
An ECA Engine for Deploying Heterogeneous
Component Languages in the Semantic Web

Erik Behrends Oliver Fritzen
Wolfgang May Daniel Schubert

Institut für Informatik, Universität Göttingen, Germany

Workshop “Reactivity on the Web”, München,
Germany, 31.3.2006

Supported by the EU Network of Excellence

Part of the “General Framework for Evolution and
Reactivity in the Web” subproject in REWERSE I5

(Göttingen & Lisbon)

Thesis:
There is not a single formalism/language for
describing and implementing behavior in the
Semantic Web.

Hypothesis:
Semantical approaches (i.e., not “programming”,
but based on an ontology of behavior) follow the
Event-Condition-Action paradigm.

Contribution:
We show that a general framework approach with
modular components covers many existing con-
cepts that will prove useful for behavior in the Se-
mantic Web.

ECA 1

Motivation and Goals

(Semantic) Web:

XML: bridge the heterogeneity of data models and
languages

RDF, OWL provide a computer-understandable semantics

... same goals for describing behavior:

description of behavior in the Semantic Web

semantic description of behavior

Event-Condition-Action Rules are suitable for both goals:

operational semantics

ontology of rules, events, actions
ECA 2

ECA Rules

“On Event check Condition and then do Action”

modular, declarative specification

sublanguages for specifying Events, Conditions, Actions

Event
dynamic

Condition
static

Action
dynamic

event queries test action

collect test act
Event: detect just the dynamic part of a situation,

Query: then obtain additional information by queries,

Test: then evaluate a boolean condition,

Action: then actually do something.
ECA 3

Modular ECA Concept: Rule Structure

Rule Model ECARule

EventComponent ConditionComponent ActionComponent

Event
Ontology

State
Ontology

Action
Ontology

Event
Language

Query
Language

Test
Language

Action
Language

Languages Model
Language
Name

URI

1 0..1
1..*

�

� �

�

↓uses ↓uses ↓uses

↓expr.by ↓expr.by ↓expr.by ↓expr.by

Rule Markup: ECA-ML
<!ELEMENT rule (event,query*,test?,action +) >

<eca:rule rule-specific attributes>

<eca:event identification of the language >

event specification, probably binding variables
</eca:event >

<eca:query identification of the language > <!-- there may be several queries -->

query specification; using variables, binding others
</eca:query >

<eca:test identification of the language >

condition specification, using variables
</eca:test >

<eca:action identification of the language > <!-- there may be several actions -->

action specification, using variables, probably binding local ones
</eca:action >

</eca:rule >

Example

Sample Event: <travel:cancel-flight flight=“LH123”>

<travel:reason>bad weather</travel:reason>

</travel:cancel-flight>

<eca:rule >

<eca:event xmlns:travel=“www.travel.com” >

<travel:cancel-flight flight=“$flight”/>

</eca:event >

<eca:query > get $email-address of all passengers of $flight </eca:query >

<eca:test > . . . </eca:test >

<eca:action > tell each $email that $flight is cancelled </eca:action >

</eca:rule >

Combination of Ontologies

ECA Ontology

ECA Ontology

Event
Ontology

State
Ontology

Action
Ontology

Active
Concepts
Ontologies

Domain Ontologies

Application-Domain Ontologies

Atomic Events Literals Atomic Actions

embeds embeds embeds

ECA 7

Active Concepts Ontologies

Domains specify atomic events, actions and static concepts

Composite [Algebraic] Active Concepts

Event algebras: composite events

(when) E1 and some time afterwards E2 (then do A)

(when) E1 happened and then E2, but not E3 after at
least 10 minutes (then do A)

well-investigated in Active Databases (e.g. SNOOP).

