We first consider only query languages.

Relational Algebra: Queries are expressions over operators and relation names.

Relational Calculus: Queries are special formulas of first-order logic with free variables.

SQL: Combination from algebra and calculus and additional constructs. Widely used DML for relational databases.

QBE: Graphical query language.

Deductive Databases: Queries are logical rules.

Remark:
- Relational Algebra and (safe) Relational Calculus have the same expressive power. For every expression of the algebra there is an equivalent expression in the calculus, and vice versa.
- A query language is called **relationally complete**, if it is (at least) as expressive as the relational algebra.
- These languages are compromises between efficiency and expressive power; they are not computationally complete (i.e., they cannot simulate a Turing Machine).
- They can be embedded into host languages (e.g. C++ or Java) or extended (PL/SQL), resulting in full computational completeness.
- Deductive Databases (Datalog) are more expressive than relational algebra and calculus.
3.1 Relational Algebra: Computations over Relations

Operations on Tuples – Overview Slide

Let $\mu \in \text{Tup}(\bar{X})$ where $\bar{X} = \{A_1, \ldots, A_k\}$.

(Formal definition of μ see Slide 61)

- For $\emptyset \subset \bar{Y} \subseteq \bar{X}$, the expression $\mu[\bar{Y}]$ denotes the **projection** of μ to \bar{Y}.

 Result: $\mu[\bar{Y}] \in \text{Tup}(\bar{Y})$ where $\mu[\bar{Y}](A) = \mu(A)$, $A \in \bar{Y}$.

- A **selection condition** α (wrt. \bar{X}) is an expression of the form $A \theta B$ or $A \theta c$, or $c \theta A$ where $A, B \in \bar{X}$, $\text{dom}(A) = \text{dom}(B)$, $c \in \text{dom}(A)$, and θ is a comparison operator on that domain like e.g. $\{=, \neq, \leq, <, \geq, >\}$.

 A tuple $\mu \in \text{Tup}(\bar{X})$ **satisfies** a selection condition α, if – according to α – $\mu(A) \theta \mu(B)$ or $\mu(A) \theta c$, or $c \theta \mu(A)$ holds.

 These (atomic) selection conditions can be combined to formulas by using \land, \lor, \neg, and $(,)$.

- For $\bar{Y} = \{B_1, \ldots, B_k\}$, the expression $\mu[A_1 \rightarrow B_1, \ldots, A_k \rightarrow B_k]$ denotes the **renaming** of μ.

 Result: $\mu[\ldots, A_i \rightarrow B_i, \ldots] \in \text{Tup}(\bar{Y})$ where $\mu[\ldots, A_i \rightarrow B_i, \ldots](B_i) = \mu(A_i)$ for $1 \leq i \leq k$.

Let $\mu \in \text{Tup}(\bar{X})$ where $\bar{X} = \{A_1, \ldots, A_k\}$.

Projection (Reduction to a subset of the attributes)

For $\emptyset \subset \bar{Y} \subseteq \bar{X}$, the expression $\mu[\bar{Y}]$ denotes the **projection** of μ to \bar{Y}.

Result: $\mu[\bar{Y}] \in \text{Tup}(\bar{Y})$ where $\mu[\bar{Y}](A) = \mu(A)$, $A \in \bar{Y}$.

Example 3.1

Consider the relation schema $R(\bar{X}) = \text{Continent}(\text{name}, \text{area})$: $\bar{X} = [\text{name}, \text{area}]$

and the tuple $\mu = \boxed{\text{name} \rightarrow \text{“Asia”}, \text{area} \rightarrow 4.50953e+07}$

formally: $\mu(\text{name}) = \text{“Asia”}$, $\mu(\text{area}) = 4.5E7$

projection attributes: Let $\bar{Y} = [\text{name}]$

Result: $\mu[\text{name}] = \boxed{\text{name} \rightarrow \text{“Asia”}}$
Again, $\mu \in \text{Tup}(\bar{X})$ where $\bar{X} = \{A_1, \ldots, A_k\}$.

Selection (only those tuples that satisfy some condition)

A selection condition α (wrt. \bar{X}) is an expression of the form $A \theta B$ or $A \theta c$, or $c \theta A$ where $A, B \in \bar{X}$, $\text{dom}(A) = \text{dom}(B)$, $c \in \text{dom}(A)$, and θ is a comparison operator on that domain like e.g. $\{=, \neq, \leq, \geq, <, >\}$.

A tuple $\mu \in \text{Tup}(\bar{X})$ satisfies a selection condition α, if – according to α – $\mu(A) \theta \mu(B)$ or $\mu(A) \theta c$, or $c \theta \mu(A)$ holds.

Example 3.2
Consider again the relation schema $R(\bar{X}) = \text{continent}(\text{name}, \text{area})$: $\bar{X} = [\text{name}, \text{area}]$.

Selection condition: $\text{area} > 10000000$.

Consider again the tuple $\mu = \text{name} \rightarrow \text{“Asia”}, \text{area} \rightarrow 4.50953e+07$.

formally: $\mu(\text{name}) = \text{“Asia”}$, $\mu(\text{area}) = 4.5E7$

check: $\mu(\text{area}) > 10000000$

Result: yes.

These (atomic) selection conditions can be combined to formulas by using \land, \lor, \neg, and $(,)$.

