the knowledge about false atoms from Ii into P .

• Tω
P Ii

runs the resulting positive program under consideration of these false atoms:

• if Ii is an underestimate of false atoms:

– only negative literals that are already proven to be true are assumed to be true.

⇒ underestimate of the satisfied rule bodies,

⇒ underestimate of the true heads.

⇒ Ii+1 = Tω
P Ii

is an underestimate of true atoms.

• Analogously, if Ii is an overestimate of false atoms, Ii+1 = Tω
P Ii

is an overestimate of true
atoms.

643

Alternating Fixpoint: Analysis

I0 = ∅
Ii+1 = Tω

P Ii
(∅)

• I0 is an underestimate of true atoms and an overestimate of false atoms,

• I1 is an overestimate of true atoms and an underestimate of false atoms,

• I2n is an underestimate of true atoms and an overestimate of false atoms,

• I2n+1 is an overestimate of true atoms and an underestimate of false atom,

• and with each step, the estimates get better.

• To be proven by interleaved induction:

– increasing sequence of underestimates:
I2(n+1) ≥ I2n (base case obvious: I2 ≥ I0 = ∅)

– decreasing sequence of overestimates:
I2n+3 ≥ I2n+1 (first element I1 = Tω

P∅(∅) = Tω
P−(∅) (cf. Slide 641)

644

Well-Founded Semantics Computation

• alternating sequence of growing underestimates and shrinking overestimates

P I0=P ∅ • • Tω
P∅(∅)=: I1

I0=∅ T 1
P facts(∅) Tω

P+(∅) HBP

size of interpretation (number of true atoms)

P I1

P I2

P I3

P I2n

P I2n+1

•

•

•

•

•

•

•

•

•

•

Tω
P I1 (∅)=: I2

Tω
P I3 (∅)=: I4

Tω
P I2n+1 (∅)=: I2n+2

Tω
P I2 (∅)=: I3

Tω
P I2n (∅)=: I2n+1

645

Alternating Fixpoint: Analysis

Lemma 11.1
The mapping I → Tω

P I (∅) is antimonotonic:
If I ≤ J , then Tω

P I (∅) ≥ Tω
PJ (∅). ✷

Proof I ≤ J means that I ⊆ J , i.e., in I more atoms evaluate fo false. Thus, in PI more
negative literals are removed (because they are satisfied in I), thus less rules are removed
due to remaining negative literals (which are not satisfied). Thus, PI ⊇ PJ (as sets of ground
rules), thus Tω

P I (∅) ⊇ Tω
PJ (∅). ✷

646

Alternating Fixpoint: Analysis

Theorem 11.1
With the above definition, I0 ≤ I2 ≤ . . . ≤ I2n ≤ I2n+2 ≤ . . . ≤ I2n+1 ≤ I2n−1 ≤ . . . ≤ I1. ✷

Proof Obviously, I0 = ∅ ≤ I1 and I0 ≤ I2. Thus, I2 = Tω
P I1

(∅) ≤ Tω
P I0

(∅) = I1.
I3 = Tω

P I2
(∅) ≤ Tω

P I0
(∅) = I1.

Analogously by induction:
Since I2n−1 ≥ I2n+1: I2n+2 = Tω

P I2n+1
(∅) ≥ Tω

P I2n−1
(∅) = I2n.

Since I2n−2 ≤ I2n: I2n+1 = Tω
P I2n

(∅) ≤ Tω
P I2n−2

(∅) = I2n−1.
Since I2n+1 ≥ I2n: I2n+2 = Tω

P I2n+1
(∅) ≤ Tω

P I2n
(∅) = I2n+1.

Since I2n ≤ I2n−1: I2n+1 = Tω
P I2n

(∅) ≥ Tω
P I2n−1

(∅) = I2n. ✷

• The I2n are a monotonically increasing (and limited) sequence:
the underestimates of true atoms.

• The I2n+1 are a monotonically decreasing (and limited) sequence:
the overestimates of true atoms.

• lim
n→∞

I2n ≤ lim
n→∞

I2n+1.

• do the limits coincide? – sometimes yes, but not always!

647

Well-Founded Semantics Computation: Alternating Fixpoints Case

• either there is an n such that In = In+1 = In+2 = ... (single fixpoint), or

• there is an n such that In = In+2 = ... and In+1 = In+3 = ... (alternating fixpoints):

P I0=P ∅ • • Tω
P∅(∅)=: I1

I0=∅ T 1
P facts(∅) Tω

P+(∅) HBP

size of interpretation (number of true atoms)

•Tω
P I2n−1 (∅)=: I2n

•Tω
P I2n+1 (∅)=: I2n+2 • Tω

P I2n (∅)=: I2n+1

• Tω
P I2n+2 (∅)=: I2n+3

648

Alternating Fixpoint: Example

Consider the small win-move game consisting of

a b c d

• I0 = ∅.
• I1 = {move(a,b), move(b,a), move(b,c), move(c,d), win(c), win(b), win(a)} – d is already
¬win(d) since there is no move from it.

• I2 = {move(a,b), move(b,a), move(b,c), move(c,d), win(c)} – now c is known to be won.

• I3 = {move(a,b), move(b,a), move(b,c), move(c,d), win(c), win(b), win(a)} = I1
win(b) is still there since there is the move to a.

• From then (n ≥ 2) on, I2n = I2 and I2n+1 = I1.

How to interpret this?

• all facts in lim
n→∞

I2n have a well-founded derivation “to hold”: win(c).

• all facts not in lim
n→∞

I2n+1 have a well-founded derivation “not to hold”: ¬win(d).

• all others: ?? – game: a and b are drawn positions.

What about a logical semantics? – three-valued logic: true/false/undefined.

649

EXAMPLE: WIN-MOVE-GAME IN DATALOG

• XSB: use tnot (tabled!) – applies SLG resolution (SLD + memoing/tabling)

:- auto_table.
pos(a). pos(b). pos(c). pos(d).
move(a,b). move(b,a). move(b,c). move(c,d).
win(X) :- move(X,Y), tnot win(Y).
lose(X) :- pos(X), tnot win(X).
% ?- win(X)

[Filename: Datalog/winmovesmall.P]

?- win(X).
X = c
X = b undefined
X = a undefined
no

• c is won, d is lost, a and b are undefined (to be interpreted as drawn).

Aside: References

• The win-move game is used in the above-mentioned papers [M. Gelfond, V. Lifschitz,
ICLP 1988], [A. Van Gelder, K.A. Ross, J.S. Schlipf, PODS 1988], [A. Van Gelder, PODS
1989].

650

Example: Win-Move-Game in Datalog

:- auto_table.
% :- table win/1.
pos(a). pos(b). pos(c). pos(d). pos(e). pos(f). pos(g).
pos(h). pos(i). pos(j). pos(k). pos(l). pos(m). pos(n).
win(X) :- move(X,Y), tnot win(Y).
lose(X) :- pos(X), tnot win(X).
move(a,b). move(a,f).
move(b,c). move(b,g). move(b,k).
move(c,d). move(c,l).
move(d,e).
move(e,a).
move(g,i). move(g,h).
move(h,m).
move(i,j).
move(l,d).
move(m,h).

[Filename: Datalog/winmove.P]

a b k n

f e c g

d l h i

m j

651

11.3 3-Valued Logic

• same syntax as FOL

• truth values t (true, 1), u (undefined, 0.5), f (false, 0), ordered by t > u > f .

• All three-valued logics coincide in the definition of ∧, ∨, and ¬:

A ∧B = min(A,B)

A
B

f u t

f f f f

u f u u

t f u t

A ∨B = max(A,B)

A
B

f u t

f f u t

u u u t

t t t t

¬A = 1−A
A ¬A
f t

u u

t f

• there is not a single 3-valued logic. There are multiple variants, depending on what
should be done with the logic.

652

3-Valued Logic for Logic Programming Semantics

• does not require actual reasoning in a 3-valued world,

• define a model theory for Datalog with negation,

• express partial models:

– consider Datalog with disjunction in the head (or similar situations e.g. in Description
Logics/OWL):
Consider an axiom ∀X : person(X)→ (male(X) ∨ female(X)).
Consider an interpretation I where there is an individual a s.t. I |= person(a). From
I |= ∀X : person(X)→ (male(X) ∨ female(X)).
the intended semantics of |= and→ (both must still be defined!) should imply that
I |= male(a) ∨ female(a).
Since it is not known whether a is male or female, the model theory for partial models
with negation in the head should allow that neither male(a) nor female(a) belong to I.

• this chapter: allow to define and compute TP (I) for rules with negation in the body:

– evaluate conjunctive bodies with negation,

– TP for such rules: if the truth value of the body is u, that of the head should also be u.

– an appropriate notion for I |= P for partial interpretations wrt. such programs.

653

3-Valued Logic: Implication

For implication, there are different definitions (here, only two are listed):

1. Logic K3, Stephen Kleene (1938):
A→ B = ¬A ∨B = max(1− A,B)

follows the definition of → as a derived operator from
boolean logic.

A
B

f u t

f t t t

u u u t

t f u t

• Fits with intuitive “if the truth value of the body is unknown and the truth value of the
head is unknown, then the truth value of A→ B is also unknown”.

• Does not fit with the intention to handle I |= head← body where the truth value of the
body (and that of the head) is u.

2. based on the ordering of the domain: t > u > f :
A→ B = (A ≤ B)

• the truth value of A→ B is always t or f ,

• For a rule head← body,
if I(body) = u and I(head) = u,
then I(head← body) = t.

B : head

f u t

f t t t

u f t t

A
:
bo
d
y

t f f t

⇒ use the second alternative.

654

3-VALUED LOGIC: NOTATION AND MINIMAL MODELS

Extend and adapt FOL notation:

• 3-valued Herbrand interpretations are given as tuples I = (T, F) where T is the set of
true atoms and F is the set of false atoms.
All other atoms are undefined.

