
Chapter 3
Relational Database Languages:
Relational Algebra

We first consider only query languages.

Relational Algebra: Queries are expressions over operators and relation names.

Relational Calculus: Queries are special formulas of first-order logic with free variables.

SQL: Combination from algebra and calculus and additional constructs. Widely used DML
for relational databases.

QBE: Graphical query language.

Deductive Databases: Queries are logical rules.

72

RELATIONAL DATABASE LANGUAGES: COMPARISON AND OUTLOOK

Remark:

• Relational Algebra and (safe) Relational Calculus have the same expressive power.
For every expression of the algebra there is an equivalent expression in the calculus, and
vice versa.

• A query language is called relationally complete, if it is (at least) as expressive as the
relational algebra.

• These languages are compromises between efficiency and expressive power; they are
not computationally complete (i.e., they cannot simulate a Turing Machine).

• They can be embedded into host languages (e.g. C++ or Java) or extended (PL/SQL),
resulting in full computational completeness.

• Deductive Databases (Datalog) are more expressive than relational algebra and calculus.

73

3.1 Relational Algebra: Computations over Relations

Operations on Tuples – Overview Slide

Let µ ∈ Tup(X̄) where X̄ = {A1, . . . , Ak}.

(Formal definition of µ see Slide 61)

• For ∅ ⊂ Ȳ ⊆ X̄, the expression µ[Ȳ] denotes the projection of µ to Ȳ .

Result: µ[Ȳ] ∈ Tup(Ȳ) where µ[Ȳ](A) = µ(A), A ∈ Ȳ .

• A selection condition α (wrt. X̄) is an expression of the form AθB or Aθ c, or c θ A
where A,B ∈ X̄, dom(A) = dom(B), c ∈ dom(A), and θ is a comparison operator on that
domain like e.g. {=,6=,≤,<,≥,>}.

A tuple µ ∈ Tup(X̄) satisfies a selection condition α, if – according to α – µ(A) θ µ(B) or
µ(A) θ c, or c θ µ(A) holds.

These (atomic) selection conditions can be combined to formulas by using ∧, ∨, ¬, and
(,).

• For Ȳ = {B1, . . . , Bk}, the expression µ[A1 → B1, . . . , Ak → Bk] denotes the renaming
of µ.

Result: µ[. . . , Ai → Bi, . . .] ∈ Tup(Ȳ) where µ[. . . , Ai → Bi, . . .](Bi) = µ(Ai) for 1 ≤ i ≤ k.

74

Let µ ∈ Tup(X̄) where X̄ = {A1, . . . , Ak}.

Projection (Reduction to a subset of the attributes)

For ∅ ⊂ Ȳ ⊆ X̄, the expression µ[Ȳ] denotes the projection of µ to Ȳ .

Result: µ[Ȳ] ∈ Tup(Ȳ) where µ[Ȳ](A) = µ(A), A ∈ Ȳ .

projection to a given set of attributes

Example 3.1
Consider the relation schema R(X̄) = Continent(name, area): X̄ = [name, area]

and the tuple µ = name 7→ “Asia”, area 7→ 4.50953e+07 .

formally: µ(name) = “Asia”, µ(area) = 4.5E7

projection attributes: Let Ȳ = [name]

Result: µ[name] = name 7→ “Asia” ✷

75

Again, µ ∈ Tup(X̄) where X̄ = {A1, . . . , Ak}.

Selection (only those tuples that satisfy some condition)

A selection condition α (wrt. X̄) is an expression of the form AθB or Aθ c, or c θ A where
A,B ∈ X̄, dom(A) = dom(B), c ∈ dom(A), and θ is a comparison operator on that domain
like e.g. {=, 6=,≤,<,≥,>}.

A tuple µ ∈ Tup(X̄) satisfies a selection condition α, if – according to α – µ(A) θ µ(B) or
µ(A) θ c, or c θ µ(A) holds.

yes/no-selection of tuples (without changing the tuple)

Example 3.2
Consider again the relation schema R(X̄) = continent(name, area): X̄ = [name, area].