76

Let $\mu \in \text{Tup}(\bar{X})$ where $\bar{X} = \{A_1, \ldots, A_k\}$.

Renaming (of attributes)

For $\bar{Y} = \{B_1, \ldots, B_k\}$, the expression $\mu[A_1 \rightarrow B_1, \ldots, A_k \rightarrow B_k]$ denotes the renaming of μ.

Result: $\mu[A_1 \rightarrow B_1, \ldots, A_i \rightarrow B_i, \ldots] \in \text{Tup}(\bar{Y})$ where $\mu[A_1 \rightarrow B_1, \ldots, A_i \rightarrow B_i, \ldots](B_i) = \mu(A_i)$ for $1 \leq i \leq k$.

Example 3.3
Consider (for a tuple of the table $R(\bar{X}) = \text{encompasses}(\text{country}, \text{continent}, \text{percent})$):

$\bar{X} = [\text{country}, \text{continent}, \text{percent}]$.

Consider the tuple $\mu = \text{country} \rightarrow \text{“R”}, \text{continent} \rightarrow \text{“Asia”}, \text{percent} \rightarrow 80$.

formally: $\mu(\text{country}) = \text{“R”}$, $\mu(\text{continent}) = \text{“Asia”}$, $\mu(\text{percent}) = 80$

Renaming: $\bar{Y} = [\text{code}, \text{name}, \text{percent}]$

Result: a new tuple $\mu[\text{country} \rightarrow \text{code}, \text{continent} \rightarrow \text{name}, \text{percent} \rightarrow \text{percent}] = \text{code} \rightarrow \text{“R”}, \text{name} \rightarrow \text{“Asia”}, \text{percent} \rightarrow 80$ that now fits into the schema new_encompasses(code, name, percent).

The usefulness of renaming will become clear later ...
Expressions in the Relational Algebra

What is an algebra?
- An algebra consists of a "domain" (i.e., a set of "things"), and a set of operators.
- Operators map elements of the domain to other elements of the domain.
- Each of the operators has a "semantics", that is, a definition how the result of applying it to some input should look like.
- **Algebra expressions** are built over basic constants and operators (inductive definition).

Relational Algebra
- The "domain" consists of all relations (over arbitrary sets of attributes).
- The operators are then used for combining relations, and for describing computations - e.g., in SQL.
- **Relational algebra expressions** are defined inductively over relations and operators.
- Relational algebra expressions define queries against a relational database.

Inductive Definition of Expressions

Atomic Expressions
- For an arbitrary attribute A and a constant $a \in \text{dom}(A)$, the **constant relation** $A \colon \{a\}$ is an algebra expression.
 - Format: $[A]$
 - Result relation: $\{a\}$

- Given a database schema $\mathbf{R} = \{R_1(X_1), \ldots, R_n(X_n)\}$, every relation name R_i is an algebra expression.
 - Format of R_i: X_i
 - Result relation (wrt. a given database state S): the relation $S(R_i)$ that is currently stored in the database.
Structural Induction: Applying an Operator

• takes one or more input relations in_1, in_2, \ldots

• produces a result relation out:
 – out has a format,
 depends on the formats of the input relations.
 – out is a relation, i.e., it contains some tuples,
 depends on the content of the input relations.

Base Operators

Let \bar{X}, \bar{Y} formats and $r \in \text{Rel}(\bar{X})$ and $s \in \text{Rel}(\bar{Y})$ relations over \bar{X} and \bar{Y}.

Union

Assume $r, s \in \text{Rel}(\bar{X})$.

Result format of $r \cup s$: \bar{X}

Result relation: $r \cup s = \{\mu \in \text{Tup}(\bar{X}) \mid \mu \in r \text{ or } \mu \in s\}$.

\[
\begin{array}{ccc}
A & B & C \\
r & a & b & c \\
d & a & f \\
c & b & d \\
\end{array}
\quad \begin{array}{ccc}
A & B & C \\
s & b & g & a \\
d & a & f \\
c & b & d \\
\end{array}
\quad \begin{array}{ccc}
A & B & C \\
r \cup s & a & b & c \\
d & a & f \\
c & b & d \\
b & g & a \\
\end{array}
\]
Set Difference

Assume \(r, s \in \text{Rel}(\bar{X}) \).
Result format of \(r \setminus s \): \(\bar{X} \)
Result relation: \(r \setminus s = \{ \mu \in r \mid \mu \notin s \} \).

\[
\begin{array}{ccc}
A & B & C \\
\hline
r = & a & b & c \\
d & a & f \\
c & b & d \\
\end{array}
\]
\[
\begin{array}{ccc}
A & B & C \\
\hline
s = & b & g & a \\
d & a & f \\
c & b & d \\
\end{array}
\]
\[
\begin{array}{ccc}
A & B & C \\
\hline
r \setminus s = & a & b & c \\
d & a & f \\
c & b & d \\
\end{array}
\]

Projection (Reduction to a subset of the attributes)

Assume \(r \in \text{Rel}(\bar{X}) \) and \(\bar{Y} \subseteq \bar{X} \).
Result format of \(\pi[\bar{Y}](r) \): \(\bar{Y} \)
Result relation: \(\pi[\bar{Y}](r) = \{ \mu[\bar{Y}] \mid \mu \in r \} \).

