
3.2 SQL

SQL: Structured (Standard) Query Language

Literature: A Guide to the SQL Standard, 3rd Edition, C.J. Date and H. Darwen,
Addison-Wesley 1993

History: about 1974 as SEQUEL (IBM System R, INGRES@Univ. Berkeley, first product:
Oracle in 1978)

Standardization:

SQL-86 and SQL-89: core language, based on existing implementations, including
procedural extensions

SQL-92 (SQL2): some additions

SQL-99 (SQL3):

• active rules (triggers)

• recursion

• object-relational and object-oriented concepts

105

Underlying Data Model

SQL uses the relational model:

• SQL relations are multisets (bags) of tuples (i.e., they can contain duplicates)

• Notions: Relation ; Table

Tuple ; Row

Attribute ; Column

The relational algebra serves as theoretical base for SQL as a query language.

• comprehensive treatment in the “Practical Training SQL”
(http://dbis.informatik.uni-goettingen.de/Teaching/DBP/)

106

BASIC STRUCTURE OF SQL QUERIES

SELECT A1, . . . , An (. . . corresponds to π in the algebra)
FROM R1, . . . , Rm (. . . specifies the contributing relations)
WHERE F (. . . corresponds to σ in the algebra)

corresponds to the algebra expression π[A1, . . . , An](σ[F](r1 × . . . × rm))

• Note: cartesian product → prefixing (optional)

Example

SELECT code, capital, country.population, city.population

FROM country, city

WHERE country.code = city.country

AND city.name = country.capital

AND city.province = country.province;

107

PREFIXING, ALIASING AND RENAMING

• Prefixing: tablename.attr

• Aliasing of relations in the FROM clause:

SELECT alias1.attr1,alias2.attr2

FROM table1 alias1, table2 alias2

WHERE ...

• Renaming of result columns of queries:

SELECT attr1 AS name1, attr2 AS name2

FROM ... WHERE ...

(formal algebra equivalent: renaming)

108

SUBQUERIES

Subqueries of the form (SELECT ... FROM ... WHERE ...) can be used anywhere where a
relation is required:

Subqueries in the FROM clause allow for selection/projection/computation of intermediate
results/subtrees before the join:

SELECT ...

FROM (SELECT ...FROM ...WHERE ...),

(SELECT ...FROM ...WHERE ...)

WHERE ...

(interestingly, although “basic relational algebra”, this has been introduced e.g. in Oracle only
in the early 90s)

Subqueries in other places allow to express other intermediate results:

SELECT ... (SELECT ...FROM ...WHERE ...) FROM ...

WHERE [NOT] value1 IN (SELECT ...FROM ...WHERE)

AND [NOT] value2 comparison-op [ALL|ANY] (SELECT ...FROM ...WHERE)

AND [NOT] EXISTS (SELECT ...FROM ...WHERE);

109

SUBQUERIES IN THE FROM CLAUSE

• often in combination with aliasing and renaming of the results of the subqueries.

SELECT alias1.name1,alias2.name2

FROM (SELECT attr1 AS name1 FROM ...WHERE ...) alias1,

(SELECT attr2 AS name2 FROM ...WHERE ...) alias2 WHERE ...

... all big cities that belong to large countries:

SELECT city, country

FROM (SELECT name AS city, country AS code2

FROM city

WHERE population > 1000000

),

(SELECT name AS country, code

FROM country

WHERE area > 1000000

)

WHERE code = code2;

110

SUBQUERIES

• Subqueries of the form (SELECT ... FROM ... WHERE ...) that result in a single value
can be used anywhere where a value is required

SELECT function(..., (SELECT ... FROM ... WHERE ...))

FROM ... ;

SELECT ...

FROM ...

WHERE value1 = (SELECT ... FROM ... WHERE ...)

AND value2 < (SELECT ... FROM ... WHERE ...);

111

Subqueries in the WHERE clause

Non-Correlated subqueries

... the simple ones. Inner SFW independent from outer SFW

SELECT name

FROM country

WHERE area >

(SELECT area

FROM country

WHERE code=’D’);

SELECT name

FROM country

WHERE code IN

(SELECT country

FROM encompasses

WHERE continent=’Europe’);

Correlated subqueries

Inner SELECT ... FROM ... WHERE references value of outer SFW in its WHERE clause:

SELECT name

FROM city

WHERE population > 0.25 *

(SELECT population

FROM country

WHERE country.code = city.country);

SELECT name, continent

FROM country, encompasses enc

WHERE country.code=enc.country

AND area > 0.25 *

(SELECT area

FROM continent

WHERE name = enc.continent);

112

Subqueries: EXISTS

• EXISTS makes only sense with a correlated subquery:

SELECT name

FROM country

WHERE EXISTS (SELECT *

FROM city

WHERE country.code = city.country

AND population > 1000000);

algebra equivalent: semijoin.