Selection condition: area > 20000000.

Consider again the tuple µ = name 7→ “Asia”, area 7→ 4.50953e+07 .

formally: µ(name) = “Asia”, µ(area) = 4.5E7

check: µ(area) > 20000000

Result: yes. ✷

These (atomic) selection conditions can be combined to formulas by using ∧, ∨, ¬, and (,).

76

Let µ ∈ Tup(X̄) where X̄ = {A1, . . . , Ak}.

Renaming (of attributes)

For Ȳ = {B1, . . . , Bk}, the expression µ[A1 → B1, . . . , Ak → Bk] denotes the renaming of µ.

Result: µ[. . . , Ai → Bi, . . .] ∈ Tup(Ȳ) where µ[. . . , Ai → Bi, . . .](Bi) = µ(Ai) for 1 ≤ i ≤ k.

renaming of attributes (without changing the tuple)

Example 3.3
Consider (for a tuple of the table R(X̄) = encompasses(country, continent, percent)):

X̄ = [country, continent, percent].

Consider the tuple µ = country 7→ “R”, continent 7→ “Asia”, percent 7→ 80 .

formally: µ(country) = “R”, µ(continent) = “Asia”, µ(percent) = 80

Renaming: Ȳ = [code, name, percent]

Result: a new tuple µ[country → code, continent → name, percent → percent] =

code 7→ “R”, name 7→ “Asia”, percent 7→ 80 that now fits into the schema
new_encompasses(code, name, percent). ✷

The usefulness of renaming will become clear later ...

77

EXPRESSIONS IN THE RELATIONAL ALGEBRA

What is an algebra?

• An algebra consists of a "domain" (i.e., a set of "things"), and a set of operators.

• Operators map elements of the domain to other elements of the domain.

• Each of the operators has a "semantics", that is, a definition how the result of applying it
to some input should look like.

• Algebra expressions are built over basic constants and operators (inductive definition).

Relational Algebra

• The "domain" consists of all relations (over arbitrary sets of attributes).

• The operators are then used for combining relations, and for describing computations -
e.g., in SQL.

• Relational algebra expressions are defined inductively over relations and operators.

• Relational algebra expressions define queries against a relational database.

78

INDUCTIVE DEFINITION OF EXPRESSIONS

Atomic Expressions - Base Cases of the Inductive Definition

• For an arbitrary attribute A and a constant c ∈ dom(A), the constant relation A : {c} is
an algebra expression.

Format: [A]

Result relation: {µ} with µ = (A 7→ c)
A:{c}

A

c

• Given a database schema R = {R1(X̄1), . . . , Rn(X̄n)}, every relation name Ri is an
algebra expression.

Format of Ri: X̄i

Result relation (wrt. a given database state S): the relation S(Ri) that is currently stored
in the database.

79

Structural Induction: Applying an Operator

• takes one or more input relations in1, in2, . . .

• produces a result relation out:

– out has a format,
depends on the formats of the input relations.

– out is a relation, i.e., it contains some tuples,
depends on the content of the input relations.

• Note: the relational algebra is based on mathematical set theory
⇒ sets do not contain duplicates, i.e., whenever duplicates would occur, they are
immediately removed.
(SQL in contrast is based on multisets that can contain duplicates)

80

BASE OPERATORS

Let X̄, Ȳ formats and r ∈ Rel(X̄) and s ∈ Rel(Ȳ) relations over X̄ and Ȳ .