• I1 ≤ I2 is defined wrt. the amount of information:
with partial order u ≺ t and u ≺ f
– I1 ≤ I2 if for all ground atoms a , I1(a) � I2(a),
– or equivalently (T1, F1) ≤ (T2, F2) ⇔ T1 ⊆ T2 and F1 ⊆ F2.

• The minimal interpretation is thus formally correctly written as (∅, ∅).

• instead of I |= φ or I |=β φ (which can only express true/false),
write I(φ) = v or valI,β(φ) = v for v ∈ {t, u, f}.
Convention: write I |= φ (“I is a model of φ”) in 3-valued context if I(φ) = t.
(|= will only be applied to programs and rules, the semantics of→ has been defined
above to result in t or f .)

655

11.4 3-Valued Well-Founded Model

Given a program P , define a certain 3-valued Herbrand interpretation I = (T, F) as follows;

Definition 11.5
For a Datalog¬ program P with I0 = ∅, I1, . . . , I2n, I2n+1, . . . the Alternating Fixpoint
Computation, let WP := ({a|a ∈ lim

n→∞
I2n}, {a|a ∈ BP , a /∈ lim

n→∞
I2n+1}) . ✷

• “true”: all facts that are in the final underestimate of true atoms;

• “false”: all facts that are outside of the final overestimate of true atoms – they are
definitely false.

It will be proven later thatWP is the well-founded model of P (cf. Definition 11.3).

656

Example

Consider again the simple win-move game from Slide 649.

The corresponding program is P =

pos(a). pos(b). pos(c). pos(d).
move(a,b). move(b,a). move(b,c). move(c,d).
win(X) :- move(X,Y), not win(Y).
lose(X) :- pos(X), not win(X).

[Filename: Datalog/winmove-small.s]

With the sequence ((Ik)) as given on Slide 649, the alternating fixpoint computation stops at
I3 = I1 (EDB shown in gray):

W(P) = ({ pos(a), pos(b), pos(c), pos(d),

move(a,b), move(b,a), move(b,c), move(c,d), win(c), lose(d)},
{ move(a,a), move(a,c), move(a,d), move(b,a), move(b,b), move(b,d), move(c,a),

move(c,b), move(c,c), move(d,a), move(d,a), move(d,b), move(d,c), move(d,d),

win(d), lose(c)})
undefined: win(a), win(b), lose(a), lose(b)

(usually one omits the EDB predicates when listing well-founded or stable models).

657

3-VALUED TP -OPERATOR

Definition 10.2 carries over to 3-valued interpretations as follows:

Definition 11.6 (3TP -Operator)
For a ground Datalog¬ program Pg (which might contain the boolean atom undef in the body)
and a 3-valued interpretation I = (T, F), for each ground atom a,

3TPg
(I)(a) := max({I(body) : a← body ∈ Pg})

For a non-ground Datalog¬ program P and a 3-valued interpretation I = (T, F),
3TP (I) := 3TPg (I) where Pg is the grounding of P wrt. the Herbrand Universe of P
(i.e., the set of all possible ground instances of the rules of P).

3T 0
P (I) := I

3T 1
P (I) := 3TP (I)

3Tn+1
P (I) := 3TP (3T

n
P (I))

3Tω
P (I) :=

⋃

n∈IN

3Tn
P (I)

3Tω
P := 3Tω

P (∅, ∅). ✷

658

3-VALUED REDUCT

Definition 11.1 (Slide 631) carries over to 3-valued interpretations as follows:

Definition 11.7 (3-Valued Reduct)
For a Datalog¬ program P , and a 3-valued interpretation I = (T, F), the reduct P I of P wrt. I
is obtained as follows:

• let Pg denote the grounding of P ,

• delete from Pg all rules that contain a negative literal ¬a in the body such that I(a) = t,

• replace all negative literals ¬a in the remaining rules s.t. I(a) = u by the boolean atom
undef (since undef is neither in T nor in F it will be evaluated as I(undef) = u),

• delete all remaining negative literals in the bodies of the remaining rules. ✷

Properties of P I

• P I is a ground positive program.

• If I is a model of P , then for each ground atom a, (3Tω
P I (∅))(a) ≤ I(a).

659

3-STABLE MODELS

Definition 11.8
A 3-valued interpretation I = (T, F) is a 3-stable model of a Datalog¬ program P , if

3Tω
P I (∅, ∅) = I.

✷

For returning also partial models, invoke smodels with --partial.

• output p(a) means that p(a) can be derived to be true

• output p’(a) means that val(p(a) ≥ u is at least undefined (p(a) might also be listed to
be true)

• this avoids to have to list all possible ground instantiations of atoms that are false.

(see next slide)

660

Example/Syntax: Partial Stable Model in smodels

Example 11.1
p(a) :- not p(a).

[Filename: Datalog/pnotp.s]

... has only one partial stable model: p(a) is undefined:

lparse -n 0 --partial pnotp.s|smodels
smodels version 2.34. Reading...done
Answer: 1
Stable Model: p'(a)

Interpretation of the result M = {p′(a)} (smodels Section 4.8.2):

• for every ground atom p(. . .), an atom p′(. . .) is added to the internal program, which
means “p(. . .) is potentially true”

• if both p(. . .) and p′(. . .) are in M , then valM (p(. . .)) = t,

• if p′(. . .) ∈M and p(. . .) /∈M , then valM (p(. . .)) = u,

• otherwise valM(p(. . .)) = f . ✷

661

Example

Example 11.2
Consider once more the program from Slide 634:

q(a) :- not p(a).
p(a) :- not q(a). [Filename: Datalog/porq.s]

Exercise: give the Alternating Fixpoint Computation for P .

• S := (∅, ∅), i.e., S(p(a)) = S(q(a)) = u, is a 3-stable model. It is the minimal 3-stable
model.

• On Slide 634, {p(a)} and {q(a)} have been identified as total stable models of P .
Note: as partial models, these are written as (T, F)-pairs as ({p(a)}, {q(a)}) and
({q(a)}, {p(a)}) ✷

Example 11.3
Consider winmove.p with --partial.

• here, the unique partial stable model (= the well-founded model) is the “intended” one
with drawn positions.

• the total stable models arbitrarily “fix” some drawn positions to be won/lost (in an
admissible way wrt. the program). ✷

662

WELL-FOUNDED MODEL

Recall Definition 11.3 (638):

For a Datalog¬ program P , the (in general three-valued) well-founded model of P is the
(unique) minimal 3-stable model of P .

Theorem 11.2
WP (as defined on Slide 656) is the well-founded model of P . ✷

Proof:

• Show thatWP is 3-stable [Abiteboul, Hull, Vianu: Foundations of Databases, Thm. 15.3.9]

• minimality and uniqueness follow from Lemma 11.2:

Lemma 11.2
For a Datalog¬ program P ,WP = (T, F) is the intersection of all 3-stable models of P , i.e., for
every 3-stable model (T ′, F ′), T ′ ⊇ T and F ′ ⊇ F . ✷

Proof: minimality of T wrt. all models and minimality of F wrt. all stable models follows from
the properties proven for the AFP computation.

663

Comments: Well-Founded Model

• The AFP gives a (polynomial!) computation for the non-constructive definition of
“well-founded model”.

• all stable models extend the well-founded model
⇒ computation/guessing can be based on the well-founded model.

• starting the Alternating Fixpoint Computation with the contents of the EDB relations as
initial interpretation J0 leads to the same final result
(but the intermediate Ji are different and J0 serves as an underestimate).

664

Recall: Non-Monotonicity of Closed-World-Assumption

“Negation by default” is non-monotonous:

Consider a program P and its well-founded modelW(P) = (T, F):

• recall that any program (we have only positive atoms in the head) cannot imply that any
atom must be false in all models
⇒ any positive fact can be added to a Datalog/Datalog¬ program without being
inconsistent.

• there are non-stable modelsM = (T ′, F ′) of P where T ′ − T 6= ∅ (containing atoms that
are not supported by P), and for these, often also F − F ′ 6= ∅
– e.g. add an edge to the win-move game, and some other positions are won, but some

that were won before are now lost, or

– e.g. just fix that a certain (drawn or even lost) position is won.

– F − F ′ 6= ∅ ⇒ Things that have been concluded before to hold do now turn out not to
hold; “Belief Revision”.

• M is then a 3-stable model of a (more or less slightly) different program P ′) P .
(e.g., P ′ = P ∪ {move(x,y)} or P ′ = P ∪ {win(x)})
⇒ corresponds to “learning” about a new fact,
⇒ requires to recompute the whole well-founded model from scratch.

665

Exercise: Well-Founded Model

• show that for every positive Datalog program P , the well-founded model is total (i.e., all
ground atoms are either true or false).

• show that for every stratifiable Datalog¬ program P , the well-founded model is total.

Exercise: Well-Founded Model

• Are there non-stratifiable Datalog¬ programs that have a total well-founded model (i.e., no
atoms undefined)?

• Are there (non-ground) non-stratifiable Datalog¬ programs that have a total well-founded
model for all EDB instances?

666

Well-founded Semantics: Literature

• definition of reduct and stable model taken from documentation of smodels,

• alternating fixpoint taken from ??TO BE EXTENDED??

• further reading: [Abiteboul, Hull, Vianu: Foundations of Databases]

• Original Paper: Allen Van Gelder, Kenneth A. Ross, John S. Schlipf: Unfounded Sets and
Well-Founded Semantics for General Logic Programs. PODS 1988: 221-230

• Long version: Allen Van Gelder, Kenneth A. Ross, John S. Schlipf: The Well-Founded
Semantics for General Logic Programs. J. ACM 38(3): 620-650 (1991)

• Alternating Fixpoint: Allen Van Gelder: The Alternating Fixpoint of Logic Programs with
Negation. PODS 1989: 1-10

• online literature database (started with database + logic programming, now for everything
in CS): http://dblp.uni-trier.de/
(from university computers, access to most pdfs is allowed)

667

RESTRICTIONS OF THE DATALOG/MINIMAL/WELL-FOUNDED MODEL

SEMANTICS

Given a Datalog/Datalog¬ program P , the minimal model, well-founded model, and the AFP
procedure cannot decide the following:

• for a given general FOL formula φ, does φ hold in all models of P?

