XML as a Semistructured Data Model

Prof. Dr. Wolfgang May
Universität Göttingen
Overview

- What is “Semistructured Data”?
- Basic ideas and goals of XML?
- data model, representation ...
Relational Data Model

database = schema + contents

schema/metadata: relation names, attributes

contents: tuples

<table>
<thead>
<tr>
<th>Country</th>
<th>Name</th>
<th>code</th>
<th>Population</th>
<th>Capital</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>Germany</td>
<td>D</td>
<td>83536115</td>
<td>Berlin</td>
<td>..</td>
</tr>
<tr>
<td>Belgium</td>
<td>Belgium</td>
<td>B</td>
<td>10170241</td>
<td>Brussels</td>
<td>..</td>
</tr>
<tr>
<td>Canada</td>
<td>Canada</td>
<td>CDN</td>
<td>28820671</td>
<td>Ottawa</td>
<td>..</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
</tbody>
</table>
Semistructured Data

- less fixed schema
- self-describing – metadata are contained in the data

OEM: Object Exchange Model (U Stanford, 1995)

- each object has a label, a type, and a value,
- complex values are represented as sets of references

\[
\begin{align*}
 o_{\text{berlin}} & := \text{City} \set \text{Name} \text{ String} \ "\text{Berlin}\" \text{ Coordinates} \set \text{Longitude} \text{ Number} 13.3 \text{ Latitude} \text{ Number} 52.45 \\
 o_{\text{germany}} & := \text{Country} \set
\end{align*}
\]
Document Data Model

- tree-like, nested
- flexible schema, certain structuring elements

\[
\text{document} = \text{contents} + \text{markup}
\]

- markup-languages
 - logical markup: sectioning \(\Rightarrow\) tree structure
 - optical markup: fonts, colors

- well-known examples: HTML, LaTeX

- logical markup satisfies predefined constraints
<HTML>
 <HEAD><TITLE>Lecture: Computer Science I</TITLE></HEAD>
 <BODY>
 <H1>Computer Science I</H1>

 Introduction
 Java
 Data Structures

 <P>Schedule:</P>
 <TABLE>
 <TR><TH>Date</TH><TH>Topic</TH></TR>
 <TR><TD>1.1.01</TD><TD>Holiday</TD></TR>
 <TR><TD>8.1.01</TD><TD>Intro UNIX</TD></TR>
 </TABLE>
 </BODY>
</HTML>
XML: Requirements and Goals

Processing and representation of semistructured data
XML: Requirements and Goals

Processing and representation of semistructured data

Combination of
- database applications
 - relational DB/SQL, OODB/OQL, OEM/OQL ...
 - query languages, efficiency for large data sets
- document management
 - SGML, HTML, transformation languages
Processing and representation of semistructured data

Combination of

- database applications
 - relational DB/SQL, OODB/OQL, OEM/OQL ...
 - query languages, efficiency for large data sets
- document management
 - SGML, HTML, transformation languages

⇒ flexible, expressive data model/language

Idea: data as contents + markup
XML: Requirements and Goals

Processing and representation of semistructured data
Combination of
- database applications
 relational DB/SQL, OODB/OQL, OEM/OQL ...
 query languages, efficiency for large data sets
- document management
 SGML, HTML, transformation languages
⇒ flexible, expressive data model/language
Idea: data as contents + markup

SGML: expressive, flexible, complex
HTML: simple, concise, non-flexible

eXtensible Markup Language
“HTML with freely definable tags”
<mondial>
 <country car_code="B"
capital="cty-Brussels"
memberships="org-eu org-nato ..">
 <name>Belgium</name>
 <population>10170241</population>
 <city id="cty-Brussels"
country="B">
 <name>Brussels</name>
 <population year="95">951580</population>
 </city>
 </country>
 <organization id="org-eu"
headq="cty-Brussels">
 <name>Europ. Union</name>
 <abbrev>EU</abbrev>
 <members type="member"
country="GR F E A D I B L . . . ">
 </members>
 <members type="applicant"
country="AL CZ . . . ">
 </members>
 </organization>
 <organization id="org-nato"
headq="cty-Brussels">
 </organization>
</mondial>
XML: Requirements and Goals