Example 3.4

<table>
<thead>
<tr>
<th>Continent</th>
<th>name</th>
<th>area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>name</td>
<td>9562489.6</td>
</tr>
<tr>
<td>Africa</td>
<td>name</td>
<td>3.02547e+07</td>
</tr>
<tr>
<td>Asia</td>
<td>name</td>
<td>4.50953e+07</td>
</tr>
<tr>
<td>America</td>
<td>name</td>
<td>3.9872e+07</td>
</tr>
<tr>
<td>Australia</td>
<td>name</td>
<td>8503474.56</td>
</tr>
</tbody>
</table>

Let \(\bar{Y} = \{ \text{name} \} \)

\[
\begin{align*}
\mu_1[\text{name}] &= \text{name} \rightarrow \text{“Europe”} \\
\mu_2[\text{name}] &= \text{name} \rightarrow \text{“Africa”} \\
\mu_3[\text{name}] &= \text{name} \rightarrow \text{“Asia”} \\
\mu_4[\text{name}] &= \text{name} \rightarrow \text{“America”} \\
\mu_5[\text{name}] &= \text{name} \rightarrow \text{“Australia”}
\end{align*}
\]

\[
\begin{array}{ccc}
\pi[\text{name}](\text{Continents}) \\
\hline
\text{name} & \text{Europe} & \text{Africa} & \text{Asia} & \text{America} & \text{Australia} \\
\end{array}
\]

Selection (Reduction of number of tuples by a condition)

Assume \(r \in \text{Rel}(\bar{X}) \) and a selection condition \(\alpha \) over \(\bar{X} \).

Result format of \(\sigma[\alpha](r) \): \(\bar{X} \)
Result relation: \(\sigma[\alpha](r) = \{ \mu \in r \mid \mu \text{ satisfies } \alpha \} \).

Example 3.5

<table>
<thead>
<tr>
<th>Continent</th>
<th>name</th>
<th>area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>9562489.6</td>
<td></td>
</tr>
<tr>
<td>Africa</td>
<td>3.02547e+07</td>
<td></td>
</tr>
<tr>
<td>Asia</td>
<td>4.50953e+07</td>
<td></td>
</tr>
<tr>
<td>America</td>
<td>3.9872e+07</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>8503474.56</td>
<td></td>
</tr>
</tbody>
</table>

Let \(\alpha = \text{“area} > 10000000\)”

| \(\sigma[\text{area} > 10E6](\text{Continent}) \) |
|---------------|----------------|
| name | area |
| Africa | 3.02547e+07 |
| Asia | 4.50953e+07 |
| America | 3.9872e+07 |

Renaming (of attributes)

Assume \(r \in \text{Rel}(\bar{X}) \) with \(\bar{X} = [A_1, \ldots, A_k] \) and a renaming \([A_1 \rightarrow B_1, \ldots, A_k \rightarrow B_k] \).

Result format of \(\rho[A_1 \rightarrow B_1, \ldots, A_k \rightarrow B_k](r) \): \([B_1, \ldots, B_k] \)
Result relation: \(\rho[A_1 \rightarrow B_1, \ldots, A_k \rightarrow B_k](r) = \{ \mu[A_1 \rightarrow B_1, \ldots, A_k \rightarrow B_k] \mid \mu \in r \} \).

Example 3.6

Consider the renaming of the table \text{encompasses}(\text{country}, \text{continent}, \text{percent}) :

\(\bar{X} = [\text{country}, \text{continent}, \text{percent}] \)

Renaming: \(\bar{Y} = [\text{code}, \text{name}, \text{percent}] \)

| \(\rho[\text{country} \rightarrow \text{code}, \text{continent} \rightarrow \text{name}, \text{percent} \rightarrow \text{percent}](\text{encompasses}) \) |
|-----------------|-------|--------|
| code | name | percent |
| R | Europe| 20 |
| R | Asia | 80 |
| D | Europe| 100 |
| ... | ... | ... |
(Natural) Join (Combining two relations via common attributes)

Assume $r \in \operatorname{Rel}(\bar{X})$ and $s \in \operatorname{Rel}(\bar{Y})$ for arbitrary \bar{X}, \bar{Y}.

Convention: For $\bar{X} \cup \bar{Y}$, as a shorthand, write $\bar{X} \bar{Y}$.

for two tuples $\mu_1 = \begin{pmatrix} v_1, \ldots, v_n \end{pmatrix}$ and $\mu_2 = \begin{pmatrix} w_1, \ldots, w_m \end{pmatrix}$, $\mu_1 \mu_2 := \begin{pmatrix} v_1, \ldots, v_n, w_1, \ldots, w_m \end{pmatrix}$

Result format of $r \bowtie s$: $\bar{X}\bar{Y}$.
Result relation: $r \bowtie s = \{ \mu \in \operatorname{Tup}(\bar{X}\bar{Y}) \mid \mu[\bar{X}] \in r$ and $\mu[\bar{Y}] \in s \}$.

Motivation

Simplest Case: $\bar{X} \cap \bar{Y} = \emptyset \Rightarrow \text{Cartesian Product } r \bowtie s = r \times s$
$r \times s = \{ \mu_1 \mu_2 \in \operatorname{Tup}(\bar{X}\bar{Y}) \mid \mu_1 \in r$ and $\mu_2 \in s \}$.