• if p(c1, . . . , cn) can not be confirmed by the minimal, stratified, or well-founded model, this
does not mean, that there is no model of P where p(c1, . . . , cn) holds.
Even more, any positive fact can be added to a Datalog/Datalog¬ program without being
inconsistent.

Closed-World-Assumption (CWA)

• For all facts that are not given in the database and that are not derivable, it is assumed
that they do not hold (more explicitly: that their negation holds).

• CWA not appropriate in the Web: for things that I do not find in the Web, simply nothing is
said.
[Example: travel planning]

668

THE LIMITS – NO REAL DISJUNCTION

:- auto_table.
p(a) :- tnot p(b).
p(b) :- tnot p(a).
q(c) :- p(X).

[Filename: Datalog/pq.P]

?-p(X).
X = b undefined
X = a undefined
?- q(X).
X = c undefined
X = c undefined

• “q(c) undefined” is computed twice by SLG resolution, i.e. two proof paths exist.

• W(P) = (∅, {q(a), q(b), p(c)}), the “interesting” ground atoms {p(a), p(b), q(c)} are undefined.
The model theories of the minimal model and well-founded model define truth/entailment
only for ground atoms.

• P as a FOL formula: (p(b) ∨ p(a)) ∧ ∀x : p(x)→ q(c) |=FOL q(c)
• (general) resolution proof: clauses
{p(a), p(b)} (which is the clause corre-
sponding to both the two first rules) and
{¬p(X), q(c)} together with query/goal
clause ¬q(c) allow to derive ✷:

• SLD/SLG resolution tries only linear proofs.

{p(b), p(a)} {¬p(X), q(c)} {¬q(c)}

{¬p(X1)} {¬p(X2)}

{p(b)}

✷669

THE LIMITS – NO REAL DISJUNCTION

The same program interpreted by stable models:

thing(a). thing(b). thing(c).
p(a) :- not p(b).
p(b) :- not p(a).
q(c) :- thing(X), p(X).

[Filename: Datalog/pq.s]

lparse -n 0 --partial pq.s|smodels
models version 2.34. Reading...done
Answer: 1
Stable Model: p(a) q(c)
Answer: 2
Stable Model: p(b) q(c)
Answer: 3
Stable Model: p'(a) p'(b) q'(c)
False

• two total stable models:

– “either p(a) or p(b) hold”

– “q(c) holds in any case”

• the user can interpret the result as a 3-valued interpretation I where
valI(p(a)) = valI(p(b)) = u and valI(q(c)) = t.

I is a model of P (i.e., 3Tω
PI
(∅) ≤ I), but I is not a stable model of P (i.e., 3Tω

PI
(∅) 6= I)!

670

.

Chapter 12
Stable Models/Answer Set
Programming
• ASP developed in the late 1990s.

• Introduction to ASP:
Answer Set Programming: A Primer. T. Eiter, G. Ianni, T. Krennwallner.
In “Reasoning Web. Semantic Technologies for Information Systems”, Springer LNCS
5689, 2009.

• XSB: XASP package: embeds stable models into XSB PROLOG programming.
Not suitable for this lecture.

• smodels+lparse: http://www.tcs.hut.fi/Software/smodels/

671

SITUATION

Usually a program has several stable models (otherwise, the well-founded model is sufficient!)

• either one total well-founded model or one partial well-founded model,

• and either zero or more total stable models,
or zero or more partial stable models

• if the well-founded model is total, then “everything is clear” and it is the only stable model.

• if the well-founded modelW(P) = (T, F) is partial, its T and F are “guaranteed”.
Stable models deal with the atoms that are undefined in the well-founded model (= the
intersection of all stable models).

According to Lemma 11.2, each stable model is an extension ofWP = (T, F), i.e., for
every 3-stable model (T ′, F ′), T ′ ⊇ T and F ′ ⊇ F .

672

Example: Win-Move Game

Consider again the small win-move game from Slides 649 and 657:

pos(a). pos(b). pos(c). pos(d).
move(a,b). move(b,a). move(b,c). move(c,d).
win(X) :- move(X,Y), not win(Y).
lose(X) :- pos(X), not win(X).

[Filename: Datalog/winmove-small.s]

The well-founded model has been derived on Slide 657:

W(P) = ({win(c), lose(d)}, {lose(c), win(d)}) is partial, since win(a)/lose(a) and
win(b)/lose(b) are undefined.

(Total) Stable Models:

S1(P) = ({win(a), win(c), lose(b), lose(d)}, {win(b), win(d), lose(a), lose(c)}) and
S1(P) = ({win(b), win(c), lose(a), lose(d)}, {win(a), win(d), lose(b), lose(c)}).

Here,W(P) = ({win(c)}, {win(d)}) provides the “intended” application-specific interpretation
of the result: c is won, d is lost, a and b are drawn.

From the stable models one can only conclude that it is possible to “fix” a to be won, and then
b would also be lost (or vice versa).

673

Example: Choice between Alternatives

Consider again the program P = “porq” from Slide 634 and 662:

q(a) :- not p(a).
p(a) :- not q(a).

[Filename: Datalog/porq.s]

Three stable models: lparse -n 0 --partial pq.s|smodels

• W(P) = (∅, ∅) is the well-founded model, and a partial stable model,

• {p(a)} whose 3-valued representation is ({p(a)}, {q(a)}) is a total stable model, and

• {q(a)} whose 3-valued representation is ({q(a)}, {p(a)}) is also a total stable model.

Depending on the application

• the well-founded model tells that nothing is known.

• the two stable models tell what are the two possibilities that have to be considered
(in a more complex scenario, this would already exclude some alternatives)

• underspecification: the two stable models tell that the user is allowed to state additional
facts (according to his preferences).

674

12.1 Answer Set Programming

Different idea than

• Stratified Datalog¬: Query Answering

• Prolog: “Declarative” Prolog Programming – the “search” is encoded into the
SLD-resolution-tree.

• Rules as derivation: “if body holds, then derive head”.

Answer Set Programming: Specify a problem declaratively and leave the reasoning to the
ASP solver (from [EIK09]):

• Rules as assertions: “if body holds, then head holds”.

• Allow disjunction and negation in the head.

• Possibility of modeling constraints;

• Reasoning with incomplete information; and

• Possibility of modeling preferences and priority.

• Spatial and temporal reasoning (here, the notorious Frame Problem is challenging).

675

SMODELS + LPARSE

• call lparse -n 0 -d none [–partial] filename | smodels

• smodels requires “...” for strings,

• smodels does not accept the “_” don’t-care underscore.
Use X1, X2 etc. and constrain it by a domain predicate (see next slide).

• smodels does not accept decimal numbers – only (positive and negative) integers

– decimals would not allow a grounding of the program.
(integers are only little better ...)

⇒ thus, mondial.P cannot be used.

676

Grounding the Program in smodels: Domain Predicates

(note: important for writing programs)

• Computation of stable models is based on grounding the program
(cf. generating the reduct of a program on Slide 631)

• For grounding the rules (i.e., generate all relevant ground instances of each rule),
smodels internally looks for “domain predicates” whose extension can be precomputed
by a simple Datalog¬ subprogram of P without extended rules (cf. smodels Manual
Sections 4.4.2 and 4.4.3):

– union, intersection, join, set difference (with one negative literal!)

• every rule must contain at least one domain predicate atom.

• the ground instances of the domain predicates are precomputed and used for grounding.
(cf. the example for the reduct of the win-move game – generate only ground instances of
win(X) :- move(X,Y), not win(Y) s.t. move(a,b) is in the EDB).

• If lparse/smodels complains about

<line_nr>: weakly restricted rule: <....>.
weakly restricted variables: <var>

introduce a domain predicate and use it in the rule (in the following: thing(X) with
appropriate definition of thing).

677

DISJUNCTION REVISITED: STABLE MODELS

mainDish(X) :- meal (X,Y).
drink(Y) :- meal (X,Y).
vegetarian(X) :- mainDish(X), not nonvegetarian(X). %% xor(veg, nonveg)
nonvegetarian(X) :- mainDish(X), not vegetarian(X).
porc(X) :- mainDish(X), nonvegetarian(X), not beef(X), not fish(X). %% xor (porc,beef,fish)
beef(X) :- mainDish(X), nonvegetarian(X), not porc(X), not fish(X).
fish(X) :- mainDish(X), nonvegetarian(X), not porc(X), not beef(X).
whitewine(Y) :- meal(X,Y), fish(X).
whitewine(Y) :- meal(X,Y), porc(X).
redwine(Y) :- meal(X,Y), beef(X).
wine(Y) :- drink(Y), redwine(Y). %% wine = redwine u whitewine
wine(Y) :- drink(Y), whitewine(Y).
alcoholic(Y) :- drink(Y), wine(Y).
tomatojuice(Y) :- meal(X,Y), vegetarian(X).
meal(a,b).
nonvegetarian(a). [Filename: Datalog/meals.s and meals.P]

• consider the question: is b alcoholic?

• meal/2, mainDish/1 and drink/1 act as domain predicates.

678

Example (Cont’d)

• Three (total) stable models: a is either porc, beef or fish. In either case, white/red wine is
served with it, thus alcoholic(b) holds.

• Exercise: give the AFP computation.

• well-founded model:

– valW(P)(fish(b)) = valW(P)(porc(b)) = valW(P)(beef(b)) = u,

– valW(P)(alcoholic(b)) = u

• note: XSB yields a=fish, not computing the well-founded model.

