
Chapter 3
Relational Database Languages:
Relational Algebra

We first consider only query languages.

Relational Algebra: Queries are expressions over operators and relation names.

Relational Calculus: Queries are special formulas of first-order logic with free variables.

SQL: Combination from algebra and calculus and additional constructs. Widely used DML
for relational databases.

QBE: Graphical query language.

Deductive Databases: Queries are logical rules.
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RELATIONAL DATABASE LANGUAGES: COMPARISON AND OUTLOOK

Remark:

• Relational Algebra and (safe) Relational Calculus have the same expressive power.
For every expression of the algebra there is an equivalent expression in the calculus, and
vice versa.

• A query language is called relationally complete, if it is (at least) as expressive as the
relational algebra.

• These languages are compromises between efficiency and expressive power; they are
not computationally complete (i.e., they cannot simulate a Turing Machine).

• They can be embedded into host languages (e.g. C++ or Java) or extended (PL/SQL),
resulting in full computational completeness.

• Deductive Databases (Datalog) are more expressive than relational algebra and calculus.
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3.1 Relational Algebra: Computations over Relations

Operations on Tuples – Overview Slide

Let µ ∈ Tup(X̄) where X̄ = {A1, . . . , Ak}.

(Formal definition of µ see Slide 61)

• For ∅ ⊂ Ȳ ⊆ X̄, the expression µ[Ȳ ] denotes the projection of µ to Ȳ .

Result: µ[Ȳ ] ∈ Tup(Ȳ ) where µ[Ȳ ](A) = µ(A), A ∈ Ȳ .

• A selection condition α (wrt. X̄) is an expression of the form AθB or Aθ c, or c θ A
where A,B ∈ X̄, dom(A) = dom(B), c ∈ dom(A), and θ is a comparison operator on that
domain like e.g. {=,6=,≤,<,≥,>}.

A tuple µ ∈ Tup(X̄) satisfies a selection condition α, if – according to α – µ(A) θ µ(B) or
µ(A) θ c, or c θ µ(A) holds.

These (atomic) selection conditions can be combined to formulas by using ∧, ∨, ¬, and
(, ).

• For Ȳ = {B1, . . . , Bk}, the expression µ[A1 → B1, . . . , Ak → Bk] denotes the renaming
of µ.

Result: µ[. . . , Ai → Bi, . . .] ∈ Tup(Ȳ ) where µ[. . . , Ai → Bi, . . .](Bi) = µ(Ai) for 1 ≤ i ≤ k.
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Let µ ∈ Tup(X̄) where X̄ = {A1, . . . , Ak}.

Projection (Reduction to a subset of the attributes)

For ∅ ⊂ Ȳ ⊆ X̄, the expression µ[Ȳ ] denotes the projection of µ to Ȳ .

Result: µ[Ȳ ] ∈ Tup(Ȳ ) where µ[Ȳ ](A) = µ(A), A ∈ Ȳ .

projection to a given set of attributes

Example 3.1
Consider the relation schema R(X̄) = Continent(name, area): X̄ = [name, area]

and the tuple µ = name 7→ “Asia”, area 7→ 4.50953e+07 .

formally: µ(name) = “Asia”, µ(area) = 4.5E7

projection attributes: Let Ȳ = [name]

Result: µ[name] = name 7→ “Asia” ✷
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Again, µ ∈ Tup(X̄) where X̄ = {A1, . . . , Ak}.

Selection (only those tuples that satisfy some condition)

A selection condition α (wrt. X̄) is an expression of the form AθB or Aθ c, or c θ A where
A,B ∈ X̄, dom(A) = dom(B), c ∈ dom(A), and θ is a comparison operator on that domain
like e.g. {=, 6=,≤,<,≥,>}.

A tuple µ ∈ Tup(X̄) satisfies a selection condition α, if – according to α – µ(A) θ µ(B) or
µ(A) θ c, or c θ µ(A) holds.

yes/no-selection of tuples (without changing the tuple)

Example 3.2
Consider again the relation schema R(X̄) = continent(name, area): X̄ = [name, area].