Union

Assume r, s ∈ Rel(X̄).
Result format of r ∪ s: X̄

Result relation: r ∪ s = {µ ∈ Tup(X̄) | µ ∈ r or µ ∈ s}.

r =

A B C

a b c
d a f
c b d

s =

A B C

b g a
d a f

r ∪ s =

A B C

a b c
d a f
c b d
b g a

(note: no duplicates in the result - based on set theory)

81

Set Difference

Assume r, s ∈ Rel(X̄).
Result format of r \ s: X̄

Result relation: r \ s = {µ ∈ r | µ 6∈ s}.

r =

A B C

a b c
d a f
c b d

s =

A B C

b g a
d a f

r \ s =
A B C

a b c
c b d

82

Projection (Reduction to a subset of the attributes)

Assume r ∈ Rel(X̄) and Ȳ ⊆ X̄.
Result format of π[Ȳ](r): Ȳ

Result relation: π[Ȳ](r) = {µ[Ȳ] | µ ∈ r}.

Example 3.4

Continent Let Ȳ = [name] π[name](Continent)

name area name

Europe 10523000 µ1[name] = name 7→ “Europe” Europe

Africa 30221500 µ2[name] = name 7→ “Africa” Africa

Asia 44614500 µ3[name] = name 7→ “Asia” Asia

N. America 24709000 µ4[name] = name 7→ “N.America” N.America

S. America 17840000 µ4[name] = name 7→ “S.America” S.America

Australia 9000000 µ5[name] = name 7→ “Australia” Australia
✷

83

Selection (Reduction of number of tuples by a condition)

Assume r ∈ Rel(X̄) and a selection condition α over X̄.

Result format of σ[α](r): X̄

Result relation: σ[α](r) = {µ ∈ r | µ satisfies α}.

Example 3.5

Continent Let α = “area > 20000000”

name area

Europe 10523000 µ1(area) > 20000000?– no

Africa 30221500 µ2(area) > 20000000?– yes

Asia 44614500 µ3(area) > 20000000?– yes

N. America 24709000 µ4(area) > 20000000?– yes

S. America 17840000 µ4(area) > 20000000?– no

Australia 9000000 µ5(area) > 20000000?– no

σ[area > 20E6](Continent)

name area

Africa 30221500

Asia 44614500

N.America 24709000

✷

84

Renaming (of attributes)

Assume r ∈ Rel(X̄) with X̄ = [A1, . . . , Ak] and a renaming [A1 → B1, . . . , Ak → Bk].

Result format of ρ[A1 → B1, . . . , Ak → Bk](r): [B1, . . . , Bk]

Result relation: ρ[A1 → B1, . . . , Ak → Bk](r) = {µ[A1 → B1, . . . , Ak → Bk] | µ ∈ r}.

Example 3.6
Consider the renaming of the table encompasses(country, continent, percent):

X̄ = [country, continent, percent]

Renaming: Ȳ = [code, name, percent]

ρ[country → code, continent → name, percent → percent](encompasses)

code name percent

R Europe 20

R Asia 80

D Europe 100
...

...
...

✷

85

(Natural) Join (Combining two relations via common attributes)

Assume r ∈ Rel(X̄) and s ∈ Rel(Ȳ) for arbitrary X̄, Ȳ .

Convention: For X̄ ∪ Ȳ , as a shorthand, write XY .
for two tuples µ1 = v1, . . . , vn and µ2 = w1, . . . , wm , µ1µ2 := v1, . . . , vn, w1, . . . , wm .

Result format of r ⊲⊳ s: XY .
Result relation: r ⊲⊳ s = {µ ∈ Tup(XY) | µ[X̄] ∈ r and µ[Ȳ] ∈ s}.

Motivation

Simplest Case: X̄ ∩ Ȳ = ∅ ⇒ Cartesian Product r ⊲⊳ s = r × s

r × s = {µ1µ2 ∈ Tup(XY) | µ1 ∈ r and µ2 ∈ s}.

r =

A B

1 2

4 5

s =

C D

a b

c d

e f

r ⊲⊳ s =

A B C D

1 2 a b

1 2 c d

1 2 e f

4 5 a b

4 5 c d

4 5 e f

86

Example 3.7 (Cartesian Product of Continent and Encompasses)
The cartesian product combines everything with everything, not only “meaningful”
combinations:

Continent × encompasses

name area continent country percent

Europe 10523000 Europe D 100

Europe 10523000 Europe R 20

Europe 10523000 Asia R 80

Europe 10523000 : : :

Africa 30221500 Europe D 100

Africa 30221500 Europe R 20

Africa 30221500 Asia R 80

Africa 30221500 : : :

Asia 44614500 Europe D 100

Asia 44614500 Europe R 20

Asia 44614500 Asia R 80

Asia 44614500 : : :

: : : : :

87

Back to the Natural Join
General case X̄ ∩ Ȳ 6= ∅: shared attribute names constrain the result relation.