(cf. also formal example from Slide 669)

679

Logical Rules: Local and Global Semantics

• Wrt. logical rules, the concept of disjunction does not exist:
there are several isolated rules that derive wine(X)
(in Description Logics, wine would be a union class Wine = RedWine ⊔WhiteWine).

• The global semantics of the well-founded model and of stable models is always based on
the local semantics of rules.

• any application-specific semantics (= interpretation of the model) has to be defined
outside of the LP framework.

• Consider I agreeing with the well-founded model up to valI(fish(a)) = valI(porc(a)) =
valI(beef(a)) = valI(whitewine(b)) = valI(redwine(b)) = u, but then setting
valI(wine(b)) = valI(alcoholic)(b) = t:
I |= P , but I is not stable!

• Recall Lemma 11.2: “WP = (T, F) is the intersection of all 3-stable models of P ”.

Above example: This may be smaller than the intersection of all 2-stable models!

680

APPLICATION-SPECIFIC INTERPRETATION OF LP NOTIONS

• consider all total stable models and

– “cautious reasoning”: take facts that are true/false in all of them.
(results are models of P , but not necessary stable ones)
(meals example: alcoholic(b))

– “credulous reasoning”: take facts that are true/false in one of them
(they are possible - somebody reporting them may tell the truth)
(meals example: whitewine(b), redwine(b), but tomatojuice(b) is definitely false)

• preference by the user

– interpreted as underspecification:

– choose a “desired” fact a that is undefined and consider only models that satisfy it,

– add a to the program and run again

* without negation in the head/denials (cf. Slide 686):
one or more new 3-stable models exist

• systematic weight (lparse/smodels support weighted clauses)

681

DISJUNCTION IN RULE HEADS

(this syntax is buggy in smodels; see next page for (more expressive) alternative)

• rules of the form
A1| . . . |An :- B1, . . . , Bm

(recall: conjunction is expressed by n rules with the same body)

• stable models in presence of disjunction are not necessarily minimal

• check of minimality is again NP-complete

• smodels yields all stable models

• smodels, Section 4.8.1

• invoke with --dlp

• smodels returns “Error in input” (lparse without | smodels accepts it)

a | b :- c.
c :- not d.
d :- not c.

[Filename: Datalog/disj.s]

(Total) stable models:

• {d}, {c, a}, {c, b}, {c, a, b}.

682

SMODELS: DISJUNCTION IN THE HEAD VIA CHOICE RULES

• extended rule head: k {a1, . . . , an} m :- body

• k to m atoms of the head must be true if body is true.

mainDish(X) :- meal (X,Y).
drink(Y) :- meal (X,Y).
1{vegetarian(X),nonvegetarian(X)}1 :- meal(X,Y).
1{porc(X), beef(X), fish(X)}1 :- mainDish(X), nonvegetarian(X).
whitewine(Y) :- meal(X,Y), fish(X).
whitewine(Y) :- meal(X,Y), porc(X).
redwine(Y) :- meal(X,Y), beef(X).
wine(Y) :- drink(Y), redwine(Y).
wine(Y) :- drink(Y), whitewine(Y).
alcoholic(Y) :- drink(Y), wine(Y).
tomatojuice(Y) :- meal(X,Y), vegetarian(X).
meal(a,b).
nonvegetarian(a). [Filename: Datalog/meals-disj.s]

683

Stable Models – Example

Consider the following program (cf. Slide 635):

1{p(a), q(a)}1.
p(a).

[Filename: Datalog/pporq-choice.s]

• The program has only one total stable model: {p(a)}.
(which corresponds to the 3-valued ({p(a)}, {q(a)}.)

• The 3-valued interpretation ({p(a)}, ∅) (Stable Model: p(a) p'(a) q'(a)) is also
considered a (partial) stable model (!) [Bug or not bug?]

684

EXPLICIT NEGATION

• well-founded and stable semantics are still based on default negation.
non-monotonic: adding some positive atom is always allowed and may make before
conclusions invalid (and add others).

• explicit negation:

– ¬p(a1, . . . , an) as negative facts,

– ¬p(X1, . . . , Xn) :- . . . in rule heads.

• Explicit negation is monotonic. “Additional” positive information wrt. such atoms would
make the program inconsistent.

• applications:

– in diagnosis systems to explicitly derive negative knowledge,

– for expressing integrity constraints.

• XSB: WSFX package, XSB Manual Part II.

• smodels: only integrity constraints via denials (see next slide).

685

EXPLICIT NEGATION VIA DENIALS

A denial is a constraint that forbids certain database states
(DB: integrity constraints can be formulated as denials)

• Consider a “rule”
:- p.
Its semantics is “if p is true, then the empty clause is true”, i.e., then, “false” is true.

• means “p must not be true”.

:- p(a).
q(a) :- not p(a).
p(a) :- not q(a).

[Filename: Datalog/porq-denial.s]

• the program has only one stable model, {q(a)}. It is total.

• note: XSB does not care for such rules (they would be useless there since XSB computes
only one model).

686

Example: Italians Revisited

The italian-vs-english ontology from Slide 546 can be specified via choice rules (and implicit)
denials (line 1: either italian or english allowed):

0{ italian(X), english(X) }1 :- person(X), thing(X).
person(X) :- italian(X), thing(X).
person(X) :- english(X), thing(X).
1{ lazy(X), latinlover(X) }1 :- italian(X), thing(X).
italian(X) :- lazy(X), thing(X).
italian(X) :- latinlover(X), thing(X).
0{ gentleman(X), hooligan(X) }2 :- english(X), thing(X).
english(X) :- gentleman(X), thing(X).
english(X) :- hooligan(X), thing(X).
gentleman(X) :- latinlover(X), thing(X).
italian(e).
thing(e).

[Filename: Datalog/italians-english.s]

• do not query for ?- lazy(e) , but inspect the stable model(s).

• there is a single (total) stable model where lazy(e) holds.

687

SMODELS: MULTIPLE MODELS

• Motivated by the “Ascending, Descending” graphics by M.C.Escher
http://en.wikipedia.org/wiki/Ascending_and_Descending

corner(1..4). % set of corners
higher(1,2).
1{ higher(1,2), higher(1,3), higher(1,4) }1.
1{ higher(2,1), higher(2,3), higher(2,4) }1.
1{ higher(3,1), higher(3,2), higher(3,4) }1.
1{ higher(4,1), higher(4,2), higher(4,3) }1.
:- higher(X,X), corner(X). % irreflexive
:- higher(X,Y), higher(Y,X), corner(X), corner(Y). % asymmetric
% inverse functional
:- higher(Y,X), higher(Z,X), corner(X), corner(Y), corner(Z), Y != Z.
% :- higher(X,Y), higher(X,Z), corner(X), corner(Y), corner(Z), Y != Z.

[Filename: Datalog/escherstairs.s]

• two possibilities = two models

• recall Semantic Web: only answers what holds in all models

688

SMODELS: PLANNING

Give a specification P of the workflow including constraints:

• if at least one total stable model S exists, the specification including the constraints is
satisfiable.
S describes the plan that must be followed.

• if several total stable model exist, each one represents a possible execution.
Different plans mean that choicepoints during the execution exist.

– they can be decided a priori: add the intended atoms to P :

* there is at least one stable model, but maybe still several ones.

– ... or decide them during execution of the workflow (e.g. to be able to react upon
external influences).

689

Planning Example: The Farmer’s Puzzle

A farmer, travelling to the market with his dog, a goat, and a cabbage. He has to cross a small
river, where a boat can be used.

• When using the boat, he can transport only one item.

• He can cross the river as often as he wants.

• When the dog stays on the same side as the goat, and the farmer is not there, the dog
will kill and eat the goat.

• When the goat stays on the same side as the cabbage, and the farmer is not there, the
goat will eat the cabbage.

Is it possible for the farmer to bring all items to the other side? If yes, how?

690

Example (Cont’d)

state(1..8). % estimate the number of necessary states.
side(l). side(r).
is(farmer,l,1). % farmer is on the left side in state 1 (with all items)
thing(cabbage). thing(goat). thing(dog).
is(X,l,1) :- thing(X).
otherside(X,Y) :- side(X), side(Y), X != Y.
0{ transport(cabbage,N), transport(goat,N), transport(dog,N) }1 :- state(N), not finished(N).
:- transport(X,N), is(farmer,S1,N), is(X,S2,N), S1 != S2,

thing(X), state(N), side(S1), side(S2).
is(X,S2,M) :- is(X,S1,N), thing(X), otherside(S1,S2), transport(X,N), M = N+1, not finished(N),

state(N), side(S1).
is(X,S1,M) :- is(X,S1,N), thing(X), not transport(X,N), M = N+1, not finished(N),

state(N), side(S1). %% the "frame axiom"
is(farmer,S2,M) :- is(farmer,S1,N), otherside(S1,S2), M = N+1, not finished(N),

state(N), side(S1).
:- is(cabbage,S,N), is(goat,S,N), not is(farmer,S,N), state(N), side(S).
:- is(goat,S,N), is(dog,S,N), not is(farmer,S,N), state(N), side(S).
finished(N) :- is(cabbage,r,N), is(goat,r,N), is(dog,r,N), state(N).
finished(M) :- finished(N), M = N+1, state(N).
:- not finished(8). [Filename: Datalog/farmer.s]

691

Example (Cont’d)

Two stable models:

1. first carry the goat to the other side (r)
(it must not be left with the dog or with the cabbage).

2. go back,

3. bring either the dog or the cabbage to the other side,

4. go back with the goat,

5. bring the cabbage or the dog (one is still there) to the other side,

6. go back,

7. take the goat and bring it to the right bank again,

8. continue traveling to the market.

⇒ Step 3 is a choicepoint.