Process algebras (e.g. CCS)

different languages, different expressiveness/complexity

common structure: algebraic languages: natural term
markup.ECA 8

Rule Markup: Example (Stripped)
<!ELEMENT rule (event,query*,test?,action +) >

<eca:rule xmlns:travel=“http://www.travel.de” >

<eca:event xmlns:snoop=“http://www.snoop.org” >

<snoop:seq> <travel:delay-flight flight=“$flight”/> <travel:cancel-flight flight=“$flight”/>

</snoop:seq>

</eca:event >

<eca:query >

<eca:variable name=“email”>

<eca:opaque lang=“http://www.w3.org/xpath”>

doc(“www.lufthansa.de”)/flights[code=“$flight”]/passenger/@e-mail
</eca:opaque> </eca:variable> </eca:query >

<eca:action xmlns:smtp=“...”>

<smtp:send-mail to=“$email” text=“...”/>

</eca:action >

</eca:rule >

Subconcepts and Sublanguages

e/q/t/a subelements contain a language identification, and
appropriate contents

all rule components, subexpressions are associated with
languages corresponding to the ontologies
(event languages, action languages, domain languages):

Algebraic languages:

processing engine

Domain Languages:

Event Broker Services (subscribe) and
processors for actions

⇒ Modular concepts with Web-wide services

ECA 10

Service-Oriented Architecture

Event
Detection S
snoop:

ECA
Engine R
eca:

Event
Broker
travel:

Lufthansa
travel:

SNCF
travel:

Client C:
Travel
Agency
travel:

1.1: register rule
eca: travel: snoop:

1.2: register event
travel: snoop:

1.3: register me
travel:

2.1a∗: atomic
events
travel:

2.1b∗: atomic
events
travel:

2.2∗: atomic
events
travel:

3: detected
parameters

4.1: updates
(here:
bookings)

travel:

4.2: messages
(here:
confirm)

travel:

Language Services

Application Domain

ECA 11

Rule Semantics/Logical Variables

(sub)terms (events, queries) must have a well-defined input
and result/outcome: variable bindings

information flow between components by logical variables.

Information Flow in ECA Rules

initial bindings from the event

additional bindings from queries (+ restriction via join variables)

restrict by the test

execute action for each tuple

action(X1, . . . ,Xn)←

event(X1, . . . ,Xk), query(X1, . . . ,Xk, . . .Xn), test(X1, . . . ,Xn)
ECA 12

ECA Engine Architecture

ECA Engine:

<rule>

<event xmlns:ev=“. . . ”/>. . . </event>
<query xmlns:ql=“. . . ”/>. . . </query>

<test xmlns:tst=“. . . ”/>. . . </test>
<action xmlns:act=“. . . ”/>. . . </action>

</rule>

Generic
Request
Handler

Component Language Services

E · · · E Q · · · Q A · · · A

travel: banking: · · · uni:

Domain Services

LH SNCF · · ·

Individual Services

→ component,
input var.bdgs

← resulting
variable bdgs

ECA 13

Tasks

ECA Engine: Rule Semantics

Control flow: registering event component, receiving
“firing” answer, continuing with queries etc.

Variable Bindings, Join Semantics

Generic Request Handler: Mediator with Component
Engines

depending on Service Descriptions

Component Engines: dedicated to certain Event Algebras,
Query Languages, Action Languages

Domain Services (Portals): atomic events, queries, atomic
actions

ECA 14

Sample Rule: Outline

<travel:booking name=”John Doe” from=”Munich” to=”Paris”/>

<eca:rule >

<eca:event >

<travel:booking xmlns:travel=“http://www.travel.nop”>

<evt:bind-variable name=“Person” select=“$event/@person”/>

<evt:bind-variable name=“To” select=“$event/@to”/>

</travel:booking>

</eca:event >

<eca:query > which cars does $Person own at home? </eca:query >

<eca:query > to which classes do these cars belong? </eca:query >

<eca:query > which cars of these classes are available at $To </eca:query >

<eca:query > how much money is $Person willing to spend per day </eca:query >

<eca:test > which of the cars are available for less than this price? </eca:test >

<eca:action > report recommended cars </eca:action >

</eca:rule >

Registration of the Rule

User registers rule at ECA service

ECA registers event part at appropriate service (via GRH)

then wait for an answer.