Again the definition: r ⊲⊳ s = {µ ∈ Tup(XY) | µ[X̄] ∈ r and µ[Ȳ] ∈ s}.

(Note: this implies that the tuples µ1 := µ[X̄] ∈ r and µ2 := µ[Ȳ] ∈ s coincide in the shared
attributes X̄ ∩ Ȳ)

Example 3.8
Consider encompasses(country,continent,percent) and isMember(organization,country,type):

encompasses

country continent percent

R Europe 20

R Asia 80

D Europe 100

: : :

isMember

organization country type

EU D member

UN D member

UN R member

: : :

encompasses ⊲⊳ isMember = {µ ∈ Tup(country, cont, perc, org, type) |
µ[country, cont, perc] ∈ encompasses and µ[org, country, type] ∈ isMember}

✷

88

Example 3.8 (Continued)

encompasses ⊲⊳ isMember = {µ ∈ Tup(country, cont, perc, org, type) |
µ[country, cont, perc] ∈ encompasses and µ[org, country, type] ∈ isMember}

start with (R,Europe, 20) ∈ encompasses.
check which tuples in isMember match:

(UN,R,member) ∈ isMember matches:
result: (R,Europe, 20, UN,member) belongs to the result.
(some more matches ...)

continue with (R,Asia, 80) ∈ encompasses.
(UN,R,member) ∈ isMember matches:
result: (R,Asia, 80, UN,member) belongs to the result.
(some more matches ...)

continue with (D,Europe, 100) ∈ encompasses.
(EU,D,member) ∈ isMember matches:
result: (D,Europe, 100, EU,member) belongs to the result.
(UN,D,member) ∈ isMember matches:
result: (D,Europe, 100, UN,member) belongs to the result.
(some more matches ...) ✷

89

Example 3.8 (Continued)
Result:

encompasses ⊲⊳ isMember

country continent percent organization type

R Europe 20 UN member

R Europe 20 : :

R Asia 80 UN member

R Asia 80 : :

D Europe 100 UN member

D Europe 100 EU member

D Europe 100 : :

: : : : :
✷

90

Example 3.9 (and Exercise)
Consider the expression

Continent ⊲⊳ ρ[country → code, continent → name, percent → percent](encompasses)
✷

Functionalities of the Join

• Combining relations

• Selective functionality: only matching tuples survive
(consider joining cities and organizations on headquarters)

DERIVED OPERATORS

Intersection

Assume r, s ∈ Rel(X̄).

Then, r ∩ s = {µ ∈ Tup(X̄) | µ ∈ r and µ ∈ s}.

Theorem 3.1
Intersection can be expressed by difference: r ∩ s = r \ (r \ s). ✷

91

θ-Join

Combination of Cartesian Product and Selection:

Assume r ∈ Rel(X̄), and s ∈ Rel(Ȳ), such that X̄ ∩ Ȳ = ∅, and AθB a selection condition.

r ⊲⊳AθB s = {µ ∈ Tup(XY) | µ[X̄] ∈ r, µ[Ȳ] ∈ s and µ satisfies AθB} = σ[AθB](r × s).

Equi-Join

θ-join that uses the “=”-predicate.

Example 3.10 (and Exercise)
Consider again Example 3.7:

Continent ⊲⊳ encompasses = Continent× encompasses contained tuples that did not really
make sense.

Continent ⊲⊳continent=name encompasses would be more useful.