Selection condition: area > 20000000.

Consider again the tuple µ = name 7→ “Asia”, area 7→ 4.50953e+07 .

formally: µ(name) = “Asia”, µ(area) = 4.5E7

check: µ(area) > 20000000

Result: yes. ✷

These (atomic) selection conditions can be combined to formulas by using ∧, ∨, ¬, and (, ).
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Let µ ∈ Tup(X̄) where X̄ = {A1, . . . , Ak}.

Renaming (of attributes)

For Ȳ = {B1, . . . , Bk}, the expression µ[A1 → B1, . . . , Ak → Bk] denotes the renaming of µ.

Result: µ[. . . , Ai → Bi, . . .] ∈ Tup(Ȳ ) where µ[. . . , Ai → Bi, . . .](Bi) = µ(Ai) for 1 ≤ i ≤ k.

renaming of attributes (without changing the tuple)

Example 3.3
Consider (for a tuple of the table R(X̄) = encompasses(country, continent, percent)):

X̄ = [country, continent, percent].

Consider the tuple µ = country 7→ “R”, continent 7→ “Asia”, percent 7→ 80 .

formally: µ(country) = “R”, µ(continent) = “Asia”, µ(percent) = 80

Renaming: Ȳ = [code, name, percent]

Result: a new tuple µ[country → code, continent → name, percent → percent] =

code 7→ “R”, name 7→ “Asia”, percent 7→ 80 that now fits into the schema
new_encompasses(code, name, percent). ✷

The usefulness of renaming will become clear later ...
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EXPRESSIONS IN THE RELATIONAL ALGEBRA

What is an algebra?

• An algebra consists of a "domain" (i.e., a set of "things"), and a set of operators.

• Operators map elements of the domain to other elements of the domain.

• Each of the operators has a "semantics", that is, a definition how the result of applying it
to some input should look like.

• Algebra expressions are built over basic constants and operators (inductive definition).

Relational Algebra

• The "domain" consists of all relations (over arbitrary sets of attributes).

• The operators are then used for combining relations, and for describing computations -
e.g., in SQL.

• Relational algebra expressions are defined inductively over relations and operators.

• Relational algebra expressions define queries against a relational database.
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INDUCTIVE DEFINITION OF EXPRESSIONS

Atomic Expressions - Base Cases of the Inductive Definition

• For an arbitrary attribute A and a constant c ∈ dom(A), the constant relation A : {c} is
an algebra expression.

Format: [A]

Result relation: {µ} with µ = (A 7→ c)
A:{c}

A

c

• Given a database schema R = {R1(X̄1), . . . , Rn(X̄n)}, every relation name Ri is an
algebra expression.

Format of Ri: X̄i

Result relation (wrt. a given database state S): the relation S(Ri) that is currently stored
in the database.
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Structural Induction: Applying an Operator

• takes one or more input relations in1, in2, . . .

• produces a result relation out:

– out has a format,
depends on the formats of the input relations.

– out is a relation, i.e., it contains some tuples,
depends on the content of the input relations.

• Note: the relational algebra is based on mathematical set theory
⇒ sets do not contain duplicates, i.e., whenever duplicates would occur, they are
immediately removed.
(SQL in contrast is based on multisets that can contain duplicates)
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BASE OPERATORS

Let X̄, Ȳ formats and r ∈ Rel(X̄) and s ∈ Rel(Ȳ ) relations over X̄ and Ȳ .