<table>
<thead>
<tr>
<th>r \hspace{1cm}</th>
<th>s \hspace{1cm}</th>
<th>$r \bowtie s$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>c</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>e</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>c</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>e</td>
</tr>
</tbody>
</table>

Example 3.7 (Cartesian Product of Continent and Encompasses)

The cartesian product combines everything with everything, not only “meaningful” combinations:

<table>
<thead>
<tr>
<th>Continent \times encompasses</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>Europe</td>
</tr>
<tr>
<td>Europe</td>
</tr>
<tr>
<td>Europe</td>
</tr>
<tr>
<td>Europe</td>
</tr>
<tr>
<td>Africa</td>
</tr>
<tr>
<td>Africa</td>
</tr>
<tr>
<td>Africa</td>
</tr>
<tr>
<td>Africa</td>
</tr>
<tr>
<td>Asia</td>
</tr>
<tr>
<td>Asia</td>
</tr>
<tr>
<td>Asia</td>
</tr>
<tr>
<td>Asia</td>
</tr>
<tr>
<td>:</td>
</tr>
</tbody>
</table>
Back to the Natural Join

General case $\bar{X} \cap \bar{Y} \neq \emptyset$: shared attribute names constrain the result relation.

Again the definition: $r \bowtie s = \{ \mu \in \text{Tup}(XY) | \mu[\bar{X}] \in r \text{ and } \mu[\bar{Y}] \in s \}$.
(Note: this implies that the tuples $\mu_1 := \mu[\bar{X}] \in r$ and $\mu_2 := \mu[\bar{Y}] \in s$ coincide in the shared attributes $\bar{X} \cap \bar{Y}$)

Example 3.8
Consider $\text{encompasses}(\text{country, continent, percent})$ and $\text{isMember}(\text{organization, country, type})$:

<table>
<thead>
<tr>
<th>encompasses</th>
<th>isMember</th>
</tr>
</thead>
<tbody>
<tr>
<td>country</td>
<td>continent</td>
</tr>
<tr>
<td>R</td>
<td>Europe</td>
</tr>
<tr>
<td>R</td>
<td>Asia</td>
</tr>
<tr>
<td>D</td>
<td>Europe</td>
</tr>
</tbody>
</table>

$\text{encompasses} \bowtie \text{isMember} = \{ \mu \in \text{Tup}(\text{country, continent, percent, org, type}) | \mu[\text{country, continent, percent}] \in \text{encompasses} \text{ and } \mu[\text{org, country, type}] \in \text{isMember} \}$

Example 3.8 (Continued)

$\text{encompasses} \bowtie \text{isMember} = \{ \mu \in \text{Tup}(\text{country, continent, percent, org, type}) | \mu[\text{country, continent, percent}] \in \text{encompasses} \text{ and } \mu[\text{org, country, type}] \in \text{isMember} \}$

start with $(R, \text{Europe}, 20) \in \text{encompasses}$.
check which tuples in isMember match:

$(UN, R, \text{member}) \in \text{isMember}$ matches:
result: $(R, \text{Europe}, 20, UN, \text{member})$ belongs to the result.
(some more matches ...)

continue with $(R, \text{Asia}, 80) \in \text{encompasses}$.
$(UN, R, \text{member}) \in \text{isMember}$ matches:
result: $(R, \text{Asia}, 80, UN, \text{member})$ belongs to the result.
(some more matches ...)

continue with $(D, \text{Europe}, 100) \in \text{encompasses}$.
$(EU, D, \text{member}) \in \text{isMember}$ matches:
result: $(D, \text{Europe}, 100, EU, \text{member})$ belongs to the result.
$(UN, D, \text{member}) \in \text{isMember}$ matches:
result: $(D, \text{Europe}, 100, UN, \text{member})$ belongs to the result.
(some more matches ...)
Example 3.8 (Continued)
Result:

<table>
<thead>
<tr>
<th>encompasses ⊳ isMember</th>
</tr>
</thead>
<tbody>
<tr>
<td>country</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

Example 3.9 (and Exercise)
Consider the expression

\[\text{Continent } \bowtie \rho \{ \text{country } \rightarrow \text{code}, \text{continent } \rightarrow \text{name}, \text{percent } \rightarrow \text{percent}\} (\text{encompasses}) \]

Functionalities of the Join
- Combining relations
- Selective functionality: only matching tuples survive
 (consider joining cities and organizations on headquarters)

Derived Operators

Intersection
Assume \(r, s \in \text{Rel}(\bar{X}) \).
Then, \(r \cap s = \{ \mu \in \text{Tup}(\bar{X}) \mid \mu \in r \text{ and } \mu \in s \} \).

Theorem 3.1
Intersection can be expressed by difference: \(r \cap s = r \setminus (r \setminus s) \).
Combination of Cartesian Product and Selection:
Assume $r \in \text{Rel}(\bar{X})$, and $s \in \text{Rel}(\bar{Y})$, such that $\bar{X} \cap \bar{Y} = \emptyset$, and $A \theta B$ a selection condition.

$$r \bowtie_{A \theta B} s = \{ \mu \in \text{Tup}(\bar{XY}) \mid \mu[\bar{X}] \in r, \mu[\bar{Y}] \in s \text{ and } \mu \text{ satisfies } A \theta B \} = \sigma[A \theta B](r \times s).$$

Equi-Join

θ-join that uses the “=”-predicate.

