
Chapter 4
XML (Extensible Markup
Language)

Introduction

• SGML very expressive and flexible
HTML very specialized.

• Summer 1996: John Bosak (Sun Microsystems) initiates the XML Working Group (SGML
experts), cooperation with the W3C.
Development of a subset of SGML that is simpler to implement and to understand
http://www.w3.org/XML/: the homepage for XML at the W3C

⇒ XML is a “stripped-down version of SGML”.

• for understanding XML, it is not necessary to understand everything about SGML ...

126

HTML

let’s start the other way round: HTML ... well known, isn’t it?

• tags: pairwise opening and closing: <TABLE> ... </TABLE>

• “empty” tags: without closing tag
, <HR>

• <P> is in fact not an empty tag (it should be closed at the end of the paragraph)!

• attributes: <TD colspan = “2”> ... </TD>

• empty tags with attributes:

• content of tag structures: <TD>123456</TD>

• nested tag structures: <TH>Name</TH>

Homepage of the IFI

⇒ hierarchical structure

• Entities: ä = ä ß= ß

127

HTML

• browser must be able to interpret tags
→ semantics of each tag is fixed for all (?) browsers.

• fixed specifications how tags can be nested
(described by a DTD (document type description))

<body><H1><H2>

<P> ... </P>

<H2>

<P> ... </P>

<H1><H2>

<P> ... </P>

</body>

• analogously for tables and lists ...

• reality: people do in general not adhere to this structure

– closing tags are omitted

– structuring levels are omitted

→ parser has to be fault-tolerant and auto-completing

128

KNOWLEDGE OF HTML FOR XML?

• intuitive idea – but only of the ASCII representation

• this is not a data model

• no query language

• only a very restricted viewpoint:
HTML is a markup language for browsers
(note: we don’t “see” HTML in the browser, but only what the browser makes out of the
HTML).

Not any more.

129

DIFFERENCES BETWEEN XML AND HTML?

• Goal: not browsing, but representation/storage of (semistructured) data (cf. SGML)

• SGML allows the definition of new tags according to the application semantics; each
SGML application uses its own semantic tags.
These are defined in a DTD (Document Type Description).

• HTML is an SGML application (cf. <HTML> at the beginning of each document

</HTML>), that uses the DTD “HTML.dtd”.

• In XML, (nearly) arbitrary tags can be defined and used:

<country> ... </country>

<city> ... </city>

<province> ... </province>

<name> ... </name>

• These elements represent objects of the application.

131

XML AS A META-LANGUAGE FOR SPECIALIZED LANGUAGES

• For each application, it can be chosen which “notions” are used as element names etc.:
⇒ document type definition (DTD)

• the set of allowed element names and their allowed nesting and attributes are defined in
the DTD of the document (type).

• the DTD describes the schema

• XML is a meta-language, each DTD defines an own language

• for an application, either a new DTD can be defined, or an existing DTD can be used
→ standard-DTDs

• HTML has (as an SGML application) a DTD

132

EXAMPLE : MONDIAL

<mondial>

:

<country code="D" capital="city-D-Berlin" memberships="EU NATO UN ...">

<name>Germany</name>

<encompassed continent="europe">100</encompassed>

<population year="1995">83536115</population>

<ethnicgroup name="German">95.1</ethnicgroup>

<ethnicgroup name="Italians">0.7</ethnicgroup>

<religion name="Roman Catholic">37</religion>

<religion name="Protestant">45</religion>

<language name="German">100</language>

<border country="F" length="451"/>

<border country="A" length="784"/>

<border country="CZ" length="646"/>

:

133

Example: Mondial (Forts.

:

<province id="prov-D-berlin" capital="city-D-berlin">

<name>Berlin</name>

<population year="1995">3472009</population>

<city id="city-D-berlin">

<name>Berlin</name> <population year="1995">3472009</population>

</city>

</province>

<province id="prov-D-baden-wuerttemberg" capital="city-D-stuttgart">

<population year="1995">10272069</population>

<name>Baden Wuerttemberg</name>

<city id="city-D-stuttgart">

<name>Stuttgart</name> <population year="95">588482</population>

</city>

<city id="cty-D-mannheim"> ... </city>

:

</province>

:

</country>

:

</mondial>

134

CHARACTERISTICS :

• hierarchical “data model”

• subelements, attributes

• references

• ordering? documents – yes, databases – no

Examples can be found at

http://dbis.informatik.uni-goettingen.de/Mondial/#XML

135

XML AS A DATA MODEL

XML is much more than only the ASCII representation shown above as known from HTML
(see also introductory talk)

• abstract data model (comparable to the relational DM)

• abstract datatype: DOM (Document Object Model) – see later

• many concepts around XML
(XML is not a programming language!)