Union

Assume r, s ∈ Rel(X̄).
Result format of r ∪ s: X̄

Result relation: r ∪ s = {µ ∈ Tup(X̄) | µ ∈ r or µ ∈ s}.

r =

A B C

a b c
d a f
c b d

s =

A B C

b g a
d a f

r ∪ s =

A B C

a b c
d a f
c b d
b g a

(note: no duplicates in the result - based on set theory)
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Set Difference

Assume r, s ∈ Rel(X̄).
Result format of r \ s: X̄

Result relation: r \ s = {µ ∈ r | µ 6∈ s}.

r =

A B C

a b c
d a f
c b d

s =

A B C

b g a
d a f

r \ s =
A B C

a b c
c b d
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Projection (Reduction to a subset of the attributes)

Assume r ∈ Rel(X̄) and Ȳ ⊆ X̄.
Result format of π[Ȳ ](r): Ȳ

Result relation: π[Ȳ ](r) = {µ[Ȳ ] | µ ∈ r}.

Example 3.4

Continent Let Ȳ = [name] π[name](Continent)

name area name

Europe 10523000 µ1[name] = name 7→ “Europe” Europe

Africa 30221500 µ2[name] = name 7→ “Africa” Africa

Asia 44614500 µ3[name] = name 7→ “Asia” Asia

N. America 24709000 µ4[name] = name 7→ “N.America” N.America

S. America 17840000 µ4[name] = name 7→ “S.America” S.America

Australia 9000000 µ5[name] = name 7→ “Australia” Australia
✷
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Selection (Reduction of number of tuples by a condition)

Assume r ∈ Rel(X̄) and a selection condition α over X̄.

Result format of σ[α](r): X̄

Result relation: σ[α](r) = {µ ∈ r | µ satisfies α}.

Example 3.5

Continent Let α = “area > 20000000”

name area

Europe 10523000 µ1(area) > 20000000?– no

Africa 30221500 µ2(area) > 20000000?– yes

Asia 44614500 µ3(area) > 20000000?– yes

N. America 24709000 µ4(area) > 20000000?– yes

S. America 17840000 µ4(area) > 20000000?– no

Australia 9000000 µ5(area) > 20000000?– no

σ[area > 20E6](Continent)

name area

Africa 30221500

Asia 44614500

N.America 24709000

✷
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Renaming (of attributes)

Assume r ∈ Rel(X̄) with X̄ = [A1, . . . , Ak] and a renaming [A1 → B1, . . . , Ak → Bk].

Result format of ρ[A1 → B1, . . . , Ak → Bk](r): [B1, . . . , Bk]

Result relation: ρ[A1 → B1, . . . , Ak → Bk](r) = {µ[A1 → B1, . . . , Ak → Bk] | µ ∈ r}.

Example 3.6
Consider the renaming of the table encompasses(country, continent, percent):

X̄ = [country, continent, percent]

Renaming: Ȳ = [code, name, percent]

ρ[country → code, continent → name, percent → percent](encompasses)

code name percent

R Europe 20

R Asia 80

D Europe 100
...

...
...

✷
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(Natural) Join (Combining two relations via common attributes)

Assume r ∈ Rel(X̄) and s ∈ Rel(Ȳ ) for arbitrary X̄, Ȳ .

Convention: For X̄ ∪ Ȳ , as a shorthand, write XY .
for two tuples µ1 = v1, . . . , vn and µ2 = w1, . . . , wm , µ1µ2 := v1, . . . , vn, w1, . . . , wm .

Result format of r ⊲⊳ s: XY .
Result relation: r ⊲⊳ s = {µ ∈ Tup(XY ) | µ[X̄] ∈ r and µ[Ȳ ] ∈ s}.

Motivation

Simplest Case: X̄ ∩ Ȳ = ∅ ⇒ Cartesian Product r ⊲⊳ s = r × s

r × s = {µ1µ2 ∈ Tup(XY ) | µ1 ∈ r and µ2 ∈ s}.

r =

A B

1 2

4 5

s =

C D

a b

c d

e f

r ⊲⊳ s =

A B C D

1 2 a b

1 2 c d

1 2 e f

4 5 a b

4 5 c d

4 5 e f
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Example 3.7 (Cartesian Product of Continent and Encompasses)
The cartesian product combines everything with everything, not only “meaningful”
combinations:

Continent × encompasses

name area continent country percent

Europe 10523000 Europe D 100

Europe 10523000 Europe R 20

Europe 10523000 Asia R 80

Europe 10523000 : : :

Africa 30221500 Europe D 100

Africa 30221500 Europe R 20

Africa 30221500 Asia R 80

Africa 30221500 : : :

Asia 44614500 Europe D 100

Asia 44614500 Europe R 20

Asia 44614500 Asia R 80

Asia 44614500 : : :

: : : : :
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Back to the Natural Join
General case X̄ ∩ Ȳ 6= ∅: shared attribute names constrain the result relation.