• NOT EXISTS can be used to express things that otherwise cannot be expressed by SFW:

SELECT name

FROM country

WHERE NOT EXISTS (SELECT *

FROM city

WHERE country.code = city.country

AND population > 1000000);

Alternative: use (SFW) MINUS (SFW)

113

SET OPERATIONS : UNION, INTERSECT, MINUS/EXCEPT

(SELECT name FROM city) INTERSECT (SELECT name FROM country)

Often applied with renaming:

SELECT *

FROM (SELECT river AS name, country, province FROM geo river)

UNION (SELECT lake AS name, country, province FROM geo lake)

UNION (SELECT sea AS name, country, province FROM geo sea)

WHERE country = ’D’

114

GROUPING AND AGGREGATION

General Structure of SQL Queries

SELECT A1, . . . , An list of attributes
FROM R1, . . . , Rm list of relations
WHERE F condition(s)
GROUP BY B1, . . . , Bk list of grouping attributes
HAVING G condition on groups, same syntax as WHERE clause
ORDER BY H sort order

Aggregation: SUM, AVG, MIN, MAX

Applied to a whole relation or to each group (GROUP BY):

SELECT MAX(population) FROM country

SELECT country, SUM(population), MAX(population)

FROM City

GROUP BY Country

HAVING SUM(population) > 10000000;

SELECT contains only aggregates, and attributes that are the same inside each group.

115

CONSTRUCTING QUERIES

For each problem there are multiple possible equivalent queries in SQL (cf. Example 3.15).
The choice is mainly a matter of personal taste.

• analyze the problem “systematically”:

– collect all relations (in the FROM clause) that are needed

– generate a suitable conjunctive WHERE clause

⇒ leads to a single “broad” SFW query
(cf. conjunctive queries, relational calculus)

• analyze the problem “top-down”:

– take the relations that directly contribute to the result in the (outer) FROM clause

– do all further work in correlated subquery/-queries in the WHERE clause

⇒ leads to a “main” part and nested subproblems

• decomposition of the problem into subproblems:

– subproblems are solved by nested SFW queries that are combined in the FROM
clause of a surrounding query

116

Comparison

SQL:

SELECT A1, . . . , An FROM R1,...,Rm WHERE F

• equivalent expression in the relational algebra:

π[A1, . . . , An](σ[F](r1 × . . . × rm))

• Algorithm (nested-loop):
FOR each tuple t1 in relation R1 DO

FOR each tuple t2 in relation R2 DO
:

FOR each tuple tn in relation Rn DO
IF tuples t1, . . . , tn satisfy the WHERE-clause THEN

evaluate the SELECT clause and generate the result tuple (projection).

Note: the tuple variables can also be introduced in SQL explicitly as alias variables:

SELECT A1, . . . , An FROM R1 t1,...,Rm tm WHERE F

(then optionally using ti.attr in SELECT and WHERE)

117

Comparison: Subqueries

• Subqueries in the FROM-clause (cf. Slide 110): joined subtrees in the algebra

SELECT city, country.name

FROM (SELECT name AS city,

country AS code2

FROM city

WHERE population > 1000000

),

(SELECT name AS country, code

FROM country

WHERE area > 1000000

)

WHERE code = code2;

π[city, country]

σ[code=code2]

×

ρ[name→ city, country→ code2]

π[name, country]

σ[population>1000000]

city

ρ[name→ country]

π[name, code]

σ[area>1000000]

country

118

Comparison: Subqueries in the WHERE clause

• WHERE ... IN uncorrelated-subquery (cf. Slide 112):
Natural join of the subtree with the outer tree; possibly with renaming

SELECT name

FROM country

WHERE code IN

(SELECT country

FROM encompasses

WHERE continent=’Europe’);

π[name]

./

ρ[country→ code]

π[country]

σ[continent=’Europe’]

encompasses

country

Note that the natural join serves as an equi-selection where all tuples from the outer
expression qualify that match an element of the result of the inner expression.

