XML as a Semistructured Data Model

Prof. Dr. Wolfgang May Universität Göttingen

Overview

- What is "Semistructured Data"?
- Basic ideas and goals of XML?
- data model, representation ...

Relational Data Model

- database = schema + contents
- schema/metadata: relation names, attributes
- contents: tupels

Country				
Name	<u>code</u>	Population	Capital	•••
Germany	D	83536115	Berlin	••
Belgium	В	10170241	Brussels	••
Canada	CDN	28820671	Ottawa	••
••	••			••

Semistructured Data

- less fixed schema
- self-describing metadata are contained in the data

OEM: Object Exchange Model (U Stanford, 1995)

- each object has a label, a type, and a value,
- complex values are represented as sets of references

Document Data Model

- tree-like, nested
- flexible schema, certain structuring elements
 document = contents + markup
- markup-languages
 - logical markup: sectioning \Rightarrow tree structure
 - optical markup: fonts, colors
- well-known examples: HTML, LATEX
- Iogical markup satisfies predefined constraints

HTML Example

```
<HTML>
  <HEAD><TITLE>Lecture: Computer Science I </TITLE></HEAD>
  <BODY>
    <H1>Computer Science I</H1>
    <UL><LI>Introduction </LI>
        <L>Java</L>
        <LI>Data Structures</LI>
    </UL>
    <P>Schedule:
    </P>
    <TABLE>
       <TR><TH>Date</TH><TH>Topic</TH></TR>
       <TR><TD>1.1.01</TD><TD><FONT COLOR="RED">Holiday</FONT></TD></TR>
       <TR><TD>8.1.01</TD><TD>Intro UNIX</TD></TR>
    </TABLE>
  </BODY>
</HTML>
```

Processing and representation of semistructured data

Processing and representation of semistructured data Combination of

- database applications relational DB/SQL, OODB/OQL, OEM/OQL ... query languages, efficiency for large data sets
- document management
 SGML, HTML, transformation languages

Processing and representation of semistructured data Combination of

- database applications relational DB/SQL, OODB/OQL, OEM/OQL ... query languages, efficiency for large data sets
- document management
 SGML, HTML, transformation languages
- \Rightarrow flexible, expressive data model/language

Idea: data as contents + markup

Processing and representation of semistructured data Combination of

- database applications relational DB/SQL, OODB/OQL, OEM/OQL ... query languages, efficiency for large data sets
- document management
 SGML, HTML, transformation languages
- \Rightarrow flexible, expressive data model/language Idea: data as contents + markup
 - SGML: expressive, flexible, complex
 - HTML: simple, concise, non-flexible
 - eXtensible Markup Language
 - "HTML with freely definable tags"

XML Example: MONDIAL

<mondial>

<country car_code="B" capital="cty-Brussels" memberships="org-eu org-nato .."> <name>Belgium</name> <population> 10170241 </population> <city id="cty-Brussels" country="B"> <name>Brussels</name> <population year="95"> 951580 </population> </city>

</country>

<organization id="org-nato"
headq="cty-Brussels"...>

</organization>

- :

</mondial>

Much more than "only" a markup language is required. XML is more than only the Extensible Markup Language

Processing and representation of semistructured data

• flexible, expressive language: XML \checkmark

Processing and representation of semistructured data

- flexible, expressive language: XML
 - storage, queries
 - browsing, presentation
 - \Rightarrow data model
 - \Rightarrow efficient data structures and algorithms
 - \Rightarrow several kinds of languages to handle XML data

Processing and representation of semistructured data

- flexible, expressive language: XML
 - storage, queries
 - browsing, presentation
 - \Rightarrow data model
 - \Rightarrow efficient data structures and algorithms
 - \Rightarrow several kinds of languages to handle XML data
- "Internet-wide" data format
 - distributed, autonomous data sources
 - \Rightarrow standardization of interfaces
 - Electronic Data Interchange simple data transmission
 - \Rightarrow ASCII representation

XML as a Data Model/Data Structure

relational data model is a data structure

compare: data structure "List"

- textual specification:
 A list is a sequence of elements ...
- abstract datatype: specifies a signature of operations and their algebraic specification (basic data manipulation language)
- implementations in class libraries
- representation in ASCII
 [1,4,9,16,25,36,49,63,81]

The XML Data Model

"XML" is defined analogously:

- Idea: an abstract data model what information is contained in an XML document? W3C XML Information Set
- abstract datatype and implementations which operations?
 W3C Document Object Model (DOM)
- an ASCII representation how is XML data represented? data exchange format W3C XML
- + several languages to work with this data model

The Abstract XML Data Model

- an XML *instance* is a tree (optionally also regarded as a nested structure)
- consisting of a lot of nodes
- of different *node types*.
- node type *document*: a distinguished root element.
- node type element: the tree structure consists of elements:
 - element type e.g. TABLE or country
 - element contents, among other things consisting of subelements

(\Rightarrow recursive structure),

TABLE: TR-subelements; these again have TH and TD subelements

node type *text*: most simple nodes in the element contents;
 text nodes are leafs.

The Abstract XML Data Model (cont'd)

- node type attribute: elements may have attributes
 - each attribute node has an attribute name color, car_code
 - and an attribute value "red", "D"
 - different attribute types: (name, "Germany"): CDATA, (car_code, "D"): ID, (neighbor, "D"): IDREF, (members, "B D F"): IDREFS

The Document Object Model (DOM)

- defines a system of abstract datatypes:
 - Document
 - Element
 - Attribute
 - constructors
 - accessors, e.g. on elements:
 - return the type of the element ("Name")
 - traversing all child nodes (iterator)
 - access to attribute values (set + iterator)
- (reference) implementations in C++ (libxml) and Java
- different internal storage variants

3-Level Architecture of DBS

The ASCII Representation

- uses the same format as known from HTML
 - tags as parentheses <country>...</country>
 - text contents
 - <country><name>Germany</name></country>
 - attributes <country car_code="D">...</country>
- is "human-readable"
- can be transmitted by simplest communication protocols
- independent from
 - operating system
 - actual XML implementation
- is only one representation of XML data
- must be parsed into a suitable data structure before actual data processing

XML Interfaces and Languages

Outlook to the next lessons:

"Family" of concepts around XML

- XML: definitions and details
- query languages
 - XPath: addressing
 - XQuery: queries (analogous to SQL)
- schema definition and description languages
 - DTDs: document-oriented XML applications
 - XML Schema: database-oriented XML
- transformation languages
 - SSL / XSLT stylesheets
- references between XML resources: XLink
- and some more