692

SMODELS: SUDOKU SOLVER

% example sudoku content from (german) wikipedia
p(2,9,3). p(4,8,1). p(5,8,9). p(6,8,5). p(3,7,8). p(8,7,6).
p(1,6,8). p(5,6,6). p(1,5,4). p(4,5,8). p(9,5,1). p(5,4,2). p(2,3,6).
p(7,3,2). p(8,3,8). p(4,2,4). p(5,2,1). p(6,2,9). p(9,2,5). p(8,1,7).

% general sudoku rules (x = cols, y = rows)
col(1..9). row(1..9). num(1..9).
% samesquare expresses the 3x3 subsquares:
samesq(1,2). samesq(1,3). samesq(2,3).
samesq(4,5). samesq(4,6). samesq(5,6).
samesq(7,8). samesq(7,9). samesq(8,9).
samesq(B,A) :- samesq(A,B), num(A), num(B).

1{p(X,Y,1),p(X,Y,2),p(X,Y,3),p(X,Y,4),p(X,Y,5),p(X,Y,6),p(X,Y,7),p(X,Y,8),p(X,Y,9)}1
:- col(Y), row(X).

:- p(X,Y1,N), p(X,Y2,N), col(X), row(Y1), row(Y2), num(N), Y1!=Y2.
:- p(X1,Y,N), p(X2,Y,N), col(X1), col(X2), row(Y), num(N), X1!=X2.
:- p(X1,Y1,N), p(X2,Y2,N), col(X1), col(X2), row(Y1), row(Y2),num(N),

samesq(X1,X2), samesq(Y1,Y2), X1 + 10 * Y1 != X2 + 10 * Y2.

[Filename: Datalog/sudoku.s]

(cf. Sudoku from Slide 584)

693

Aside: Another Sudoku

• for most strategy-based solvers it is “unsolvable”, requires “trial and error” (which is
actually backtracking)

9 6 2 8

8 7 3

7 4 1 9

6 8 9 2

5 7 6

4 3 5

3 1 3 4

2 5 7

1 9 6

A B C D E F G H I

694

Aside: Code for another Sudoku - easier encoding of input
% another sudoku which is unsolvable by rule-based reasoners:
r(9, 6,0,0,0,0,2,0,0,8).
r(8, 0,0,7,0,0,0,0,3,0).
r(7, 0,4,0,1,0,0,9,0,0).
r(6, 0,8,0,9,0,0,0,0,2).
r(5, 0,0,0,0,0,7,0,6,0).
r(4, 0,0,3,0,5,0,0,0,0).
r(3, 0,0,1,0,0,3,0,0,4).
r(2, 0,5,0,0,0,0,0,7,0).
r(1, 9,0,0,0,6,0,0,0,0).

col(1..9). row(1..9). num(1..9). numx(0..9).

9{q(1,Y,X1), q(2,Y,X2), q(3,Y,X3), q(4,Y,X4), q(5,Y,X5),
q(6,Y,X6), q(7,Y,X7), q(8,Y,X8), q(9,Y,X9)}9

:- r(Y,X1,X2,X3,X4,X5,X6,X7,X8,X9), row(Y),
numx(X1), numx(X2), numx(X3), numx(X4), numx(X5), numx(X6), numx(X7), numx(X8), numx(X9).

p(X,Y,N) :- q(X,Y,N), col(X), row(Y), num(N). %% 0s are unknown cells

% general sudoku rules as before ...
% samesquare expresses the 3x3 subsquares:
samesq(1,2). samesq(1,3). samesq(2,3).
samesq(4,5). samesq(4,6). samesq(5,6).
samesq(7,8). samesq(7,9). samesq(8,9).
samesq(B,A) :- samesq(A,B), num(A), num(B).

[Filename: Datalog/sudoku2.s]

695

COMMENTS AND LINKS ON ASP AND SUDOKU SOLVING

• None of the rules is “constructive” in the sense of “position (x, y) must be n1 if ...”, or
“position (x, y) must be n1 of n2 if ...”

• the description strongly relies on the denials and the solver must find out what is not
forbidden.

• Sudoku is a typical Constraint Satisfaction Problem; ASP is a certain form of Constraint
Solving.
See e.g. https://en.wikipedia.org/wiki/Constraint_satisfaction_problem.

• Sudoku solved by an explicit Constraint Propagation algorithm in python:
http://norvig.com/sudoku.html by Peter Norvig, a well-known AI scientist.

SMODELS: FURTHER EXAMPLES AND PUZZLES

• the smodels documentation (Section 6.1) contains

– the Graph 3-Coloring problem (sudoku can also be encoded as graph coloring),

– some logical puzzles.

• Exercise: encode the Fish Puzzle (see Web page) in ASP and let smodels solve it.

696

“PROVE” P |= ϕ

• Stable models:

– definition (cf. Slide 659) is based on grounding P with the active domain.

⇒ Problem solving for concrete cases – answer queries, look for ground atoms.

• It is only possible to show that S |= ϕ for all stable models S of P :

• Show P |=s ϕ (1st Alternative):

– generate all stable models S1, . . . ,Sn.

– for each of them check whether Si |= ϕ (if not, it is a witness for a counterexample)

• Show P |=s ϕ (2nd Alternative):

– encode ¬ϕ in a program P ′,

– run smodels on P ∪ P ′,

– if there is a stable model, then, P 6|=s ϕ

(and, again, a witness for a counterexample has been found).

697

EXAMPLE: PARRICIDES IN GREEK MYTHODOLOGY

(from ESWC’07 SPARQL tutorial by Marcelo Arenas et al)

A parricide is a person who killed his/her father. [Filename: Datalog/parricide.s]

1{ parricide(X), nonParricide(X) }1 :- person(X).
person(iokaste). nonParricide(iokaste).
hasChild(iokaste, oedipus).
person(oedipus). parricide(oedipus).
marriedto(oedipus, iokaste). %% irrelevant, but the reason why he became prominent
hasChild(oedipus, perineikes).
person(perineikes). %% unknown whether parricide or not.
hasChild(perineikes, thesandros).
person(thesandros). nonParricide(thesandros).
parentOfParricide(X) :- hasChild(X,Y), parricide(Y).
parentOfNonParricide(X) :- hasChild(X,Y), nonParricide(Y).
parentOfParricideGrandparentOfNonParricide(X) :-

parentOfParricide(X), hasChild(X,Y), parentOfNonParricide(Y).
existsPoPGoNP :- parentOfParricideGrandparentOfNonParricide(X), person(X). %% => t/f

Does P |=S ∃X : parentOfParricideGrandparentOfNonParricide(X)?

• two possibilities: either Iokaste or Oedipus.

698

FOL ENTAILMENT/PROOFS VS. STABLE MODELS/ASP

Consider again the italian-vs-english ontology from Slides 546 and 687:

• FOL/Tableaux: prove SpecItalEngl |= ∀x : italian(x)→ lazy(x)
(without considering any ground instance)

• ASP: show that in all stable models of italians-english.s, lazy(e) holds.

• this conclusion is weaker than the one for FOL.

– e is a “typical” instance of an italian, but

– recall that Stable Models reasoning is nonmonotonic – more knowledge about e could
invalidate this conclusion.

699

MONOTONIC VS. NONMONOTONIC REASONING

• FOL:
(∀x : bird(x) ∧ ¬penguin(x)→ flies(x)) ∧ bird(tweety) 6|= flies(tweety)
(∀x : bird(x) ∧ ¬penguin(x)→ flies(x)) ∧ bird(tweety) 6|= ¬flies(tweety)
FOL reasoning does not entail any anything about tweety – Open World.

• (∀x : bird(x)∧¬penguin(x)→ flies(x))∧bird(tweety)∧penguin(tweety) |= ¬flies(tweety)
(∀x : bird(x)∧¬penguin(x)→ flies(x))∧bird(tweety)∧¬penguin(tweety) |= flies(tweety)

• FOL is monotonic. More knowledge, more conclusions, no conclusions can/must ever be
withdrawn.

• it is not possible to conclude things that cannot be actually proven (and that may have to
be withdrawn later).

700

Monotonicity vs. Nonmonotonicity (cont’d)

• ASP:
flies(X) :- bird(X), not penguin(X).
bird(tweety). [Filename: Datalog/tweety.s]

Stable Model: bird(tweety) flies(tweety) bird'(tweety) flies'(tweety)

flies(X) :- bird(X), not penguin(X).
bird(tweety).
penguin(tweety). [Filename: Datalog/tweety2.s]

Stable Model: bird(tweety) penguin(tweety) bird'(tweety) penguin'(tweety)

701

Monotonicity vs. Nonmonotonicity (cont’d)

This can be used to encode general concepts in nonmonotonic reasoning

• by default, if p(x) holds, and there is no further information, then usually q(x) can be
assumed.

• if p(x) holds, and q(x) is consistent with the knowledge, conclude q(x):

• “Circumscription” (J. McCarthy, "Circumscription – A form of non-monotonic reasoning".
Artificial Intelligence 13: 27-39, April 1980).

flies(X) :- bird(X), not abnormal(X).
abnormal(X) :- penguin(X).
bird(tweety). [Filename: Datalog/tweety-circ.s]

Stable Model: bird(tweety) flies(tweety) bird'(tweety) flies'(tweety)

• In (T, F)-notation: ({bird(tweety), flies(tweety)}, {penguin(tweety), abnormal(tweety)})

• Note that ({bird(tweety), penguin(tweety), abnormal(tweety)}, {flies(tweety) }) is also a model of P ,
but it is not stable.
If learning that penguin(tweety) holds, this model would become (the only) stable one.

702

12.2 An Application: Semantics of Referential Actions in
SQL

Consider again the problem of ambiguous semantics of referential actions from Slide 236:

Country

Name Code Capital Province

Germany D Berlin Berlin

United States US Washington Distr.Col.

.
Province

Name Country Capital

Berlin D Berlin

Distr.Col. US Washington

.
City

Name Country Province

Berlin D B

Washington USA Distr.Col.