Example 3.10 (and Exercise)
Consider again Example 3.7:

$\text{Continent} \bowtie \text{encompasses} = \text{Continent} \times \text{encompasses} \text{ contained tuples that did not really make sense.}$

$\text{Continent} \bowtie_{\text{continent} = \text{name}} \text{encompasses} \text{ would be more useful.}$

Furthermore, consider

$\pi[\text{continent}, \text{area}, \text{code}, \text{percent}](\text{Continent} \bowtie_{\text{continent} = \text{name}} \text{encompasses})$:

- removes the - now redundant - “name” column,
- is equivalent to the natural join $(\rho[\text{name} \rightarrow \text{continent}](\text{continent})) \bowtie \text{encompasses}. \square$

Semi-Join

- recall: joins combine, but are also selective
- semi-join acts like a selection on a relation r:
 - selection condition not given as a boolean formula on the attributes of r, but by “looking into” another relation (a subquery)

Assume $r \in \text{Rel}(\bar{X})$ and $s \in \text{Rel}(\bar{Y})$ such that $\bar{X} \cap \bar{Y} \neq \emptyset$.

Result format of $r \bowtie s$: \bar{X}

Result relation: $r \bowtie s = \pi[\bar{X}](r \bowtie s)$

The semi-join $r \bowtie s$ does not return the join, but checks which tuples of r “survive” the join with s (i.e., “which find a counterpart in s wrt. the shared attributes”):

- Used with subqueries: (main query) \bowtie (subquery)
- $r \bowtie s \subseteq r$
- Used for optimizing the evaluation of joins (often in combination with indexes).
Semi-Join: Example

Give the names of all countries where a city with at least 1000000 inhabitants is located:

\[
\pi \text{name} \\
\Join \text{Country.code=City.country} \\
\sigma \text{[population}>1000000] \\
\text{City}
\]

- Have a short look “inside” the subquery, but don’t actually use it:
- look only if there is a big city in this country.
- “if the country code is in the set of country codes ...”:

\[
\pi \text{name} \\
\Join \text{Country.code=City.country} \\
\text{Country} \quad \pi \text{[country]} \quad \text{and put an index on the result set} \\
\sigma \text{[population}>1000000] \\
\text{City}
\]

Outer Join

- The join is the operator for combining relations

Example 3.11

- Persons work in divisions of a company, tools are assigned to the divisions:

<table>
<thead>
<tr>
<th>Works</th>
<th>Tools</th>
<th>Works ⊲ Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person</td>
<td>Division</td>
<td>Division</td>
</tr>
<tr>
<td>John</td>
<td>Production</td>
<td>Production</td>
</tr>
<tr>
<td>Bill</td>
<td>Production</td>
<td>Research</td>
</tr>
<tr>
<td>John</td>
<td>Research</td>
<td>Research</td>
</tr>
<tr>
<td>Mary</td>
<td>Research</td>
<td>Admin.</td>
</tr>
<tr>
<td>Sue</td>
<td>Sales</td>
<td></td>
</tr>
</tbody>
</table>

- join contains no tuple that describes Sue,
- join contains no tuple that describes the administration or sales division,
- join contains no tuple that shows that there is a typewriter.
Outer Join
Assume \(r \in \text{Rel}(\overline{X}) \) and \(s \in \text{Rel}(\overline{Y}) \).

Result format of \(r \bowtie \Delta s \): \(\overline{XY} \)
The outer join extends the “inner” join with all tuples that have no counterpart in the other relation (filled with null values):

Example 3.12 (Outer Join)
Consider again Example 3.11

<table>
<thead>
<tr>
<th>Works (\bowtie) Tools</th>
<th>Works (\bowtie) Tools</th>
<th>Works (\bowtie) Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person</td>
<td>Division</td>
<td>Tool</td>
</tr>
<tr>
<td>John Production hammer</td>
<td>John Production hammer</td>
<td>John Research pen</td>
</tr>
<tr>
<td>Bill Production hammer</td>
<td>John Research computer</td>
<td>Mary Research pen</td>
</tr>
<tr>
<td>John Research computer</td>
<td>Mary Research computer</td>
<td>Sue Sales NULL</td>
</tr>
<tr>
<td>NULL Admin typewriter</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Formally, the result relation \(r \bowtie \Delta s \) is defined as follows:

\[
J = r \bowtie s \quad \text{— take the (“inner”) join as base}
\]

\[
r_0 = r \setminus \pi[\overline{X}](J) = r \setminus (r \bowtie s) \quad \text{— } r\text{-tuples that “are missing”}
\]

\[
s_0 = s \setminus \pi[\overline{Y}](J) = s \setminus (r \bowtie s) \quad \text{— } s\text{-tuples that “are missing”}
\]

\[
\overline{Y}_0 = \overline{Y} \setminus \overline{X}, \overline{X}_0 = \overline{X} \setminus \overline{Y}
\]

Let \(\mu_s \in \text{Tup}(\overline{Y}_0), \mu_r \in \text{Tup}(\overline{X}_0) \) such that \(\mu_s, \mu_r \) consist only of null values

\[
r \bowtie \Delta s = J \cup (r_0 \times \{\mu_s\}) \cup (s_0 \times \{\mu_r\}).
\]