Again the definition: r ⊲⊳ s = {µ ∈ Tup(XY ) | µ[X̄ ] ∈ r and µ[Ȳ ] ∈ s}.

(Note: this implies that the tuples µ1 := µ[X̄] ∈ r and µ2 := µ[Ȳ ] ∈ s coincide in the shared
attributes X̄ ∩ Ȳ )

Example 3.8
Consider encompasses(country,continent,percent) and isMember(organization,country,type):

encompasses

country continent percent

R Europe 20

R Asia 80

D Europe 100

: : :

isMember

organization country type

EU D member

UN D member

UN R member

: : :

encompasses ⊲⊳ isMember = {µ ∈ Tup(country, cont, perc, org, type) |
µ[country, cont, perc] ∈ encompasses and µ[org, country, type] ∈ isMember}

✷
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Example 3.8 (Continued)

encompasses ⊲⊳ isMember = {µ ∈ Tup(country, cont, perc, org, type) |
µ[country, cont, perc] ∈ encompasses and µ[org, country, type] ∈ isMember}

start with (R,Europe, 20) ∈ encompasses.
check which tuples in isMember match:

(UN,R,member) ∈ isMember matches:
result: (R,Europe, 20, UN,member) belongs to the result.
(some more matches ...)

continue with (R,Asia, 80) ∈ encompasses.
(UN,R,member) ∈ isMember matches:
result: (R,Asia, 80, UN,member) belongs to the result.
(some more matches ...)

continue with (D,Europe, 100) ∈ encompasses.
(EU,D,member) ∈ isMember matches:
result: (D,Europe, 100, EU,member) belongs to the result.
(UN,D,member) ∈ isMember matches:
result: (D,Europe, 100, UN,member) belongs to the result.
(some more matches ...) ✷
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Example 3.8 (Continued)
Result:

encompasses ⊲⊳ isMember

country continent percent organization type

R Europe 20 UN member

R Europe 20 : :

R Asia 80 UN member

R Asia 80 : :

D Europe 100 UN member

D Europe 100 EU member

D Europe 100 : :

: : : : :
✷
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Example 3.9 (and Exercise)
Consider the expression

Continent ⊲⊳ ρ[country → code, continent → name, percent → percent](encompasses)
✷

Functionalities of the Join

• Combining relations

• Selective functionality: only matching tuples survive
(consider joining cities and organizations on headquarters)

DERIVED OPERATORS

Intersection

Assume r, s ∈ Rel(X̄).

Then, r ∩ s = {µ ∈ Tup(X̄) | µ ∈ r and µ ∈ s}.

Theorem 3.1
Intersection can be expressed by difference: r ∩ s = r \ (r \ s). ✷
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θ-Join

Combination of Cartesian Product and Selection:

Assume r ∈ Rel(X̄), and s ∈ Rel(Ȳ ), such that X̄ ∩ Ȳ = ∅, and AθB a selection condition.

r ⊲⊳AθB s = {µ ∈ Tup(XY ) | µ[X̄] ∈ r, µ[Ȳ ] ∈ s and µ satisfies AθB} = σ[AθB](r × s).

Equi-Join

θ-join that uses the “=”-predicate.

Example 3.10 (and Exercise)
Consider again Example 3.7:

Continent ⊲⊳ encompasses = Continent× encompasses contained tuples that did not really
make sense.

Continent ⊲⊳continent=name encompasses would be more useful.