ECA 16

Event has been Detected

ECA 17

Communication of Results

result-bindings-pairs (semantics of expression)

<log:answers >

<log:answer >

<log:result >

<!-- functional result -- >

</log:result >

<log:variable-bindings >

<log:tuple > . . . </log:tuple >

:
<log:tuple > . . . </log:tuple >

</log:variable-bindings >

</log:answer >

<log:answer > . . . </log:answer >

:
<log:answer > . . . </log:answer >

</log:answers >

ECA 18

Communication

ECA engine sends component to be processed together with
bindings of all relevant variables to GRH.

Generic Request Handler (GRH)

Submits component (with relevant input/used variable
bindings) to appropriate service (determined by
namespace/language used in the component)

if necessary: does some wrapping tasks
(for non-framework-aware services)

receives results and transforms them into flat variable
bindings and sends them back to the ECA engine ...

... where they are joined with the existing tuples ...

... and the next component is processed.ECA 19

Processing Queries

ECA 20

Queries

query in XML Markup to appropriate processor (yet no
engines available)

common way in current Web environment:
query in opaque program code without markup

language identifier (ECA Engine knows processors)

URI and HTTP GET/POST or SOAP

ECA 21

Answers

ECA 23

The Next Query

Language Heterogeneity

Modules for arbitrary query (and event or action) languages

Support for Sideways Information Passing Strategy

existing

variable bindings

new

variable bindings

Query Service

query answers

./

Person,To,OwnCar

relevant vars

OwnCar

OwnCar,Class

Support for most simple HTTP GET services
one tuple at a time, textual replacement of variable values

(RDF) Service Descriptions

Next Query: Available Cars in Paris

Assume an SQL wrapper.
<eca:query >

<eca:input-variable name=“$To”/ >

<eca:opaque uri=“.../sql-interface/” >

SELECT
Offers.Price AS Price,
Offers.Type AS AvailableCar,
Classes.Class,
$To,
FROM Offers, Classes
WHERE city = $To AND Offer.Type = Classes.Type

</eca:opaque >

</eca:query >

ECA 27

Next Answer: Available Cars in Paris

Further Steps

Query: query DB how much money $Person is willing to
spend per day (extending join with $MaxPrice)

Test:
<eca:test >

<eca:input-variable name=“Price” / >

<eca:input-variable name=“MaxPrice” / >

<eca:opaque lang=“http://www.w3.org/XPath” >

number($Price) < number($MaxPrice)
</eca:opaque >

</eca:test >

restricts set of variable bindings.

action ...

ECA 30

Summary

Prototype for language-independent ECA Engine

based on exchanging and operating with variable bindings

GRH as interface to component services

ECA 31

Further Work

fix syntax of communication details

Applications:

atomic events + opaque queries:
integrating queries against different data sources in
scientific workflows (Bioinformatics in Lisbon for
REWERSE A2)

framework-aware component modules under
implementation

event algebras

action languages

RDF domain node infrastructure (Jena)

ECA 32

Thank You

Questions ??

	Large
	
	Motivation and Goals
	ECA Rules
	Modular ECA Concept: Rule Structure
	Rule Markup: ECA-ML
	Example
	Combination of Ontologies
	Active Concepts Ontologies
	Rule Markup: Example (Stripped)
	Subconcepts and Sublanguages
	Service-Oriented Architecture
	Rule Semantics/Logical Variables
	ECA Engine Architecture
	Tasks
	Sample Rule: Outline
	Registration of the Rule
	Event has been Detected
	Communication of Results
	Communication
	Processing Queries
	Queries
	Answers
	
	The Next Query
	
	Language Heterogeneity
	Next Query: Available Cars in Paris
	Next Answer: Available Cars in Paris
	
	Further Steps
	Summary
	Further Work
	QUESTIONS