– higher-level declarative query/manipulation language(s)

– notions of “schema”

136

4.1 Structure of the Abstract XML Data Model (Overview)

• for each document there is a document node which “is” the document, and which
contains information about the document (reference to DTD, doctype, encoding etc).

• the document itself consists of nested elements (tree structure),

• among these, exactly one root element that contains all other elements and which is the
only child of the document node.

• elements have an element type (e.g. Mondial, Country, City)

• element content (if not empty) consists of text and/or subelements.
These child nodes are ordered.

• elements may have attributes.
Each attribute node has a name and a value (e.g. (car code, “D”)).
The attribute nodes are unordered.

• empty elements have no content, but can have attributes.

• a node in an XML document is a logical unit, i.e., an element, an attribute, or a text node.

• the allowed structure can be restricted by a schema definition.

137

EXAMPLE : MONDIAL AS A TREE

mondial

country car code=“D”
memberships=”NATO EU . . . ”
capital=”city-D-berlin”

country car code=“B”
memberships=”NATO EU . . . ”

name population province id=“prov-D-berlin”

“Germany” 83536115 name city id=“city-D-berlin”

“Berlin” name population year=“95”

“Berlin” “3472009”

138

EXAMPLE : MONDIAL AS A NESTED STRUCTURE

mondial

country car code=“D” memberships=“EU NATO . . . ” capital=“city-D-berlin”

name “Germany”

population “83536115”

province id=“prov-D-berlin”

name “Berlin”

city id=“city-D-berlin”

name “Berlin”

population year=“1995” “3472009”

country car code=“B” memberships=“EU NATO . . . ”

:
139

OBSERVATIONS

• there is a global order (preorder-depth-first-traversing) of all element- and text nodes,
called document order.

• actual text is only present in the text-nodes
Documents: if all text is concatenated in document order, a pure text version is obtained.
Exercise: consider an HTML document.

• element nodes serve for structuring (but do not have a “value” for themselves)

• attribute nodes contain values whose semantics will be described in more detail later

– attributes that describe the elements in more detail
(e.g. td/@colspan or population/@year)

– IDs and references to IDs

– can be used for application-specific needs

140

ASCII: XML AS A REPRESENTATION LANGUAGE

• elements are limited by

– opening <Country> and

– closing tags </Country>,

– in-between, the element content is output recursively.

• Element content consists of text

<Name> United Nations </Name>

• and subelements: <Country> <City> ... </City>

<City> ... </City>

</Country>

• attributes are given in the opening tag:

<Country car code=“D”> . . . </Country>

where attribute values are always given as strings, they do not have further structure. The
difference between value- and reference attributes is not visible, but is only given by the
DTD.

• empty elements have only attributes: <border country=“F” length=“451”/>

142

4.6 Summary and Outlook

XML: “basic version” consists of DTD and XML documents

• tree with additional cross references

• hierarchy of nested elements

• order of the subelements
– documents: 1st, 2nd, . . . section etc.
– databases: order in general not relevant

• attributes

• references via IDREF/IDREFS

– documents: mainly cross references

– databases: part of the data (relationships)

• XML model similar to the network data model:
relationships are mapped into the structure of the data model

– the basic explicit, stepwise navigation commands of the network data model have an
equivalent for XML in the DOM-API (see later), but

– XML also provides a declarative, high-level, set-oriented language.

179

FURTHER CONCEPTS OF THE XML WORLD

Extensions:

• namespaces: use of different DTDs in a database
(see Slide 207)

• APIs: DOM, SAX

• theoretical foundations

• query languages: XPath, XML-QL, Quilt, XQuery

• stylesheets/transformation languages: CSS, DSSSL, XSL

• better schema language: XML Schema

• XML with intra-document handling: XPointer, XLink

181

4.7 Recall

• XML as an abstract data model

– cf. relational DM

– XML now has become less abstract: creation of instances in the editor, validating,
viewing ...