Furthermore, consider
π[continent, area, code, percent](Continent ⊲⊳continent=name encompasses):

• removes the - now redundant - “name” column,

• is equivalent to the natural join (ρ[name → continent](continent)) ⊲⊳ encompasses. ✷
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Semi-Join

• recall: joins combine, but are also selective

• semi-join acts like a selection on a relation r:
selection condition not given as a boolean formula on the attributes of r, but by “looking
into” another relation (a subquery)

Assume r ∈ Rel(X̄) and s ∈ Rel(Ȳ ) such that X̄ ∩ Ȳ 6= ∅.

Result format of r ✄< s: X̄

Result relation: r ✄< s = π[X̄](r ⊲⊳ s)

The semi-join r ✄< s does not return the join, but checks which tuples of r “survive” the join
with s (i.e., “which find a counterpart in s wrt. the shared attributes”):

• Used with subqueries: (main query) ✄< (subquery)

• r ✄< s ⊆ r

• Used for optimizing the evaluation of joins (often in combination with indexes).
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Semi-Join: Example

Give the names of all countries where a city with at least 1000000 inhabitants is located:

π[name]

✄< Country.code=City.country

Country σ[population>1000000]

City

• Have a short look “inside” the subquery, but dont’ actually use it:

• look only if there is a big city in this country.

• “if the country code is in the set of country codes ...”:

π[name]

✄< Country.code=City.country

Country π[country] and put an index on the result set

σ[population>1000000]

City
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Towards the Outer Join

• The (inner) join is the operator for combining relations

Example 3.11
• Persons work in divisions of a company, tools are assigned to the divisions:

Works

Person Division

John Production

Bill Production

John Research

Mary Research

Sue Sales

Tools

Division Tool

Production hammer

Research pen

Research computer

Admin. typewriter

Works ⊲⊳ Tools

Person Division Tool

John Production hammer

Bill Production hammer

John Research pen

John Research computer

Mary Research pen

Mary Research computer

• join contains no tuple that describes Sue,

• join contains no tuple that describes the administration or sales division,

• join contains no tuple that shows that there is a typewriter. ✷
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Outer Join
Assume r ∈ Rel(X̄) and s ∈ Rel(Ȳ ).

Result format of r ⊐⊲⊳⊏ s: XY

The outer join extends the “inner” join with all tuples that have no counterpart in the other
relation (filled with null values):

Example 3.12 (Outer Join)
Consider again Example 3.11

Works ⊐⊲⊳⊏ Tools

Person Division Tool

John Production hammer

Bill Production hammer

John Research pen

John Research computer

Mary Research pen

Mary Research computer

Sue Sales NULL

NULL Admin typewriter

Works ✄< Tools

Person Division

John Production

Bill Production

John Research

Mary Research

Works >✁ Tools

Division Tool

Production hammer

Research pen

Research computer
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Formally, the result relation r ⊐⊲⊳⊏ s is defined as follows:

J = r ⊲⊳ s — take the (“inner”) join as base
r0 = r \ π[X̄](J) = r \ (r ✄< s) — r-tuples that “are missing”
s0 = s \ π[Ȳ ](J) = s \ (r >✁ s) — s-tuples that “are missing”
Ȳ0 = Ȳ \ X̄, X̄0 = X̄ \ Ȳ
Let µs ∈ Tup(Ȳ0), µr ∈ Tup(X̄0) such that µs, µr consist only of null values

r ⊐⊲⊳⊏ s = J ∪ (r0 × {µs}) ∪ (s0 × {µr}) .

Example 3.12 (Continued)
For the above example,

J = Works ⊲⊳ Tools
r0 = [“Sue”,“Sales”], s0 = [“Admin”,“Typewriter”]
Ȳ0 = Tool, X̄0 = Person

µs =
Tool

null
µr =

Person

null

r0 × {µs} =
Person Division Tool

Sue Sales null
s0 × {µr} =

Person Division Tool

null Admin Typewriter
✷
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Left and Right Outer Join

Analogously to the (full) outer join:

• r ⊐⊲⊳ s = J ∪ (r0 × {µs}) .