Furthermore, consider
π[continent, area, code, percent](Continent ⊲⊳continent=name encompasses):

• removes the - now redundant - “name” column,

• is equivalent to the natural join (ρ[name → continent](continent)) ⊲⊳ encompasses. ✷

92

Semi-Join

• recall: joins combine, but are also selective

• semi-join acts like a selection on a relation r:
selection condition not given as a boolean formula on the attributes of r, but by “looking
into” another relation (a subquery)

Assume r ∈ Rel(X̄) and s ∈ Rel(Ȳ) such that X̄ ∩ Ȳ 6= ∅.

Result format of r ✄< s: X̄

Result relation: r ✄< s = π[X̄](r ⊲⊳ s)

The semi-join r ✄< s does not return the join, but checks which tuples of r “survive” the join
with s (i.e., “which find a counterpart in s wrt. the shared attributes”):

• Used with subqueries: (main query) ✄< (subquery)

• r ✄< s ⊆ r

• Used for optimizing the evaluation of joins (often in combination with indexes).

93

Semi-Join: Example

Give the names of all countries where a city with at least 1000000 inhabitants is located:

π[name]

✄< Country.code=City.country

Country σ[population>1000000]

City

• Have a short look “inside” the subquery, but dont’ actually use it:

• look only if there is a big city in this country.

• “if the country code is in the set of country codes ...”:

π[name]

✄< Country.code=City.country

Country π[country] and put an index on the result set

σ[population>1000000]

City

94

Towards the Outer Join

• The (inner) join is the operator for combining relations

Example 3.11
• Persons work in divisions of a company, tools are assigned to the divisions:

Works

Person Division

John Production

Bill Production

John Research

Mary Research

Sue Sales

Tools

Division Tool

Production hammer

Research pen

Research computer

Admin. typewriter

Works ⊲⊳ Tools

Person Division Tool

John Production hammer

Bill Production hammer

John Research pen

John Research computer

Mary Research pen

Mary Research computer

• join contains no tuple that describes Sue,

• join contains no tuple that describes the administration or sales division,

• join contains no tuple that shows that there is a typewriter. ✷

95

Outer Join
Assume r ∈ Rel(X̄) and s ∈ Rel(Ȳ).

Result format of r ⊐⊲⊳⊏ s: XY

The outer join extends the “inner” join with all tuples that have no counterpart in the other
relation (filled with null values):

Example 3.12 (Outer Join)
Consider again Example 3.11

Works ⊐⊲⊳⊏ Tools

Person Division Tool

John Production hammer

Bill Production hammer

John Research pen

John Research computer

Mary Research pen

Mary Research computer

Sue Sales NULL

NULL Admin typewriter

Works ✄< Tools

Person Division

John Production

Bill Production

John Research

Mary Research

Works >✁ Tools

Division Tool

Production hammer

Research pen

Research computer

96

Formally, the result relation r ⊐⊲⊳⊏ s is defined as follows:

J = r ⊲⊳ s — take the (“inner”) join as base
r0 = r \ π[X̄](J) = r \ (r ✄< s) — r-tuples that “are missing”
s0 = s \ π[Ȳ](J) = s \ (r >✁ s) — s-tuples that “are missing”
Ȳ0 = Ȳ \ X̄, X̄0 = X̄ \ Ȳ
Let µs ∈ Tup(Ȳ0), µr ∈ Tup(X̄0) such that µs, µr consist only of null values

r ⊐⊲⊳⊏ s = J ∪ (r0 × {µs}) ∪ (s0 × {µr}) .

Example 3.12 (Continued)
For the above example,

J = Works ⊲⊳ Tools
r0 = [“Sue”,“Sales”], s0 = [“Admin”,“Typewriter”]
Ȳ0 = Tool, X̄0 = Person

µs =
Tool

null
µr =

Person

null

r0 × {µs} =
Person Division Tool

Sue Sales null
s0 × {µr} =

Person Division Tool

null Admin Typewriter
✷

97

Left and Right Outer Join

Analogously to the (full) outer join:

• r ⊐⊲⊳ s = J ∪ (r0 × {µs}) .