Example 3.12 (Continued)
For the above example,

\[
J = \text{Works} \bowtie \text{Tools}
\]

\[
r_0 = [\text{“Sue”}, \text{“Sales”}], \ s_0 = [\text{“Admin”}, \text{“Typewriter”}]
\]

\[
\overline{Y}_0 = \text{Tool}, \overline{X}_0 = \text{Person}
\]

\[
\mu_s = \begin{bmatrix} \text{Tool} \\ \text{null} \end{bmatrix}, \ \mu_r = \begin{bmatrix} \text{Person} \\ \text{null} \end{bmatrix}
\]

\[
r_0 \times \{\mu_s\} = \begin{bmatrix} \text{Person} & \text{Division} & \text{Tool} \\ \text{Sue} & \text{Sales} & \text{null} \end{bmatrix}, \ s_0 \times \{\mu_r\} = \begin{bmatrix} \text{Person} & \text{Division} & \text{Tool} \\ \text{null} & \text{Admin} & \text{Typewriter} \end{bmatrix}
\]
Left and Right Outer Join

Analogously to the (full) outer join:

\[r \bowtie s = J \cup (r_0 \times \mu_s) \]

\[r \bowtie s = J \cup (s_0 \times \mu_r) \]

Generalized Natural Join

Assume \(r_i \subseteq \text{Tup}(\bar{X}_i) \).

Result format: \(\bigcup_{i=1}^n \bar{X}_i \)

Result relation: \(\bowtie_{i=1}^n r_i = \{ \mu \in \text{Tup}(\bigcup_{i=1}^n \bar{X}_i) \mid \mu[\bar{X}_i] \in r_i \} \)

Exercise 3.1

Prove that the Generalized Natural Join is well-defined, i.e., that the order how to join the \(r_i \) does not matter.

Proceed as follows:

• Show that the natural join is commutative,

• Show that the natural join is associative,

• ... then complete the proof.

Relational Division

Assume \(r \in \text{Rel}(\bar{X}) \) and \(s \in \text{Rel}(\bar{Y}) \) such that \(\bar{Y} \subseteq \bar{X} \).

Result format of \(r \div s \): \(\bar{Z} = \bar{X} \setminus \bar{Y} \).

The result relation \(r \div s \) is specified as “all \(\bar{Z} \)-values that occur in \(\pi[\bar{Z}](r) \), with the additional condition that they occur in \(r \) together with each of the \(\bar{Y} \) values that occur in \(s \)”.

Formally,

\[r \div s = \{ \mu \in \text{Tup}(\bar{Z}) \mid \{ \mu \} \times s \subseteq r \} = \pi[\bar{Z}](r) \setminus \pi[\bar{Z}](\pi[\bar{Z}](r) \times s) \setminus r \).

\[\text{this implies that } \mu \in \pi[\bar{Z}](r) \]

• Simple observation: \(\pi[\bar{Z}](r) \supseteq r \div s \).

This constrains the set of possible results.

• Often, \(\bar{Z} \) and \(\bar{Y} \) correspond to the keys of relations that represent the instances of entity types.
Example 3.13 (Relational Division)

Compute those organizations that have at least one member on each continent:

First step: which organizations have (some) member on which continents:

\[
\pi \text{[organization,continent]}
\]

\[
\text{ismember} \triangleright \text{encompasses}
\]

\[
\begin{align*}
\text{SELECT DISTINCT } & \text{i.organization, e.continent} \\
\text{FROM ismember i, encompasses e} \\
\text{WHERE i.country= e.country} \\
\text{ORDER by 1}
\end{align*}
\]

<table>
<thead>
<tr>
<th>orgOnCont</th>
</tr>
</thead>
<tbody>
<tr>
<td>organization</td>
</tr>
<tr>
<td>UN</td>
</tr>
<tr>
<td>NATO</td>
</tr>
<tr>
<td>NATO</td>
</tr>
<tr>
<td>NATO</td>
</tr>
</tbody>
</table>

Example 3.13 (Cont’d)

\[
\frac{\pi \text{[name]}}{\text{continent}}
\]

\[
\rho \text{[name→continent]}
\]

\[
\begin{align*}
\rho & \text{[name→continent]} \\
\pi & \text{[name]} \\
\text{continent}
\end{align*}
\]

<table>
<thead>
<tr>
<th>orgOnCont</th>
</tr>
</thead>
<tbody>
<tr>
<td>organization</td>
</tr>
<tr>
<td>UN</td>
</tr>
<tr>
<td>NATO</td>
</tr>
<tr>
<td>NATO</td>
</tr>
<tr>
<td>NATO</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\rho & \text{[name→continent]} \\
\pi & \text{[name]}(\text{continent})
\end{align*}
\]

<table>
<thead>
<tr>
<th>continent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia</td>
</tr>
<tr>
<td>Europe</td>
</tr>
<tr>
<td>Australia</td>
</tr>
<tr>
<td>America</td>
</tr>
<tr>
<td>Africa</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\tilde{X} & = \text{[organization, continent]} \\
\tilde{Y} & = \text{[continent]}
\end{align*}
\]

Thus, \(\tilde{Z} = \text{[organization]} \).

- **UN**: occurs with each continent in orgOnCont
 \(\Rightarrow \) belongs to the result.