• r ⊲⊳⊏ s = J ∪ (s0 × {µr}) .

Generalized Natural Join

Assume ri ⊆ Tup(X̄i).

Result format: ∪n
i=1X̄i

Result relation: ⊲⊳ni=1 ri = {µ ∈ Tup(∪n
i=1X̄i) | µ[X̄i] ∈ ri}

Exercise 3.1
Prove that the Generalized Natural Join is well-defined, i.e., that the order how to join the ri

does not matter.
Proceed as follows:

• Show that the natural join is commutative,

• Show that the natural join is associative,

• ... then complete the proof. ✷
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Relational Division

Assume r ∈ Rel(X̄) and s ∈ Rel(Ȳ ) such that Ȳ ( X̄.
Result format of r ÷ s: Z̄ = X̄ \ Ȳ .

The result relation r ÷ s is specified as “all Z̄-values that occur in π[Z̄](r), with the additional
condition that they occur in r together with each of the Ȳ values that occur in s”.

Formally,

r ÷ s = {µ ∈ Tup(Z̄) | µ ∈ π[Z̄](r) ∧ {µ} × s ⊆ r} = π[Z̄](r) \ π[Z̄]((π[Z̄](r)× s) \ r).

• Simple observation: π[Z̄](r) ⊇ r ÷ s.
This constrains the set of possible results.

• Often, Z̄ and Ȳ correspond to the keys of relations that represent the instances of entity
types.

• Exercise: the explicit “µ ∈ π[Z̄](r)” in the first characterization looks a bit redundant. Is it?
– or why not?
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Example 3.13 (Relational Division)
Compute those organizations that have at least one member on each continent:

First step: which organizations have (some) member on which continents:

π[organization,continent]

⊲⊳

ismember encompasses

SELECT DISTINCT i.organization, e.continent
FROM ismember i, encompasses e
WHERE i.country=e.country
ORDER by 1

orgOnCont

organization continent

UN Europe

UN Asia

UN N.America

UN S.America

UN Africa

UN Australia

NATO Europe

NATO N.America

NATO Asia

EU Europe

: :

100

Example 3.13 (Cont’d)

÷

orgOnCont ρ[name→continent]

π[name]

continent

r(X̄), s(Ȳ ), Z̄ := X̄ \ Ȳ
r ÷ s = { µ ∈ Tup(Z̄) |

µ ∈ π[Z̄](r) ∧ {µ} × s ⊆ r }
X̄ = [organization, continent]
Ȳ = [continent]
Thus, Z̄ = [organization].

orgOnCont

organization continent

UN Europe

UN Asia

UN N.America

UN S.America

UN Africa

UN Australia

NATO Europe

NATO N.America

NATO Asia

EU Europe

: :

ρ[name→continent]

(π[name](continent))

continent

Asia

Europe

Australia

N.America

S.America

Africa

• UN: occurs with each continent in orgOnCont ⇒ belongs to the result.

• NATO: does not occur with each continent in orgOnCont ⇒ does not belong to the result.

• EU: does not occur with each continent in orgOnCont ⇒ does not belong to the result.
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Example 3.13 (Cont’d)
Consider again the formal algebraic characterization of the division:

r ÷ s = {µ ∈ Tup(Z̄) | µ ∈ π[Z̄](r) ∧ {µ} × s ⊆ r} = π[Z̄](r) \ π[Z̄]((π[Z̄](r)× s) \ r).

1. r = orgOnCont, s = π[name](continent), Z = Country.

2. (π[Z̄](r)× s) contains all tuples of organizations with each of the continents, e.g.,
(NATO,Europe), (NATO,Asia), (NATO,N.America), (NATO,S.America), (NATO,Africa),
(NATO,Australia).

3. ((π[Z̄](r)× s) \ r) contains all such tuples which are not “valid”, e.g., (NATO,Africa).

4. projecting this to the organizations yields all those organizations where a non-valid tuple
has been generated in (2), i.e., that have no member on some continent (e.g., NATO).