• r ⊲⊳⊏ s = J ∪ (s0 × {µr}) .

Generalized Natural Join

Assume ri ⊆ Tup(X̄i).

Result format: ∪n
i=1X̄i

Result relation: ⊲⊳ni=1 ri = {µ ∈ Tup(∪n
i=1X̄i) | µ[X̄i] ∈ ri}

Exercise 3.1
Prove that the Generalized Natural Join is well-defined, i.e., that the order how to join the ri

does not matter.
Proceed as follows:

• Show that the natural join is commutative,

• Show that the natural join is associative,

• ... then complete the proof. ✷

98

Relational Division

Assume r ∈ Rel(X̄) and s ∈ Rel(Ȳ) such that Ȳ (X̄.
Result format of r ÷ s: Z̄ = X̄ \ Ȳ .

The result relation r ÷ s is specified as “all Z̄-values that occur in π[Z̄](r), with the additional
condition that they occur in r together with each of the Ȳ values that occur in s”.

Formally,

r ÷ s = {µ ∈ Tup(Z̄) | µ ∈ π[Z̄](r) ∧ {µ} × s ⊆ r} = π[Z̄](r) \ π[Z̄]((π[Z̄](r)× s) \ r).

• Simple observation: π[Z̄](r) ⊇ r ÷ s.
This constrains the set of possible results.

• Often, Z̄ and Ȳ correspond to the keys of relations that represent the instances of entity
types.

• Exercise: the explicit “µ ∈ π[Z̄](r)” in the first characterization looks a bit redundant. Is it?
– or why not?

99

Example 3.13 (Relational Division)
Compute those organizations that have at least one member on each continent:

First step: which organizations have (some) member on which continents:

π[organization,continent]

⊲⊳

ismember encompasses

SELECT DISTINCT i.organization, e.continent
FROM ismember i, encompasses e
WHERE i.country=e.country
ORDER by 1

orgOnCont

organization continent

UN Europe

UN Asia

UN N.America

UN S.America

UN Africa

UN Australia

NATO Europe

NATO N.America

NATO Asia

EU Europe

: :

100

Example 3.13 (Cont’d)

÷

orgOnCont ρ[name→continent]

π[name]

continent

r(X̄), s(Ȳ), Z̄ := X̄ \ Ȳ
r ÷ s = { µ ∈ Tup(Z̄) |

µ ∈ π[Z̄](r) ∧ {µ} × s ⊆ r }
X̄ = [organization, continent]
Ȳ = [continent]
Thus, Z̄ = [organization].

orgOnCont

organization continent

UN Europe

UN Asia

UN N.America

UN S.America

UN Africa

UN Australia

NATO Europe

NATO N.America

NATO Asia

EU Europe

: :

ρ[name→continent]

(π[name](continent))

continent

Asia

Europe

Australia

N.America

S.America

Africa

• UN: occurs with each continent in orgOnCont ⇒ belongs to the result.

• NATO: does not occur with each continent in orgOnCont ⇒ does not belong to the result.

• EU: does not occur with each continent in orgOnCont ⇒ does not belong to the result.

101

Example 3.13 (Cont’d)
Consider again the formal algebraic characterization of the division:

r ÷ s = {µ ∈ Tup(Z̄) | µ ∈ π[Z̄](r) ∧ {µ} × s ⊆ r} = π[Z̄](r) \ π[Z̄]((π[Z̄](r)× s) \ r).

1. r = orgOnCont, s = π[name](continent), Z = Country.

2. (π[Z̄](r)× s) contains all tuples of organizations with each of the continents, e.g.,
(NATO,Europe), (NATO,Asia), (NATO,N.America), (NATO,S.America), (NATO,Africa),
(NATO,Australia).

3. ((π[Z̄](r)× s) \ r) contains all such tuples which are not “valid”, e.g., (NATO,Africa).

4. projecting this to the organizations yields all those organizations where a non-valid tuple
has been generated in (2), i.e., that have no member on some continent (e.g., NATO).