119

Comparison: Subqueries

• WHERE value op uncorrelated-subquery:
(cf. Slide 112):
join of outer expression with subquery, selection, projection to outer attributes

SELECT name

FROM country

WHERE area >

(SELECT area

FROM country

WHERE code=’D’);

π[name]

./[area > germanyArea]

country ρ[area→ germanyArea]

π[area]

σ[code=’D’]

country
Note: the table that results from the join has the format (name, code, area, population,
. . . , germanyArea).

120

Comparison: Correlated Subqueries

• WHERE value op correlated-subquery:

– tree1: outer expression

– tree2: subquery with “own” copies of all correlating relations; projection to keys of
copied relations and comparison attributes

– natural join of both trees over keys of correlating relations

– correlating WHERE as additional condition

SELECT name, continent

FROM country, encompasses enc

WHERE country.code=enc.country

AND area > 0.25 *

(SELECT area

FROM continent

WHERE name=enc.continent);

π[name,continent]

σ[area > 0.25 * cont.area]

./[encompasses.*]

./[country.code=enc.country]

country encompasses

π[enc.cont, enc.country, cont.area]

./[enc.cont=cont.name]

continent encompasses

121

Comparison: Correlated Subqueries

... comment to previous slide:

• although the tree expression looks less target-oriented than the SQL correlated subquery,
it does the same:

• instead of iterating over the tuples of the outer SQL expression and evaluating the inner
one for each of the tuples,

• the results of the inner expression are “precomputed” and iteration over the outer result
just fetches the corresponding one.

• effectiveness depends on the situation:

– how many of the results of the subquery are actually needed (worst case: no tuple
survives the outer local WHERE clause).

– are there results of the subquery that are needed several times.

database systems are often able to internally choose the most effective solution
(schema-based and statistics-based)
... see next section.

122

Comparison: EXISTS-Subqueries

• WHERE EXISTS: similar to above:
correlated subquery, no additional condition after natural join

• SELECT ... FROM X,Y,Z WHERE NOT EXISTS (SFW):

SELECT ...

FROM ((SELECT * FROM X,Y,Z) MINUS

(SELECT X,Y,Z WHERE EXISTS (SFW)))

Results

• all queries (without NOT-operator) including subqueries without grouping/aggregation can
be translated into SPJR-trees (selection, projection, join, renaming)

• they can even be flattened into a single broad cartesian product, followed by a selection
and a projection.

123

Comparison: the differences between Algebra and SQL

• The relational algebra has no notion of grouping and aggregate functions

• SQL has no clause that corresponds to relational division

Example 3.17
Consider again Example 3.10 (Slide 86).

The corresponding SQL formulation that implements division corresponds to the textual

“all countries that occur in π[country](enc), with the additional condition that they occur in enc

together with each of the continent values that occur in cts”,

or equivalent

“all countries c in π[country](enc) such that there is no continent value cont in cts such that c

does not occur together with cont in enc”: 2

124

Example 3.17 (Continued)
“all countries c in π[country](enc) such that there is no continent value cont in cts such that c

does not occur together with cont in enc”:

SELECT enc1.country

FROM enc enc1 — consider enc1.country=“R” and enc1.country=“D”

WHERE NOT EXISTS — correlated subquery

((SELECT ct

FROM cts)

— always
“Europe”

“Asia”

MINUS

(SELECT ct

FROM enc enc2

WHERE enc1.country = enc2.country

for “R”:

“R” “Asia”

“R” “Europe”

for “D”:

“D” “Europe”

)

) — remains: for “R”: nothing ; “R” belongs to the result

for D: “Asia” ; “D” does not belong to the result

125

Orthogonality

Full orthogonality means that an expression that results in a relation is allowed everywhere,
where an input relation is allowed

• subqueries in the FROM clause

• subqueries in the WHERE clause

• subqueries in the SELECT clause (returning a single value)

• combinations of set operations

But:

• Syntax of aggregation functions is not fully orthogonal:
Not allowed: SUM(SELECT ...)

SELECT SUM(pop biggest)

FROM (SELECT country, MAX(population) AS pop biggest

FROM City

GROUP BY country);

• The language OQL (Object Query Language) uses similar constructs and is fully
orthogonal.

126