5. π[Z̄](r) is the list of all organizations ...

6. ... subtracting those computed in (4) yields those that have a member on each continent.✷
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EXPRESSIONS

• inductively defined: combining expressions by operators

Example 3.14
The names of all cities where (i) headquarters of an organization are located, and (ii) that are
capitals of a member country of this organization.

As a tree:
π[city]

∩

π[abbrev,city,province,country]

organization

ρ[capital→city]

π[abbrev,capital,province,country]

⊲⊳

ρ[organization→abbrev]

ismember

ρ[code→country]

country

✷

Note that there are many equivalent expressions.
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EXPRESSIONS IN THE RELATIONAL ALGEBRA AS QUERIES

Let R = {R1, . . . , Rk} a set of relation schemata of the form Ri(X̄i). As already described, an
database state to R is a structure S that maps every relation name Ri in R to a relation
S(Ri) ⊆ Tup(X̄i)

Every algebra expression Q defines a query against the state S of the database:

• For given R, Q is assigned a format ΣQ (the format of the answer).

• For every database state S, S(Q) ⊆ Tup(ΣQ) is a relation over ΣQ, called the answer set
for Q wrt. S.

• S(Q) can be computed according to the inductive definition, starting with the innermost
(atomic) subexpressions.

• Thus, the relational algebra has a functional semantics.
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SUMMARY: INDUCTIVE DEFINITION OF EXPRESSIONS

Atomic Expressions

• For an arbitrary attribute A and a constant a ∈ dom(A), the constant relation A : {a} is
an algebra expression.

ΣA:{a} = [A] and S(A : {a}) = A : {a}

• Every relation name R is an algebra expression.

ΣR = X̄ and S(R) = S(R).
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SUMMARY (CONT’D)

Compound Expressions

Assume algebra expressions Q1, Q2 that define ΣQ1 , ΣQ2 , S(Q1), and S(Q2).

Compound algebraic expressions are now formed by the following rules (corresponding to the
algebra operators):

Union

If ΣQ1
= ΣQ2

, then Q = (Q1 ∪Q2) is the union of Q1 and Q2.

ΣQ = ΣQ1
and S(Q) = S(Q1) ∪ S(Q2).

Difference

If ΣQ1
= ΣQ2

, then Q = (Q1 \Q2) is the difference of Q1 and Q2.

ΣQ = ΣQ1
and S(Q) = S(Q1) \ S(Q2).
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INDUCTIVE DEFINITION OF EXPRESSIONS (CONT’D)

Selection

For a selection condition α over ΣQ1 , Q = σ[α](Q1) is the selection from Q1 wrt. α.

ΣQ = ΣQ1 and S(Q) = σ[α](S(Q1)).

Projection

For ∅ 6= Ȳ ⊆ ΣQ1
, Q = π[Ȳ ](Q1) is the projection of Q1 to the attributes in Ȳ .

ΣQ = Ȳ and S(Q) = π[Ȳ ](S(Q1)).

Natural Join

Q = (Q1 ⊲⊳ Q2) is the (natural) join of Q1 and Q2.

ΣQ = ΣQ1
∪ ΣQ2

and S(Q) = S(Q1) ⊲⊳ S(Q2).

Renaming

For ΣQ1 = {A1, . . . , Ak} and {B1, . . . , Bk} a set of attributes,
Q = ρ[A1 → B1, . . . , Ak → Bk](Q1) is the renaming of Q1

ΣQ = {B1, . . . , Bk} and S(Q) = ρ[A1 → B1, . . . , Ak → Bk](S(Q1)).
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Example

Example 3.15
Professor(PNr, Name, Office), Course(CNr, Credits, CName)
teach(PNr, CNr), examine(PNr, CNr)

• For each professor (name) determine the courses he gives (CName).

π [Name, CName] ((Professor ⊲⊳ teach) ⊲⊳ Course)

• For each professor (name) determine the courses (CName) that he teaches, but that he
does not examine.