5. π[Z̄](r) is the list of all organizations ...

6. ... subtracting those computed in (4) yields those that have a member on each continent.✷

102

EXPRESSIONS

• inductively defined: combining expressions by operators

Example 3.14
The names of all cities where (i) headquarters of an organization are located, and (ii) that are
capitals of a member country of this organization.

As a tree:
π[city]

∩

π[abbrev,city,province,country]

organization

ρ[capital→city]

π[abbrev,capital,province,country]

⊲⊳

ρ[organization→abbrev]

ismember

ρ[code→country]

country

✷

Note that there are many equivalent expressions.

103

EXPRESSIONS IN THE RELATIONAL ALGEBRA AS QUERIES

Let R = {R1, . . . , Rk} a set of relation schemata of the form Ri(X̄i). As already described, an
database state to R is a structure S that maps every relation name Ri in R to a relation
S(Ri) ⊆ Tup(X̄i)

Every algebra expression Q defines a query against the state S of the database:

• For given R, Q is assigned a format ΣQ (the format of the answer).

• For every database state S, S(Q) ⊆ Tup(ΣQ) is a relation over ΣQ, called the answer set
for Q wrt. S.

• S(Q) can be computed according to the inductive definition, starting with the innermost
(atomic) subexpressions.

• Thus, the relational algebra has a functional semantics.

104

SUMMARY: INDUCTIVE DEFINITION OF EXPRESSIONS

Atomic Expressions

• For an arbitrary attribute A and a constant a ∈ dom(A), the constant relation A : {a} is
an algebra expression.

ΣA:{a} = [A] and S(A : {a}) = A : {a}

• Every relation name R is an algebra expression.

ΣR = X̄ and S(R) = S(R).

105

SUMMARY (CONT’D)

Compound Expressions

Assume algebra expressions Q1, Q2 that define ΣQ1 , ΣQ2 , S(Q1), and S(Q2).

Compound algebraic expressions are now formed by the following rules (corresponding to the
algebra operators):

Union

If ΣQ1
= ΣQ2

, then Q = (Q1 ∪Q2) is the union of Q1 and Q2.

ΣQ = ΣQ1
and S(Q) = S(Q1) ∪ S(Q2).

Difference

If ΣQ1
= ΣQ2

, then Q = (Q1 \Q2) is the difference of Q1 and Q2.

ΣQ = ΣQ1
and S(Q) = S(Q1) \ S(Q2).

106

INDUCTIVE DEFINITION OF EXPRESSIONS (CONT’D)

Selection

For a selection condition α over ΣQ1 , Q = σ[α](Q1) is the selection from Q1 wrt. α.

ΣQ = ΣQ1 and S(Q) = σ[α](S(Q1)).

Projection

For ∅ 6= Ȳ ⊆ ΣQ1
, Q = π[Ȳ](Q1) is the projection of Q1 to the attributes in Ȳ .

ΣQ = Ȳ and S(Q) = π[Ȳ](S(Q1)).

Natural Join

Q = (Q1 ⊲⊳ Q2) is the (natural) join of Q1 and Q2.

ΣQ = ΣQ1
∪ ΣQ2

and S(Q) = S(Q1) ⊲⊳ S(Q2).

Renaming

For ΣQ1 = {A1, . . . , Ak} and {B1, . . . , Bk} a set of attributes,
Q = ρ[A1 → B1, . . . , Ak → Bk](Q1) is the renaming of Q1

ΣQ = {B1, . . . , Bk} and S(Q) = ρ[A1 → B1, . . . , Ak → Bk](S(Q1)).

107

Example

Example 3.15
Professor(PNr, Name, Office), Course(CNr, Credits, CName)
teach(PNr, CNr), examine(PNr, CNr)

• For each professor (name) determine the courses he gives (CName).

π [Name, CName] ((Professor ⊲⊳ teach) ⊲⊳ Course)

• For each professor (name) determine the courses (CName) that he teaches, but that he
does not examine.