.
DELETE FROM Country

WHERE Code=’D’

SET NULL

CASCADE

CASCADE

703

SQL STANDARD

• The SQL Standard gives a hard-to-understand procedural specification of referential
actions.

• Database Systems implemented only ON DELETE CASCADE (as optional alternative to
ON DELETE NO ACTION) for a long time (late 90s)

• Nondeclarative semantics of ON DELETE SET NULL or ON UPDATE CASCADE are
implemented.
e.g. Oracle 11: the most recently defined (more exactly: activated) referential action is
executed first.

• combination with transactions and PL/SQL and triggers becomes complex.

704

Concepts

• Intuitive concept of “Event-Condition-Action-Rules” (“ECA Rules”):
ON DELETE (of referenced tuple) CASCADE (update to referencing tuple(s)

• can be read as a declarative specification how integrity is to be maintained:
“Whenever the set U of updates includes the deletion of a referenced tuple wrt. a
referential integrity constraint S.B̄ → R.Ā, the cascaded update of the referencing tuple(s)
must also be contained in U . (etc. for other referential actions)”

⇒ Set-oriented characterization of all updates that “complete” a transaction wrt. referential
integrity maintenance.

705

... from a declarative point of view, the semantics should be easy, and it must be
unambiguous. This lead us to playing around with Datalog (and Statelog) around Easter 1996:

Publications

The following papers are accessible via http://dblp.uni-trier.de/ (and partially via the
DBIS Publications Web pages):

• B. Ludäscher, W. May und J. Reinert. Towards a Logical Semantics for Referential
Actions in SQL. In Proc. Intl. Workshop on Foundations of Models and Languages for
Data and Objects: Integrity in Databases (FMLDO’96), Dagstuhl Castle, Germany, 1996.

• B. Ludäscher, W. May und G. Lausen. Referential Actions as Logical Rules. In Proc. ACM
Symposium on Principles of Database Systems (PODS’97), pp. 217–224, 1997.

• B. Ludäscher und W. May. Referential Actions: From Logical Semantics to
Implementation. In Proc. Intl. Conference on Extending Database Technology (EDBT’98),
Springer LNCS 1377, pp. 404-418, 1998.

• W. May und B. Ludäscher. Understanding the Global Semantics of Referential Actions
using Logic Rules. In ACM Transactions on Database Systems (TODS), 27(4):343–397,
2002.

706

12.2.1 Straightforward Logical Semantics: Encoding as Rules

• consider only ON DELETE CASCADE/SET NULL:

% prov(Country) refs country(code) on delete cascade
del_province(PN,C,PPop,PA,PCap,PCapProv) :- del_country(N,C,Cap,CapP,A,P),

province(PN,C,PPop,PA,PCap,PCapProv).
% city(Country) refs country(code) on delete set null
upd_city(CN,C,CP,CPop,Lat,Long,El,CN,null,CP,CPop,Lat,Long,El) :-

del_country(N,C,Cap,CapP,A,P), city(CN,C,CP,CPop,Lat,Long,El).
% city(Country,Province) refs province(name,country) on delete cascade
del_city(CN,C,PN,CPop,Lat,Long,El) :- del_province(PN,C,PPop,PA,PCap,PCapProv),

city(CN,C,PN,CPop,Lat,Long,El).
inconsistent :- del_city(CN,C,CP,CPop,Lat,Long,El),

upd_city(CN,C,CP,CPop,Lat,Long,El,CN2,C2,CP2,CPop2,Lat2,Long2,El2).
country("Germany","D","Berlin","Berlin",356910,83536115).
province("Berlin","D",3472009,889,"Berlin","Berlin").
city("Berlin","D","Berlin",3472009,13,52,null).
del_country("Germany","D","Berlin","Berlin",356910,83536115).
% ?- inconsistent. [Filename: Datalog/refint.s]

• cascaded updates and “inconsistent” are true.

707

Deletions: Encoding as Rules

• ON DELETE/UPDATE NO ACTION:

– if there is a referencing tuple that is not deleted (or modified to reference another
parent) in the same transaction, then the update is not allowed, e.g., in the reference
Organization(City,Country,Province)→ City(City,Country,Province) ON DELETE NO
ACTION ON UPDATE CASCADE

* a city where an organization has its headquarter cannot be deleted (i.e., when the
city is merged with another one, the value must also be changed in the referenced
organization tuple in the same transaction),

* if a city where an organization has its headquarter is renamed or its province
changes, then, the update is cascaded to the headquarter foreign key.

⇒ all potential (cascaded) updates during the transaction must be considered.

• ext_ACTION (“external”): the updates issued by the user/by the program.

• pot_ACTION (“potential”): all updates issued by the user/by the program or resulting from
these by any referential action.

708

12.2.2 Deletions: Encoding as Rules

• Collect all potential updates that are triggered by the external operations:

• Consider only deletions and ON DELETE CASCADE/NO ACTION.

pot_del_country(N,C,Cap,CapP,A,Pop) :- ext_del_country(N,C,Cap,CapP,A,Pop),
country(N,C,Cap,CapP,A,Pop).

% Province(Country) refs Country(code) on delete cascade
pot_del_province(P,C,PPop,PA,PCap,PCapProv) :- pot_del_country(N,C,Cap,CapP,A,Pop),

province(P,C,PPop,PA,PCap,PCapProv).
% City(Country) refs Country(code) on delete cascade
pot_del_city(CN,C,P,CPop,Lat,Long,El) :-

pot_del_country(N,C,Cap,CapP,A,Pop),
city(CN,C,P,CPop,Lat,Long,El).

% City(Country,Province) refs Province(Country,name) on delete cascade
pot_del_city(CN,C,P,CPop,Lat,Long,El) :-

pot_del_province(P,C,PPop,PA,PCap,PCapProv),
city(CN,C,P,CPop,Lat,Long,El). [Filename: Datalog/refint1.s]

709

Deletions: Encoding as Rules

pot_del_organization(O,N,Ci,Co,P,E) :- ext_del_organization(O,N,Ci,Co,P,E),
organization(O,N,Ci,Co,P,E).

% refs from isMember to Country and Organization: ON DELETE CASCADE.
pot_del_isMember(C,O,T) :- pot_del_country(N,C,Cap,CapP,A,Pop),

isMember(C,O,T).
pot_del_isMember(C,O,T) :- pot_del_organization(O,N,Ci,Co,P,E),

isMember(C,O,T). [Filename: Datalog/refint2.s]

710

Deletions: Encoding as Rules

• Organization(City,Country,Province)→ City(City,Country,Province) ON DELETE NO
ACTION ON UPDATE CASCADE

• block deletions/updates if ON UPDATE NO ACTION and child tuple remains,

• propagate blocking upwards through CASCADEs.

blk_del_city(Ci,Co,P,CPop,Lat,Long,El) :- pot_del_city(Ci,Co,P,CPop,Lat,Long,El),
organization(O,N,Ci,Co,P,E), rem_organization(O,N,Ci,Co,P,E).

rem_organization(O,N,Ci,Co,P,E) :- organization(O,N,Ci,Co,P,E),
not del_organization(O,N,Ci,Co,P,E). %%% del not yet defined

blk_del_province(P,C,PPop,PA,PCap,PCapProv) :- pot_del_city(CN,C,P,CPop,Lat,Long,El),
blk_del_city(CN,C,P,CPop,Lat,Long,El), pot_del_province(P,C,PPop,PA,PCap,PCapProv).

blk_del_country(N,C,Cap,CapP,A,Pop) :- pot_del_province(P,C,PPop,PA,PCap,PCapProv),
blk_del_province(P,C,PPop,PA,PCap,PCapProv), pot_del_country(N,C,Cap,CapP,A,Pop).

[Filename: Datalog/refint3.s]

711

Deletions: Encoding as Rules

• (if any update is blocked do nothing).

• execute (and appropriately cascade) all external updates that are not blocked.

del_country(N,C,Cap,CapP,A,Pop) :- ext_del_country(N,C,Cap,CapP,A,Pop),
country(N,C,Cap,CapP,A,Pop), not blk_del_country(N,C,Cap,CapP,A,Pop).

del_province(P,C,PPop,PA,PCap,PCapProv) :- del_country(N,C,Cap,CapP,A,Pop),
province(P,C,PPop,PA,PCap,PCapProv).

del_city(CN,C,P,CPop,Lat,Long,El) :- del_country(N,C,Cap,CapP,A,Pop),
city(CN,C,P,CPop,Lat,Long,El).

del_city(CN,C,P,CPop,Lat,Long,El) :- del_province(P,C,PPop,PA,PCap,PCapProv),
city(CN,C,P,CPop,Lat,Long,El).

del_isMember(C,O,T) :- del_country(N,C,Cap,CapP,A,P), isMember(C,O,T).
del_organization(O,N,Ci,Co,P,E) :- ext_del_organization(O,N,Ci,Co,P,E),

organization(O,N,Ci,Co,P,E), not blk_del_organization(O,N,Ci,Co,P,E).
del_isMember(C,O,T) :- del_organization(O,N,Ci,Co,P,E), isMember(C,O,T).