- **NATO**: does not occur with each continent in orgOnCont
 \(\Rightarrow \) does not belong to the result.
Example 3.13 (Cont'd)
Consider again the formal algebraic characterization of Division:

\[
 r \div s = \{ \mu \in \text{Tup}(\bar{Z}) \mid \{\mu\} \times s \subseteq r \} = \pi[\bar{Z}](r) \setminus \pi[\bar{Z}](\pi[\bar{Z}](r) \times s \setminus r).
\]

1. \(r = \text{orgOnCont}, s = \pi[\text{name}](\text{continent}), Z = \text{Country}. \)

2. \((\pi[\bar{Z}](r) \times s)\) contains all tuples of organizations with each of the continents, e.g.,
 \((\text{NATO}, \text{Europe}), (\text{NATO}, \text{Asia}), (\text{NATO}, \text{America}), (\text{NATO}, \text{Africa}), (\text{NATO}, \text{Australia})\).

3. \(((\pi[\bar{Z}](r) \times s) \setminus r)\) contains all such tuples which are not “valid”, e.g., \((\text{NATO}, \text{Africa})\).

4. projecting this to the organizations yields all those organizations where a non-valid tuple
 has been generated in (2), i.e., that have no member on some continent (e.g., NATO).

5. \(\pi[\bar{Z}](r)\) is the list of all organizations ...

6. ... subtracting those computed in (4) yields those that have a member on each continent. □

Expressions

• inductively defined: combining expressions by operators

Example 3.14
The names of all cities where (i) headquarters of an organization are located, and (ii) that are
 capitals of a member country of this organization.
As a tree:

\[
\begin{align*}
\pi[\text{City}] & \cap \\
\pi[\text{abbrev}, \text{city}, \text{prov}, \text{country}] & \quad \rho[\text{capital} \rightarrow \text{city}] \\
\text{Organization} & \quad \rho[\text{organization} \rightarrow \text{abbrev}] \\
\pi[\text{abbrev}, \text{capital}, \text{prov}, \text{country}] & \quad \rho[\text{code} \rightarrow \text{country}] \\
\end{align*}
\]

isMember \\
Country

Note that there are many equivalent expressions.
Expressions in the Relational Algebra as Queries

Let $R = \{ R_1, \ldots, R_k \}$ a set of relation schemata of the form $R_i(\bar{X}_i)$. As already described, an database state to R is a structure S that maps every relation name R_i in R to a relation $S(R_i) \subseteq \text{Tup}(\bar{X}_i)$

Every algebra expression Q defines a query against the state S of the database:

• For given R, Q is assigned a format Σ_Q (the format of the answer).

• For every database state S, $S(Q) \subseteq \text{Tup}(\Sigma_Q)$ is a relation over Σ_Q, called the answer set for Q wrt. S.

• $S(Q)$ can be computed according to the inductive definition, starting with the innermost (atomic) subexpressions.

• Thus, the relational algebra has a functional semantics.

Summary: Inductive Definition of Expressions

Atomic Expressions

• For an arbitrary attribute A and a constant $a \in \text{dom}(A)$, the constant relation $A : \{a\}$ is an algebra expression.

 $\Sigma_{A:\{a\}} = [A]$ and $S(A : \{a\}) = A : \{a\}$

• Every relation name R is an algebra expression.

 $\Sigma_R = \bar{X}$ and $S(R) = S(R)$.
Compound Expressions
Assume algebra expressions Q_1, Q_2 that define $\Sigma_{Q_1}, \Sigma_{Q_2}, S(Q_1),$ and $S(Q_2)$.

Compound algebraic expressions are now formed by the following rules (corresponding to the algebra operators):

Union
If $\Sigma_{Q_1} = \Sigma_{Q_2}$, then $Q = (Q_1 \cup Q_2)$ is the union of Q_1 and Q_2.
$\Sigma_Q = \Sigma_{Q_1}$ and $S(Q) = S(Q_1) \cup S(Q_2)$.

Difference
If $\Sigma_{Q_1} = \Sigma_{Q_2}$, then $Q = (Q_1 \setminus Q_2)$ is the difference of Q_1 and Q_2.
$\Sigma_Q = \Sigma_{Q_1}$ and $S(Q) = S(Q_1) \setminus S(Q_2)$.

Projection
For $\emptyset \neq \bar{Y} \subseteq \Sigma_{Q_1}$, $Q = \pi[\bar{Y}](Q_1)$ is the projection of Q_1 to the attributes in \bar{Y}.
$\Sigma_Q = \bar{Y}$ and $S(Q) = \pi[\bar{Y}](S(Q_1))$.

Selection
For a selection condition α over Σ_{Q_1}, $Q = \sigma[\alpha]Q_1$ is the selection from Q_1 wrt. α.
$\Sigma_Q = \Sigma_{Q_1}$ and $S(Q) = \sigma[\alpha](S(Q_1))$.

Natural Join
$Q = (Q_1 \bowtie Q_2)$ is the (natural) join of Q_1 and Q_2.
$\Sigma_Q = \Sigma_{Q_1} \cup \Sigma_{Q_2}$ and $S(Q) = S(Q_1) \bowtie S(Q_2)$.