π[Name,CName]((

(π[Name,CNr](Professor ⊲⊳ teach))

\
(π[Name,CNr](Professor ⊲⊳ examine))

) ⊲⊳ Course)

Simpler expression:

π [Name, CName] ((Professor ⊲⊳ (teach \ examine)) ⊲⊳ Course) ✷

108

EQUIVALENCE OF EXPRESSIONS

Algebra expressions Q,Q′ are called equivalent, Q ≡ Q′, if and only if for all structures S,
S(Q) = S(Q′).

Equivalence of expressions is the basis for algebraic optimization.

Let attr(α) the set of attributes that occur in a selection condition α, and Q,Q1, Q2, . . .

expressions with formats X, X1,

Projections

• Z̄, Ȳ ⊆ X̄ ⇒ π[Z̄](π[Ȳ](Q)) ≡ π[Z̄ ∩ Ȳ](Q).

• Z̄ ⊆ Ȳ ⊆ X̄ ⇒ π[Z̄](π[Ȳ](Q)) ≡ π[Z̄](Q).

Selections

• σ[α1](σ[α2](Q)) ≡ σ[α2](σ[α1](Q)) ≡ σ[α1 ∧ α2](Q)).

• attr(α) ⊆ Ȳ ⊆ X̄ ⇒ π[Ȳ](σ[α](Q)) ≡ σ[α](π[Ȳ](Q)).

Joins

• Q1 ⊲⊳ Q2 ≡ Q2 ⊲⊳ Q1.

• (Q1 ⊲⊳ Q2) ⊲⊳ Q3 ≡ Q1 ⊲⊳ (Q2 ⊲⊳ Q3).

109

EQUIVALENCE OF EXPRESSIONS (CONT’D)

Joins and other Operations

• attr(α) ⊆ X̄1 ∩ X̄2 ⇒ σ[α](Q1 ⊲⊳ Q2) ≡ σ[α](Q1) ⊲⊳ σ[α](Q2).

• attr(α) ⊆ X̄1, attr(α) ∩ X̄2 = ∅ ⇒ σ[α](Q1 ⊲⊳ Q2) ≡ (σ[α](Q1)) ⊲⊳ Q2.

• Assume V̄ ⊆ X1X2 and let W̄ = X̄1 ∩ V X2, Ū = X̄2 ∩ V X1.

Then, π[V̄](Q1 ⊲⊳ Q2) ≡ π[V̄](π[W̄](Q1) ⊲⊳ π[Ū](Q2));

(Note: unary operations bind stronger than binary operations)

• X̄2 = X̄3 ⇒ Q1 ⊲⊳ (Q2 op Q3) ≡ (Q1 ⊲⊳ Q2) op (Q1 ⊲⊳ Q3) where op ∈ {∪, \}.
(distributivity of ⊲⊳ wrt. ∪ and \)
Note the similarity to the arithmetic term algebra: n · (a± b) = (n · a)± (n× b)

Exercise 3.2
Prove some of the equalities (use the definitions given on the “Base Operators” slide). ✷

110

EXPRESSIVE POWER OF THE ALGEBRA

Transitive Closure

The transitive closure of a binary relation R, denoted by R∗ is defined as follows:

R1 = R

Rn+1 = {(a, b)| there is an s s.t. (a, x) ∈ Rn and (x, b) ∈ R}
R∗ =

⋃

1..∞
Rn

Examples:

• child(x,y): child* = descendant

• flight connections

• flows_into of rivers in MONDIAL

Theorem 3.2
There is no expression of the relational algebra that computes the transitive closure of
arbitrary binary relations r. ✷

111

EXAMPLES

Time to play. Perhaps postpone examples after comparison with SQL (next subsections)

Aspects

• join as “extending” operation (cartesian product – “all pairs of X and Y such that ...”)

• equijoin as “restricting” operation

• natural join/equijoin in many cases along key/foreign key relationships

• relational division (in case of queries of the style “return all X that are in a given relation
with all Y such that ...”)

112