[Filename: Datalog/refint4.s]

• Dependency graph: ext pot blk del

rem
¬

¬

712

Deletions Example: delete Germany (not referenced)

country("Germany","D","Berlin","Berlin",356910,83536115).
province("Berlin","D",3472009,889,"Berlin","Berlin").
city("Berlin","D","Berlin",3472009,13,52,null).
organization("EU","European Union","Brussels","B","Brabant","1992-02-07").
isMember("D","EU","member").
ext_del_country("Germany","D","Berlin","Berlin",356910,83536115).
% lparse -n 0 refint1.s refint2.s refint3.s refint4.s refint-del-d.s| smodels

[Filename: Datalog/refint-del-d.s]

In this case, there is only one stable model (i.e., it coincides with the well-founded model)
which is total:

pot_del_country("Germany","D","Berlin","Berlin",356910,83536115)
pot_del_province("Berlin","D",3472009,889,"Berlin","Berlin")
pot_del_city("Berlin","D","Berlin",3472009,13,52,null)
pot_del_isMember("D","EU","member")
del_country("Germany","D","Berlin","Berlin",356910,83536115)
del_province("Berlin","D",3472009,889,"Berlin","Berlin")
del_city("Berlin","D","Berlin",3472009,13,52,null)
del_isMember("D","EU","member")
rem_organization("EU","European Union","Brussels","B","Brabant","1992-02-07")

713

Deletions Example - delete Belgium (referenced by the EU)

country("Belgium","B","Brussels","Brabant",30510,10170241).
city("Brussels","B","Brabant",951580,null,null,null).
province("Brabant","B",2253794,3358,"Brussels","Brabant").
organization("EU","European Union","Brussels","B","Brabant","1992-02-07").
isMember("B","EU","member").
ext_del_country("Belgium","B","Brussels","Brabant",30510,10170241).
% lparse -n 0 refint1.s refint2.s refint3.s refint4.s refint-del-b1.s| smodels

[Filename: Datalog/refint-del-b1.s]

Again, a total unique stable model = well-founded model – it contains blockings:

ext_del_country("Belgium","B","Brussels","Brabant",30510,10170241)
pot_del_country("Belgium","B","Brussels","Brabant",30510,10170241)
pot_del_isMember("B","EU","member")
pot_del_province("Brabant","B",2253794,3358,"Brussels","Brabant")
pot_del_city("Brussels","B","Brabant",951580,null,null,null)
rem_organization("EU","European Union","Brussels","B","Brabant","1992-02-07") <<<<
blk_del_city("Brussels","B","Brabant",951580,null,null,null) <<<<
blk_del_province("Brabant","B",2253794,3358,"Brussels","Brabant") <<<<
blk_del_country("Belgium","B","Brussels","Brabant",30510,10170241) <<<<

714

Deletions Example - delete Belgium and the EU

ext_del_country("Belgium","B","Brussels","Brabant",30510,10170241).
ext_del_organization("EU","European Union","Brussels","B","Brabant","1992-02-07").
country("Belgium","B","Brussels","Brabant",30510,10170241).
city("Brussels","B","Brabant",951580,null,null,null).
province("Brabant","B",2253794,3358,"Brussels","Brabant").
organization("EU","European Union","Brussels","B","Brabant","1992-02-07").
isMember("B","EU","member").
% lparse -n 0 refint1.s refint2.s refint3.s refint4.s refint-del-b2.s| smodels

[Filename: Datalog/refint-del-b2.s]

Again, a total unique stable model = well-founded model:

ext_del_country("Belgium","B","Brussels","Brabant",30510,10170241)
ext_del_organization("EU","European Union","Brussels","B","Brabant","1992-02-07")
pot_del_ [...]
del_country("Belgium","B","Brussels","Brabant",30510,10170241)
del_city("Brussels","B","Brabant",951580,null,null,null)
del_province("Brabant","B",2253794,3358,"Brussels","Brabant")
del_isMember("B","EU","member")
del_organization("EU","European Union","Brussels","B","Brabant","1992-02-07")

715

Deletions Example with NO ACTION

• Change the reference from City to Province from CASCADE to NO ACTION:
(in refint1.s and refint4.s)

pot_del_country(N,C,Cap,CapP,A,Pop) :- ext_del_country(N,C,Cap,CapP,A,Pop),
country(N,C,Cap,CapP,A,Pop).

% Province(Country) refs Country(code) on delete cascade
pot_del_province(P,C,PPop,PA,PCap,PCapProv) :- pot_del_country(N,C,Cap,CapP,A,Pop),

province(P,C,PPop,PA,PCap,PCapProv).
% City(Country) refs Country(code) on delete cascade
pot_del_city(CN,C,P,CPop,Lat,Long,El) :-

pot_del_country(N,C,Cap,CapP,A,Pop),
city(CN,C,P,CPop,Lat,Long,El).

% City(Country,Province) refs Province(name,country) on delete no action <<<<<<<<
blk_del_province(P,C,PPop,PA,PCap,PCapProv) :-

pot_del_province(P,C,PPop,PA,PCap,PCapProv),
city(CN,C,P,CPop,Lat,Long,El), rem_city(CN,C,P,CPop,Lat,Long,El).

rem_city(CN,C,P,CPop,Lat,Long,El) :- city(CN,C,P,CPop,Lat,Long,El),
not del_city(CN,C,P,CPop,Lat,Long,El).

[Filename: Datalog/refint1b.s]

716

Deletions: Encoding as Rules
del_country(N,C,Cap,CapP,A,Pop) :- ext_del_country(N,C,Cap,CapP,A,Pop),

country(N,C,Cap,CapP,A,Pop), not blk_del_country(N,C,Cap,CapP,A,Pop).
del_province(P,C,PPop,PA,PCap,PCapProv) :- pot_del_country(N,C,Cap,CapP,A,Pop),

del_country(N,C,Cap,CapP,A,Pop), province(P,C,PPop,PA,PCap,PCapProv).
del_city(CN,C,P,CPop,Lat,Long,El) :- pot_del_country(N,C,Cap,CapP,A,Pop),

del_country(N,C,Cap,CapP,A,Pop), city(CN,C,P,CPop,Lat,Long,El).
del_isMember(C,O,T) :- pot_del_country(N,C,Cap,CapP,A,P),

del_country(N,C,Cap,CapP,A,P), isMember(C,O,T).
del_organization(O,N,Ci,Co,P,E) :- ext_del_organization(O,N,Ci,Co,P,E),

organization(O,N,Ci,Co,P,E), not blk_del_organization(O,N,Ci,Co,P,E).
del_isMember(C,O,T) :- del_organization(O,N,Ci,Co,P,E), isMember(C,O,T).

[Filename: Datalog/refint4b.s]

• using pot_del is sometimes redundant, and only required for providing smodels with a
domain predicate.

717

Deletions: The Resulting Models

% lparse -n 0 refint1b.s refint2.s refint3.s refint4b.s refint-del-d.s| smodels

• 3 stable models, 2 of them total, one partial (= well-founded model).

ext_del_country("Germany","D","Berlin","Berlin",356910,83536115)
pot_del_country("Germany","D","Berlin","Berlin",356910,83536115)
pot_del_province("Berlin","D",3472009,889,"Berlin","Berlin")
pot_del_city("Berlin","D","Berlin",3472009,13,52,null)
pot_del_isMember("D","EU","member")
del_province("Berlin","D",3472009,889,"Berlin","Berlin")
del_country("Germany","D","Berlin","Berlin",356910,83536115)
del_city("Berlin","D","Berlin",3472009,13,52,null)
del_isMember("D","EU","member")

ext_del_country("Germany","D","Berlin","Berlin",356910,83536115)
pot_del_country("Germany","D","Berlin","Berlin",356910,83536115)
pot_del_[...]
blk_del_country("Germany","D","Berlin","Berlin",356910,83536115)
blk_del_province("Berlin","D",3472009,889,"Berlin","Berlin")
rem_city("Berlin","D","Berlin",3472009,13,52,null)

• in the partial stable model (=the well-founded model), all pot_del are true, all blk_del
and all del are undefined.

718

Deletions: Interpreting the Resulting Models

3 stable models:

1. the well-founded, partial one:
all pot_del are true, the blk_del and del are undefined.

• two total stable ones:

2. all pot_del are true, the del are true, and the blk_del are false (since the reason for
blk_del_prov(...) is deleted).

3. all pot_del are true, the blk_del are true, and the del are false (since the deletion of
the province is not allowed due to blocking).

Application-Specific Priorities (cf. EDBT paper)

• the “intended” one is the stable model (2) that gives priority to deletions against blockings.

• including game-theoretic interpretation:

– “del_p(x̄)” is won if deletion is possible

– counter-moves: “how?” and “what about this referencing tuple q(ȳ)”,

– justification “cascaded from “del_r(z̄)” and “claim: del_q(ȳ)”,

– infinite games (cycling around via deleted blocking tuples) are won for the deleter.

– the well-founded model can be used→ polynomial.

719

Deletions: Encoding as Rules

• Sets of (external) delete requests are monotonic:
Let del(D) denote the actual set of (cascaded) deletions on the database.

• del(D1 ∪D2) = del(D1) ∪ del(D2),

• If D1 and D2 are admissible (wrt. NO ACTION), then D1 ∪D2 is admissible
(but not vice versa, recall the “Belgium” example – D1 ∪D2 is admissible even though D1

alone is not admissible).

• with CASCADE and SET NULL, conflicts can arise;

• with DELETE+CASCADE/SET NULL and UPDATE even more conflicts can arise.

720

12.2.3 Updates: Encoding as Rules

• with updates, the modeling is more involved:

– updates can create new foreign keys,

– usually such updates are cascaded from the appropriate parent,

– but overlapping FKs induce interferences with other K/FKs.

– Consider S.X→R.Y ON UPDATE NO ACTION and r(a), r(b) and s(a).
A transaction that modifies r(a)→ r(c) and s(a)→ s(b) is admissible.

⇒ not only tuple-based, but key-foreign-key-based.

– different cascaded modifications can be applied at the same time to a tuple.

• Recall:

– SET NULL cannot create new foreign keys – null values cannot violate any SQL
integrity constraint (except NOT NULL).

– actual conflicts in a “diamond” from a single update can only result from CASCADE
and SET NULL since then different changes are applied.

• the approach must cover the general “worst case”, not only “intuitive” cases.

721

Updates: Encoding as Rules

• for every key and foreign key:
pot_chg_R_K1...Kk(X1,...,Xn,Y1,...,Yk) and chg_R_K1...Kk(X1,...,Xn,Y1,...,Yk)
(change f/key attributes K1, . . . , Kk of tuple R(X1, . . . , Xn) to Y1, . . . , Yk).