Renaming
For $\Sigma_{Q_1} = \{A_1, \ldots, A_k\}$ and $\{B_1, \ldots, B_k\}$ a set of attributes, $\rho[A_1 \to B_1, \ldots, A_k \to B_k]Q_1$ is the renaming of Q_1.
$\Sigma_Q = \{B_1, \ldots, B_k\}$ and $S(Q) = \{\mu[A_1 \to B_1, \ldots, A_k \to B_k] \mid \mu \in S(Q_1)\}$.
Example 3.15
Professor(PNr, Name, Office), Course(CNr, Credits, CName) teach(PNr, CNr), examine(PNr, CNr)

• For each professor (name) determine the courses he gives (CName).
 \[\pi \text{ [Name, CName]} ((Professor \Join teach) \Join Course) \]

• For each professor (name) determine the courses (CName) that he teaches, but that he does not examine.
 \[\pi \text{ [Name, CName]}((\pi \text{ [Name, CNr]}(\text{Professor} \Join teach)) \setminus (\pi \text{ [Name, CNr]}(\text{Professor} \Join examine))) \Join Course) \]

Simpler expression:
\[\pi \text{ [Name, CName]} ((\text{Professor} \Join (\text{teach} \setminus \text{examine})) \Join Course) \]

Equivalence of Expressions

Algebra expressions \(Q, Q' \) are called equivalent, \(Q \equiv Q' \), if and only if for all structures \(S \), \(S(Q) = S(Q') \).

Equivalence of expressions is the basis for algebraic optimization.

Let \(\text{attr}(\alpha) \) the set of attributes that occur in a selection condition \(\alpha \), and \(Q, Q_1, Q_2, \ldots \) expressions with formats \(X, X_1, \ldots \).

Projections

- \(Z, \bar{Y} \subseteq \bar{X} \Rightarrow \pi[Z](\pi[\bar{Y}](Q)) \equiv \pi[Z \cap \bar{Y}](Q) \).
- \(\bar{Z} \subseteq \bar{Y} \subseteq \bar{X} \Rightarrow \pi[\bar{Z}](\pi[\bar{Y}](Q)) \equiv \pi[\bar{Z}](Q) \).

Selections

- \(\sigma[\alpha_1](\sigma[\alpha_2](Q)) \equiv \sigma[\alpha_2](\sigma[\alpha_1](Q)) \equiv \sigma[\alpha_1 \land \alpha_2](Q) \).
- \(\text{attr}(\alpha) \subseteq \bar{Y} \subseteq \bar{X} \Rightarrow \pi[\bar{Y}](\sigma[\alpha](Q)) \equiv \sigma[\alpha](\pi[\bar{Y}](Q)) \).

Joins

- \(Q_1 \Join Q_2 \equiv Q_2 \Join Q_1 \).
- \((Q_1 \Join Q_2) \Join Q_3 \equiv Q_1 \Join (Q_2 \Join Q_3) \).
Joins and other Operations

- \(\text{attr}(\alpha) \subseteq \bar{X}_1 \cap \bar{X}_2 \Rightarrow \sigma[\alpha](Q_1 \bowtie Q_2) \equiv \sigma[\alpha](Q_1) \bowtie \sigma[\alpha](Q_2). \)

- \(\text{attr}(\alpha) \subseteq \bar{X}_1, \text{attr}(\alpha) \cap \bar{X}_2 = \emptyset \Rightarrow \sigma[\alpha](Q_1 \bowtie Q_2) \equiv \sigma[\alpha](Q_1) \bowtie Q_2. \)

- Assume \(\bar{V} \subseteq \overline{X_1X_2} \) and let \(\bar{W} = \bar{X}_1 \cap \overline{VX_2}, \bar{U} = \bar{X}_2 \cap \overline{VX_1}. \) Then, \(\pi[\bar{V}](Q_1 \bowtie Q_2) \equiv \pi[\bar{W}](\pi[\bar{W}](Q_1) \bowtie \pi[\bar{U}](Q_2)); \)

- \(\bar{X}_2 = \bar{X}_3 \Rightarrow Q_1 \bowtie (Q_2 \text{ op } Q_3) \equiv (Q_1 \bowtie Q_2) \text{ op } (Q_1 \bowtie Q_3) \text{ where op } \in \{\cup, \}\).

Exercise 3.2

Prove some of the equalities (use the definitions given on the “Base Operators” slide).

Transitive Closure

The transitive closure of a binary relation \(R \), denoted by \(R^* \) is defined as follows:

\[
\begin{align*}
R^1 &= R \\
R^{n+1} &= \{(a, b) | \text{ there is an } s \text{ s.t. } (a, x) \in R^n \text{ and } (x, b) \in R\} \\
R^* &= \bigcup_{1 \leq n} R^n
\end{align*}
\]

Examples:

- \(\text{child}(x,y) \): \(\text{child}^* = \text{descendant} \)
- flight connections
- \(\text{flows_into} \) of rivers in MONDIAL

Theorem 3.2

There is no expression of the relational algebra that computes the transitive closure of arbitrary binary relations \(r \).
Time to play. Perhaps postpone examples after comparison with SQL (next subsections)

Aspects

• join as “extending” operation (cartesian product – “all pairs of X and Y such that ...”)
• equijoin as “restricting” operation
• natural join/equijoin in many cases along key/foreign key relationships
• relational division (in case of queries of the style “return all X that are in a given relation with all Y such that ...”)