Chapter 4
XML (Extensible Markup

Language)

Introduction
e SGML very expressive and flexible
HTML very specialized.

e Summer 1996: John Bosak (Sun Microsystems) initiates the XML Working Group (SGML
experts), cooperation with the W3C.
Development of a subset of SGML that is simpler to implement and to understand
http://www.w3.org/XML/: the homepage for XML at the W3C

= XML is a “stripped-down version of SGML".

¢ for understanding XML, it is not necessary to understand everything about SGML ...

126

HTML

let’s start the other way round: HTML ... well known, isn't it?
e tags: pairwise opening and closing: <TABLE> ... </TABLE>
e “empty” tags: without closing tag
, <HR>
e <P>isin fact not an empty tag (it should be closed at the end of the paragraph)!
e attributes: <TD colspan = “2"> ... </TD>

e empty tags with attributes:

e content of tag structures: <TD>123456</TD>

e nested tag structures: <TH>Name</TH>

Homepage of the IFI

= hierarchical structure

e Entities: & = ä 3= ß

127

HTML

browser must be able to interpret tags
— semantics of each tag is fixed for all (?) browsers.

fixed specifications how tags can be nested
(described by a DTD (document type description))

<body><H1><H2>
<P> ... </P>
<H2>
<P> ... </P>
<H1><H2>
<P> ... </IP>
</body>

analogously for tables and lists ...

reality: people do in general not adhere to this structure
— closing tags are omitted

— structuring levels are omitted

— parser has to be fault-tolerant and auto-completing

128

KNOWLEDGE OF HTML FOR XML?

intuitive idea — but only of the ASCII representation
this is not a data model
no query language

only a very restricted viewpoint:
HTML is a markup language for browsers

(note: we don'’t “see” HTML in the browser, but only what the browser makes out of the

HTML).

Not any more.

129

DIFFERENCES BETWEEN XML AND HTML?

Goal: not browsing, but representation/storage of (semistructured) data (cf. SGML)

SGML allows the definition of new tags according to the application semantics; each
SGML application uses its own semantic tags.
These are defined in a DTD (Document Type Description).

HTML is an SGML application (cf. <HTML> at the beginning of each document
</HTML>), that uses the DTD “HTML.dtd".

In XML, (nearly) arbitrary tags can be defined and used:

<country> ... </country>
<city> ... </city>
<province> ... </province>
<name> ... </name>

These elements represent objects of the application.

131

XML As A META-LANGUAGE FOR SPECIALIZED LANGUAGES

For each application, it can be chosen which “notions” are used as element names etc.:
= document type definition (DTD)

the set of allowed element names and their allowed nesting and attributes are defined in
the DTD of the document (type).

the DTD describes the schema
XML is a meta-language, each DTD defines an own language

for an application, either a new DTD can be defined, or an existing DTD can be used
— standard-DTDs

HTML has (as an SGML application) a DTD

132

EXAMPLE: MONDIAL

<mondial>

<country code="D" capital="city-D-Berlin" memberships="EU NATO UN ..

<name>Germany</name>

<encompassed continent="europe">100</encompassed>
<population year="1995">83536115</population>
<ethnicgroup name="German">95.1</ethnicgroup>
<ethnicgroup name="Italians">0.7</ethnicgroup>
<religion name="Roman Catholic">37</religion>
<religion name="Protestant">45</religion>
<language name="German">100</language>

<border country="F" length="451"/>

<border country="A" length="784"/>

<border country="CZ" length="646"/>

S

133

Example: Mondial (Forts.

<province id="prov-D-berlin" capital="city-D-berlin">
<name>Berlin</name>
<population year="1995">3472009</population>
<city id="city-D-berlin">

<name>Berlin</name> <population year="1995">3472009</population>

</city>
</province>

<province id="prov-D-baden-wuerttemberg" capital="city-D-stuttgart">

<population year="1995">10272069</population>
<name>Baden Wuerttemberg</name>

<city id="city-D-stuttgart">

<name>Stuttgart</name> <population year="95">588482</population>

</city>
<city id="cty-D-mannheim"> ... </city>

</province>

</country>

</mondial>

134

CHARACTERISTICS:

¢ hierarchical “data model”

e subelements, attributes

e references

e ordering? documents — yes, databases — no

Examples can be found at

http://dbis.informatik.uni-goettingen.de/Mondial/#XML

135

XML As A DATA MODEL

XML is much more than only the ASCII representation shown above as known from HTML
(see also introductory talk)

e abstract data model (comparable to the relational DM)
e abstract datatype: DOM (Document Object Model) — see later

e many concepts around XML
(XML is not a programming language!)
— higher-level declarative query/manipulation language(s)

— notions of “schema”

136

4.1 Structure of the Abstract XML Data Model (Overview)

e for each document there is a document node which “is” the document, and which
contains information about the document (reference to DTD, doctype, encoding etc).

e the document itself consists of nested elements (tree structure),

e among these, exactly one root element that contains all other elements and which is the
only child of the document node.

e elements have an element type (e.g. Mondial, Country, City)

e element content (if not empty) consists of text and/or subelements.
These child nodes are ordered.

e elements may have attributes.
Each attribute node has a name and a value (e.g. (car_code, “D")).
The attribute nodes are unordered.

e empty elements have no content, but can have attributes.
e anode in an XML document is a logical unit, i.e., an element, an attribute, or a text node.

e the allowed structure can be restricted by a schema definition.

137

EXAMPLE: MONDIAL AS A TREE

mondial

car_code= car_code=
country | memberships= memberships=
\%
[name} [population]

id=

Germany”

—— ——

| “Berlin” |

year=

EXAMPLE: MONDIAL AS A NESTED STRUCTURE

| country | car_code= memberships: capital=

population |1 §€5§§1:1§
| province | id=

I “Berlln” |

—_———

city | id=

I “Berlln” |
o= 1255 BSRA0RT

country | car_code="B” memberships=

139

OBSERVATIONS

e there is a global order (preorder-depth-first-traversing) of all element- and text nodes,
called document order.

—— e — ——

_—— e ———

Documents: if all text is concatenated in document order, a pure text version is obtained.
Exercise: consider an HTML document.

e element nodes serve for structuring (but do not have a “value” for themselves)

e aftribute nodes contain values whose semantics will be described in more detail later

— attributes that describe the elements in more detail
(e.g. td/@colspan or population/@year)

— IDs and references to IDs

— can be used for application-specific needs

140

ASCIl: XML AS A REPRESENTATION LANGUAGE

e elements are limited by
— opening <Country> and
— closingtags </Country>,

— in-between, the element content is output recursively.

e Element content consists of text
<Name> United Nations </Name>

e and subelements: <Country> <City> ... </City>
<City> ... </City>
</Country>
e atiributes are given in the opening tag:
<Country car_code="D"> ... </Country>

where attribute values are always given as strings, they do not have further structure. The
difference between value- and reference attributes is not visible, but is only given by the
DTD.

e empty elements have only attributes: <border country="F" length="451"/>

142

4.6 Summary and Outlook

XML: “basic version” consists of DTD and XML documents
e tree with additional cross references
¢ hierarchy of nested elements

e order of the subelements
— documents: 1st, 2nd, ... section etc.
— databases: order in general not relevant

e attributes

e references via IDREF/IDREFS
— documents: mainly cross references
— databases: part of the data (relationships)
e XML model similar to the network data model:
relationships are mapped into the structure of the data model

— the basic explicit, stepwise navigation commands of the network data model have an
equivalent for XML in the DOM-API (see later), but

— XML also provides a declarative, high-level, set-oriented language.

179

FURTHER CONCEPTS OF THE XML WORLD

Extensions:

e namespaces: use of different DTDs in a database
(see Slide 207)

APIs: DOM, SAX

theoretical foundations

guery languages: XPath, XML-QL, Quilt, XQuery

stylesheets/transformation languages: CSS, DSSSL, XSL

better schema language: XML Schema

XML with intra-document handling: XPointer, XLink

181

4.7 Recall

XML as an abstract data model

— cf. relational DM

— XML now has become less abstract: creation of instances in the editor, validating,
viewing ...

a data model needs ... implementation? theory?

... first, something else: abstract datatype, interface(s)

— constructors, modificators, selectors, predicates (cf. Info I)

here: “two-level model”

— as an ADT (programming interface): Document Object Model (DOM):
detailed operations as usual in programming languages (Java, C++).