• propagation for every FK/K reference (ON UPDATE CASCADE):
pot_prp_RP_RC_F1...Fk(X1,...,Xn,Y1,...,Yk)
(propagate update from RP ’s keys to FK F1, . . . , Fk of tuple RC(X1, . . . , Xn)).

• user updates: projection to the keys and foreign keys (K1, ..., Kk) of R:
pot_prp_ext_R_K1...Kk(X1,...Xn,Yi1,...,Yik) :-

ext_mod_R(X1,...,Xn,Y1,...,Yn), (Yi1,...,Yik) != (Xi1,...,Xik).

• collect propagated changes to keys/foreign keys (overlappings!):
Simplified pattern: Consider two “incoming” propagations from RP1

.A→ RC .K1 and
RP1

.B → RC .K2 concern the key (K1, K2) of RC :
pot_chg_RC_K1,K2(X1,...,Xn,Y1,Y2) :-

pot_prp_RP1
_RC_K1(X1,...,Xn,Y1), pot_prp_RP2

_RC_K2(X1,...,Xn,Y2),
(Y1,Y2) != (XK1 ,XK2).

(for the fully general rule see (CH1) in the TODS paper)

722

Updates: Encoding as Rules

Changes of Primary Keys RP (K1, . . . , Kk) are then handled according to the referential
actions of their “child tuples”

• RC(F1, . . . , Fk) REFERENCES RP (K1, . . . , Kk) ON UPDATE NO ACTION:
blk_chg_RP_K1,. . . ,Kk(X1,...,Xn,Y1,. . . ,Yk) :-

pot_chg_RP_K1,. . . ,Kk(X1,...,Xn,Y1,. . . ,Yk), rem_refd_RP_RC_F1...Fk(Y1,. . . ,Yk).

• RC(F1, . . . , Fk) REFERENCES RP (K1, . . . , Kk) ON UPDATE CASCADE:
pot_prp_RP_RC_F1...Fk(Z1,...,Zn,Y1,...,Yk) :-

pot_chg_RP_K1,. . . ,Kk(X1,...,Xn,Y1,. . . ,Yk),
π[F1,. . . ,Fk](Z1,...,Zn) = π[K1,. . . ,Kk](X1,...,Xn).

and (block propagation if change of child is blocked)
blk_prp_RP_RC_F1...Fk(X1,...,Xn,Y1,...,Yk) :-

pot_prp_RP_RC_F1...Fk(X1,...,Xn,Y1,...,Yk),
blk_chg_RC_F1,. . . ,Kk(X1,...,Xn,Y1,. . . ,Yk)

and (block parent change if propagation to some child is blocked)
blk_chg_RP_K1,. . . ,Kk(X1,...,Xn,Y1,. . . ,Yk),

pot_chg_RP_K1,. . . ,Kk(X1,...,Xn,Y1,. . . ,Yk),
blk_prp_RP_RC_F1...Fk(Z1,...,Zn,Y1,...,Yk),
π[F1,. . . ,Fk](Z1,...,Zn) = π[K1,. . . ,Kk](X1,...,Xn).

723

Updates: Encoding as Rules

Further rules (see TODS paper):

• when a key value remains referenced (child not deleted, not “modified away”),

• when a key value gets newly referenced (insert, “modified towards”),

• when a key value gets newly referencable (insert, “modified towards”),

• when a change of a FK is blocked because the new reference does not exist,

• when 2 changes on a tuple are inconsistent (del/upd, different values (null vs. a value),

• rules that derive the modifications to be finally executed.

Results

• if an update set is admissible, the well-founded model is sufficient: giving priorities to
modifications/propagations/changes vs. blockings yields a total stable model and the
updates to be executed

• if an update set is not admissible, the stable models indicate what portions of the initial
set are admissible, and where the problems are located (mutually excluding updates,
missing cascades, unresolved tuples).

724

12.3 The Limits

Recall:

• ASP is based on atoms (i.e., disjunction is not dealt with as formula, but resolved into
atoms)
(note: in tableaux, it is also broken down to atoms)

• ASP algorithms are internally based on ground atoms and grounding of all rules (with all
ground terms=constants of the Herbrand universe).
(note: tableaux can keep variables and use them on-demand)

• ASP is closely related with Model Checking: generate models by a strategy.

Expressiveness

• Datalog¬ rules, for ASP extended with:

– disjunction/choice rules: generate suitable different models
(cf. tableau: branches)

– negation: via denials. Discard models.
(cf. tableau: close branch)

725

The Limits

The Limits of ASP:

• no existential quantification, object invention:

– every person has a father who is again a person.
(tableau: via skolemization and strategical application of the δ-rule)

– ASP/grounding: would require infinitely many ground instances.
(tableau: strategic application of the γ-Rule + Blocking strategies (e.g., DL/OWL
reasoning))

• P |= a means only that a holds in the minimal/stratified/well-founded model.
Statements about ¬a only by default negation/closed world.
(On the other hand: LP provides a CWA reasoning formalism – in contrast to tableaux)

Comparison: Tableaux

• Tableaux can be tailored to any logic: FOL, DL/OWL, ...

– Open-World: monotonic

– complex expansion & blocking strategies + heuristics.

• ASP is worst-case exponential,
but with a polynomial basis: the AFP computation for the well-founded model.

726

12.4 DB vs. KB: Closed World vs. Open World

Consider the following formula F :

F ≡ person(“John”, 35) ∧ person(“Alice”, 10) ∧ person(“Bob”, 8) ∧
∧ person(“Carol”, 12) ∧ person(“Jack”, 65) ∧
∧ child(“John”, “Alice”) ∧ child(“John”, “Bob”) ∧
∀X,Y : (∃Z : (child(Z,X) ∧ child(Z, Y) ∧X 6= Y)→ sibling(X,Y))

• Does child(“John”, “Bob”) hold? – obviously yes.

• Does G:≡sibling(“Alice”, “Bob”) hold?

– (Relational) Database: sibling is a view. The answer is “yes”.

– FOL KB: for all modelsM of F , G holds. Thus, F |= sibling(“Alice”, “Bob”).

• What about G:≡sibling(“Alice”, “Carol”)?

– (Relational) Database: no. For the database state D, D 6|= sibling(“Alice”, “Carol”).

– FOL KB: there is a modelM1 of F , whereM1 6|= G, but there is also a modelM2 of
F , whereM2 |= G (e.g., add the tuple (“John”, “Carol”) to the interpretation of child).

For the Web, child(“John”, “Carol”) can e.g. be contributed by another Web Source.

727

DB VS. KB: CLOSED WORLD VS. OPEN WORLD

• What about G :≡ child(“John”, “Jack”)?

– (Relational) Database: no. For the database state D, D 6|= child(“John”, “Jack”).

– FOL KB: there is a modelM1 of F , whereM1 6|= G, but there is also a modelM2 of
F , whereM2 |= G.

• Obviously, the KB does not know that a child cannot be older than its parents.

Add a constraint to F , obtaining F ′:

F ′ :≡ F ∧ ∀P,C,A1, A2, : (person(P,A1) ∧ person(C,A2) ∧ child(P,C))→ A1 > A2

– database: this assertion would prevent to add child(“John”, “Jack”) to the database.

– for the KB, F ′ |= ¬child(“John”, “Jack”) allows to infer that Jack is not the child of John.

Such information can be given with the ontology of a domain.

728

DB VS. KB: CLOSED WORLD VS. OPEN WORLD

• the Database Model Theory is called “Closed World”: things that are not known to hold
are assumed not to hold.

• the FOL semantics is called “Open World”: things that are not known to be true or false
are considered to be possible.

CONSEQUENCES ON NEGATION

• in databases there is no explicit negation. It is not necessary to specify that Jack is not a
child of John.

• in a KB, it would be necessary to state ... ∧ ¬child(“John”, X) for all persons who are
known not to be children of John.
Additional constraints: extend the ontology, e.g., by stating that a person has exactly two
parents – then all others cannot be parents – works only for persons whose parents are
known. Similarly for the “age” constraint from the previous slide.

• note that the semantics of universal quantification (∀) is also effected: ∀X : φ is equivalent
to ¬∃X : ¬φ.

729

REASONING IN PRESENCE OF NEGATION

Obtaining new information (e.g., by finding another Web Source) has different effects on
Open vs. Closed world:

• Closed world: conclusions drawn before – “Carol is not a child of John”, or “John has
exactly two children” from less information can become invalid.

This kind of reasoning is nonmonotonic

• Open world: everything which is not known explicitly is taken into account to be possible
(by considering all possible models).

This kind of reasoning is monotonic:
Knowledge1 ⊆ Knowledge2 ⇒ Conclusions1 ⊆ Conclusions2

• Open World can be combined with other forms of nonmonotonic reasoning, e.g., Defaults:
“usually, birds can fly”. Knowing that Tweety is a bird allows to conclude that it flies.

Obtaining the information that Tweety is a penguin (which can usually not fly) leads to
invalidation of this conclusion.

The current Semantic Web research mainstream prefers Open World without default
reasoning.

730

COMPARISON, MOTIVATION ETC.
Database vs. FOL

Relational relational tuples SQL queries closed world
Databases schema

FOL signature facts S |= φ? (yes/no or answer mostly: open world
(predicates (atoms) ψ |= φ? variable bindings) sometimes
+functions) closed world

Situations and tasks
Given what to do how?

facts/database does p(. . .) hold in the DB? by combining data
SQL query

facts+constraints additionally: equivalent to first
(SQL assertions or test if constraints situation (query for
FOL formulas) satisfied violating tuples)

facts (DB) does p(. . .) hold DB+views
rules (KB) in DB+rules? application of rules

facts (DB) is a formula φ reasoning,
knowledge base KB entailed by DB+KB? entailment,
as FOL formulas KB |= φ?

731