π[Name,CName]((

(π[Name,CNr](Professor ⊲⊳ teach))

\
(π[Name,CNr](Professor ⊲⊳ examine))

) ⊲⊳ Course)

Simpler expression:

π [Name, CName] ((Professor ⊲⊳ (teach \ examine)) ⊲⊳ Course) ✷
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EQUIVALENCE OF EXPRESSIONS

Algebra expressions Q,Q′ are called equivalent, Q ≡ Q′, if and only if for all structures S,
S(Q) = S(Q′).

Equivalence of expressions is the basis for algebraic optimization.

Let attr(α) the set of attributes that occur in a selection condition α, and Q,Q1, Q2, . . .

expressions with formats X, X1, . . ..

Projections

• Z̄, Ȳ ⊆ X̄ ⇒ π[Z̄](π[Ȳ ](Q)) ≡ π[Z̄ ∩ Ȳ ](Q).

• Z̄ ⊆ Ȳ ⊆ X̄ ⇒ π[Z̄](π[Ȳ ](Q)) ≡ π[Z̄](Q).

Selections

• σ[α1](σ[α2](Q)) ≡ σ[α2](σ[α1](Q)) ≡ σ[α1 ∧ α2](Q)).

• attr(α) ⊆ Ȳ ⊆ X̄ ⇒ π[Ȳ ](σ[α](Q)) ≡ σ[α](π[Ȳ ](Q)).

Joins

• Q1 ⊲⊳ Q2 ≡ Q2 ⊲⊳ Q1.

• (Q1 ⊲⊳ Q2) ⊲⊳ Q3 ≡ Q1 ⊲⊳ (Q2 ⊲⊳ Q3).
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EQUIVALENCE OF EXPRESSIONS (CONT’D)

Joins and other Operations

• attr(α) ⊆ X̄1 ∩ X̄2 ⇒ σ[α](Q1 ⊲⊳ Q2) ≡ σ[α](Q1) ⊲⊳ σ[α](Q2).

• attr(α) ⊆ X̄1, attr(α) ∩ X̄2 = ∅ ⇒ σ[α](Q1 ⊲⊳ Q2) ≡ (σ[α](Q1)) ⊲⊳ Q2.

• Assume V̄ ⊆ X1X2 and let W̄ = X̄1 ∩ V X2, Ū = X̄2 ∩ V X1.

Then, π[V̄ ](Q1 ⊲⊳ Q2) ≡ π[V̄ ](π[W̄ ](Q1) ⊲⊳ π[Ū ](Q2));

(Note: unary operations bind stronger than binary operations)

• X̄2 = X̄3 ⇒ Q1 ⊲⊳ (Q2 op Q3) ≡ (Q1 ⊲⊳ Q2) op (Q1 ⊲⊳ Q3) where op ∈ {∪, \}.
(distributivity of ⊲⊳ wrt. ∪ and \)
Note the similarity to the arithmetic term algebra: n · (a± b) = (n · a)± (n× b)

Exercise 3.2
Prove some of the equalities (use the definitions given on the “Base Operators” slide). ✷
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EXPRESSIVE POWER OF THE ALGEBRA

Transitive Closure

The transitive closure of a binary relation R, denoted by R∗ is defined as follows:

R1 = R

Rn+1 = {(a, b)| there is an s s.t. (a, x) ∈ Rn and (x, b) ∈ R}
R∗ =

⋃

1..∞
Rn

Examples:

• child(x,y): child* = descendant

• flight connections

• flows_into of rivers in MONDIAL

Theorem 3.2
There is no expression of the relational algebra that computes the transitive closure of
arbitrary binary relations r. ✷
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EXAMPLES

Time to play. Perhaps postpone examples after comparison with SQL (next subsections)

Aspects

• join as “extending” operation (cartesian product – “all pairs of X and Y such that ...”)

• equijoin as “restricting” operation

• natural join/equijoin in many cases along key/foreign key relationships

• relational division (in case of queries of the style “return all X that are in a given relation
with all Y such that ...”)
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