• a data model needs ... implementation? theory?

• ... first, something else: abstract datatype, interface(s)

– constructors, modificators, selectors, predicates (cf. Info I)

• here: “two-level model”

– as an ADT (programming interface): Document Object Model (DOM):
detailed operations as usual in programming languages (Java, C++).

– as a database model (end user interface; declarative):
import (parser), queries, updates

• theory: formal specification of the semantics of the languages, other issues are the same
as in classical DB theory (transactions etc.).

182

Chapter 5
Query Languages: XPath
• Network Data Model: no query language

• SQL – only for a flat data model, but a “nice” language
(easy to learn, descriptive, relational algebra as foundation, clean theory, optimizations)

• OQL: SQL with object-orientation and path expressions

• Lorel (OEM): extension of OQL

• F-Logic: navigation in a graph by path expressions with additional conditions
descriptive, complex.

183

XPATH

1999: specification of the navigation formalism as W3C XPath.

• Base: UNIX directory notation

in a UNIX directory tree: /home/dbis/Mondial/mondial.xml
in an XML tree: /mondial/country/city/name

Straightforward extension of the URL specification:
/home/dbis/Mondial/mondial.xml#mondial/country/city/name
[XPointer; later]

• W3C: XML Path Language (XPath), Version 1.0
http://www.w3.org/TR/xpath

• W3C: XPath 2.0 and XQuery 1.0
http://www.w3.org/TR/xquery

• Tools: see Web page (2004 course)

– XML (XQuery) database system “eXist”

– lightweight tool “saxonXQ” (XQuery)

– embedded in XSLT stylesheet (using any XSLT processors)

186

XPATH : NAVIGATION , SIMPLE EXAMPLES

XPath is based on the UNIX directory notation:

• /mondial/country
addresses all country elements in MONDIAL,
the result is a set of elements of the form

<country code=“...”> ... </country>

• /mondial/country/city
addresses all city elements, that are direct subelements of country elements.

• /mondial/country//city
adresses all city elements that are subelements of country elements.

• //city
addresses all city elements in the current document.

• wildcards for element names:
/mondial/country/*/capital
addresses all capital elements that are grandchildren of country elements
(different from /mondial/country//capital !)

187

... and now systematically:

XPATH : ACCESS PATHS IN XML DOCUMENTS

• Navigation paths

/step/step/. . . /step

are composed by individual navigation steps,

• the result of each step is a set of nodes, that serve as input for the next step.

• each step consists of

axis::nodetest [condition]

– an axis (optional),

– a nodetype-test,

– a predicate (optional) that is evaluated for the current node.

• paths are combined by the “/”-operator

• additionally, there are function applications

• the result of each XPath expression is a sequence of nodes or literals.

188

XPATH : TESTS

In each step

path/axis::nodetest [condition]/path

condition is a predicate over XPath expressions.

• The expression selects only those nodes from the result of path/axis::nodetest that
satisfy condition. condition contains XPath expressions that are evaluated relative to the
current context node of the respective step.

//country[@car code=“D”]
returns the country element whose car code attribute
has the value “D”

• When comparing an element with something, the text() method is applied implicitly:

//country[name = “Germany”] is equivalent to
//country[name/text() = “Germany”]

• If the right hand side of the comparison is a number, the comparison is automatically
evaluated on numbers:

//country[population > 1000000]

193

XPATH : TESTS (CONT’D)

• boolean connectives “and” and “or” in condition:

//country[population > 100000000 and @area > 5000000]
//country[population > 100000000 or @area > 5000000]

• boolean “not” is a function:

//country[not (population > 100000000)]

• XPath expressions in condition have existential semantics:
The truth value associated with an XPath expression is true, if its result set is non-empty:

//country[inflation]
selects those countries that have a subelement of type inflation.

⇒ formal semantics: a path expression has

– a semantics as a result set, and

– a truth value!

194

XPATH : TESTS (CONT’D)

• XPath expressions in condition are not only “simple properties of an object”, but are path
expressions that are evaluated wrt. the current context node:

//city[population/@year=’95’]/name

• Such comparisons also have existential semantics:

//country[.//city/name=’Cordoba’]/name
returns the names of all countries, in which a city with name Cordoba is located.

//country[not (.//city/name=’Cordoba’)]/name
returns the names of those countries where no city with name Cordoba is located.

195