— as a database model (end user interface; declarative):
import (parser), queries, updates

theory: formal specification of the semantics of the languages, other issues are the same
as in classical DB theory (transactions etc.).

182

Chapter 5
Query Languages: XPath

e Network Data Model: no query language

e SQL — only for a flat data model, but a “nice” language
(easy to learn, descriptive, relational algebra as foundation, clean theory, optimizations)

e OQL: SQL with object-orientation and path expressions
e Lorel (OEM): extension of OQL

e F-Logic: navigation in a graph by path expressions with additional conditions
descriptive, complex.

183

XPATH

1999: specification of the navigation formalism as W3C XPath.

e Base: UNIX directory notation

in a UNIX directory tree: /home/dbis/Mondial/mondial.xml
in an XML tree: /mondial/country/city/name

Straightforward extension of the URL specification:
/home/dbis/Mondial/mondial.xml#mondial/country/city/name
[XPointer; later]

e W3C: XML Path Language (XPath), Version 1.0
http://www.w3.org/TR/xpath

e W3C: XPath 2.0 and XQuery 1.0
http://www.w3.org/TR/xquery
e Tools: see Web page (2004 course)
— XML (XQuery) database system “eXist”
— lightweight tool “saxonXQ” (XQuery)
— embedded in XSLT stylesheet (using any XSLT processors)

186

XPATH: NAVIGATION, SIMPLE EXAMPLES

XPath is based on the UNIX directory notation:

e /mondial/country
addresses all country elements in MONDIAL,
the result is a set of elements of the form

<country code=".."> ... </country>

e /mondial/country/city
addresses all city elements, that are direct subelements of country elements.

e /mondial/country//city
adresses all city elements that are subelements of country elements.

e /city
addresses all city elements in the current document.

e wildcards for element names:
/mondial/country/*/capital
addresses all capital elements that are grandchildren of country elements
(different from /mondial/country//capital !)

187

... and now systematically:

XPATH: ACCESS PATHS IN XML DOCUMENTS

e Navigation paths
[stepl/stepl.. . Istep

are composed by individual navigation steps,
e the result of each step is a set of nodes, that serve as input for the next step.

e each step consists of
axis::nodetest[condition]
— an axis (optional),
— a nodetype-test,
— a predicate (optional) that is evaluated for the current node.
e paths are combined by the “/”-operator

e additionally, there are function applications

e the result of each XPath expression is a sequence of nodes or literals.

188

XPATH: TESTS

In each step
path/axis::nodetest[condition]/path
condition is a predicate over XPath expressions.

e The expression selects only those nodes from the result of path/axis::nodetest that
satisfy condition. condition contains XPath expressions that are evaluated relative to the
current context node of the respective step.

/lcountry[@car_code="D"]
returns the country element whose car_code attribute
has the value “D”
e When comparing an element with something, the text() method is applied implicitly:
/lcountry[name = “Germany”] is equivalent to
/lcountry[namef/text() = “Germany”]

¢ If the right hand side of the comparison is a number, the comparison is automatically
evaluated on numbers:

/[country[population > 1000000]

193

XPATH: TESTS (CONT'D)

e boolean connectives “and” and “or” in condition:
/lcountry[population > 100000000 and @area > 5000000]
/[country[population > 100000000 or @area > 5000000]
e boolean “not” is a function:
/[lcountry[not (population > 100000000)]
e XPath expressions in condition have existential semantics:
The truth value associated with an XPath expression is true, if its result set is non-empty:

/lcountry[inflation]
selects those countries that have a subelement of type inflation.

= formal semantics: a path expression has
— a semantics as a result set, and

— atruth value!

194

XPATH: TESTS (CONT'D)

e XPath expressions in condition are not only “simple properties of an object”, but are path
expressions that are evaluated wrt. the current context node:

/[city[population/@year="95]/name

e Such comparisons also have existential semantics:

[[country][.//city/name="Cordoba’]/name
returns the names of all countries, in which a city with name Cordoba is located.

/[country[not (.//city/name="Cordoba’)]/name
returns the names of those countries where no city with name Cordoba is located.

195