Much more than “only” a markup language is required. XML is more than only the Extensible Markup Language.
XML: Requirements and Goals

Processing and representation of semistructured data

- flexible, expressive language: XML ✔
XML: Requirements and Goals

Processing and representation of semistructured data
- flexible, expressive language: XML ✓
 - storage, queries
 - browsing, presentation
 ⇒ data model
 ⇒ efficient data structures and algorithms
 ⇒ several kinds of languages to handle XML data
XML: Requirements and Goals

Processing and representation of semistructured data

- flexible, expressive language: XML
 - storage, queries
 - browsing, presentation
 - data model
 - efficient data structures and algorithms
 - several kinds of languages to handle XML data

- "Internet-wide" data format
 - distributed, autonomous data sources
 - standardization of interfaces
 - Electronic Data Interchange
 - simple data transmission
 - ASCII representation
XML as a Data Model/Data Structure

- relational data model is a data structure

compare: data structure “List”

- textual specification:
 A list is a sequence of elements ...

- abstract datatype:
 specifies a signature of operations and their algebraic specification (basic data manipulation language)

- implementations in class libraries

- representation in ASCII
 [1,4,9,16,25,36,49,63,81]
The XML Data Model

“XML” is defined analogously:

- Idea: an abstract data model
 - what information is contained in an XML document?
 - W3C XML Information Set

- abstract datatype and implementations
 - which operations?
 - W3C Document Object Model (DOM)

- an ASCII representation
 - how is XML data represented?
 - data exchange format
 - W3C XML

+ several languages to work with this data model
The Abstract XML Data Model

- an XML instance is a tree
 (optionally also regarded as a nested structure)
- consisting of a lot of nodes
- of different node types.
- node type document: a distinguished root element.
- node type element: the tree structure consists of elements:
 - element type e.g. TABLE or country
 - element contents, among other things consisting of subelements
 (⇒ recursive structure),
 TABLE: TR-subelements; these again have TH and TD subelements
- node type text: most simple nodes in the element contents;
 text nodes are leafs.
node type *attribute*: elements may have attributes
- each *attribute node* has an *attribute name*
 - color, car_code
- and an attribute value “red”, “D”
- different *attribute types*:
 - (name, “Germany”): CDATA,
 - (car_code, “D”): ID,
 - (neighbor, “D”): IDREF,
 - (members, “B D F”): IDREFS
The Document Object Model (DOM)

defines a system of abstract datatypes:
 - Document
 - Element
 - Attribute
 - constructors
 - accessors, e.g. on elements:
 - return the type of the element ("Name")
 - traversing all child nodes (iterator)
 - access to attribute values (set + iterator)
 - (reference) implementations in C++ (libxml) and Java
 - different internal storage variants
3-Level Architecture of DBS

- External Model
- Logical Model
- Physical Storage

View 1 → ... → View n

XML

• Queries
• Export
• optional: Schema

Mappings

Rel. DB, LDAP
The ASCII Representation

- uses the same format as known from HTML
- tags as parentheses: `<country>...</country>`
- text contents: `<country><name>Germany</name></country>`
- attributes: `<country car_code="D">...</country>`
- is “human-readable”
- can be transmitted by simplest communication protocols
- independent from:
 - operating system
 - actual XML implementation
- is only one representation of XML data
- must be parsed into a suitable data structure before actual data processing
XML Interfaces and Languages

Outlook to the next lessons:

“Family” of concepts around XML

- XML: definitions and details
- query languages
 - XPath: addressing
 - XQuery: queries (analogous to SQL)
- schema definition and description languages
 - DTDs: document-oriented XML applications
 - XML Schema: database-oriented XML
- transformation languages
 - XSL / XSLT stylesheets
- references between XML resources: XLink
- and some more