
AG Datenbanken und Informationssysteme · Institut für Informatik · Universität Göttingen

Deductive Databases

Summer Term 2020

Prof. Dr. W. May

1. Unit: Relational Calculus

Self-contained subformulas (i.e., formulas in RANF) will also be needed for translating complex
queries into Datalog programs. The transformation into RANF works in the same intuitive way as
done in the DB lecture before knowing the relational calculus at all. For complex cases (and for
the computer), a systematic formal procedure helps.

Exercise 1 (Kalkül: Sichere, Wertebereichsunabhängige Anfragen) Check for the follo-
wing queries whether they are in SRNF (give rr(G) for each of their subformulas).

For the formulas that are in RANF:

• check whether the formulas are in RANF. If not, give an equivalent formula in RANF. In such
cases, give a small data example that illustrates the problem.

• Give equivalent expressions in the relational algebra and in SQL (develop the SQL expressions
both from the original formula and from the RANF formula).

a) F (X,Y, Z) = p(X,Y) ∧ (q(Y) ∨ r(Z)),

b) F (X,Y) = p(X,Y) ∧ (q(Y) ∨ r(X)),

c) F (X,Y) = p(X,Y) ∧ ¬∃Z : r(Y, Z),

d) F (X) = p(X) ∧ ∃Y : (q(Y) ∧ ¬r(X,Y)),

e) F (X) = p(X) ∧ ¬∃Y : (q(Y) ∧ ¬r(X,Y))

f) F (X,Y) = ∃V : (r(V,X) ∧ ¬s(V,X, Y)) ∧ ∃W : (r(W,Y) ∧ ¬s(W,Y,X))

a) p(X,Y) ∧ (q(Y) ∨ r(Z)):

G rr(G)
p(x, y) X,Y
q(Y) Y
r(Z) Z
q(Y) ∨ r(Z) {Y } ∩ {Z} = ∅
p(X,Y) ∧ (q(Y) ∨ r(Z)) {X,Y } ∪ ∅ = {X,Y }

Since free(F) = {X,Y, Z} 6= {X,Y } = rr(F), F is not in SRNF (and thus also not in RANF).

F is not domain-independent: for S with S(p) = {1, a} and S(q) = {(a)} and S(r) = ∅ and
domain D is the answer set {X 7→ 1, Y 7→ a, Z 7→ d|d ∈ D}.

b) p(X,Y) ∧ (q(Y) ∨ r(X)):

G rr(G)
p(x, y) X,Y
q(Y) Y
r(X) X
q(Y) ∨ r(X) {Y } ∩ {X} = ∅
p(X,Y) ∧ (q(Y) ∨ r(X)) {X,Y } ∪ ∅ = {X,Y }

Since free(F) = {X,Y } = rr(F), F is in SRNF.

Vorlesung: Datenbanken 44

F is not in RANF since the disjunction q(Y) ∨ r(X) is not self-contained.

F can easily be expressed in SQL (with P (P1, P2), Q(Q1), R(R1)):

SELECT P1,P2

FROM P

WHERE P2 in (SELECT Q1 FROM Q)

OR P1 in (SELECT R1 FROM R)

The equivalent expression in the relational algebra is
(P ⊲⊳P2=Q1

Q) ∪ (P ⊲⊳P1=R1
R).

This is also obtained when translating from SRNF to RANF with “push-into-or”:
F ′(X,Y) = p(X,Y) ∧ (p(X,Y) ∧ q(Y)) ∨ (p(X,Y) ∧ r(Z))

and then translates as usual to the relational algebra.

The problem can be illustrated with the following database instances:

(i)
p

1 2
q
2

r

(ii)
p

1 2
3 4

q
2

r
3

Example (i): For the answer bindings of the subformula H(X,Y) = q(Y)∨r(X), only {X/??, Y/1}
can be given, which is not allowed. Nevertheless, {X/2, Y/1} is an answer to F (X,Y).

Example (ii) is even more mean: For H(X,Y) = q(Y) ∨ r(X), a “total” answer can be given
as {Y/1, X = 3}, which is not an answer for the whole formula F (X,Y), and one is tempted
to conclude that the answer set to F (X,Y) is empty. The correct set of answers to F (X,Y) is
{{X/1, Y/2}, {X/3, Y/4}}.

c) F (X,Y) = p(X,Y) ∧ ¬∃Z : r(Y, Z):

G rr(G)
p(X,Y) X,Y
r(Y, Z) Y, Z
∃Z : r(Y, Z) Y
¬∃Z : r(Y, Z) ∅
p(X,Y) ∧ ¬∃Z : r(Y, Z) X,Y

Since free(F) = {X} = rr(F), F is in SRNF.

All subformulas are self-contained.

F can easily be expressed in SQL (with P (P1, P2), R(R1, R2)):

SELECT P1,P2

FROM P

WHERE P2 NOT IN (SELECT R2 FROM R)

The equivalent expression in the relational algebra is
P ⊲⊳ (π[P2](P)− π[R1](R)).

The standard translation that uses the enumeration formula for the active domain (here: those
that occur in P and R) reads as:
P ⊲⊳ ((π[P1](P) ∪ π[P2](P) ∪ π[R1](R) ∪ π[R2](R))− π[R1](R)).

d) F (X) = p(X) ∧ ∃Y : (q(Y) ∧ ¬r(X,Y)):

Vorlesung: Datenbanken 45

G rr(G)
p(X) X
q(Y) Y
r(X,Y) X,Y
¬r(X,Y) ∅
q(Y) ∧ ¬r(X,Y) Y
∃Y : q(Y) ∧ ¬r(X,Y) ∅
p(X) ∧ ∃Y : q(Y) ∧ ¬r(X,Y) X

Since free(F) = {X} = rr(F), F is in SRNF.

F is not in RANF since the subformula G = ∃Y : q(Y)∧¬r(X,Y) is not self-contained: for the
body H = q(Y) ∧ ¬r(X,Y) there is free(H) = {X,Y }) {Y } = rr(H) (note that the SAFE
criterion from the lecture would already detect H as the problem).

The problem can be illustrated with the following database instance:

p
1
2
3

q
4
5

r
1 4
1 5
2 5

The set of answers to H(X,Y) = q(Y)∧¬r(X,Y) can be constrained as a set as {(X,Y)|(Y =
4∧X ! = 1)∨ (Y = 5∧X ! = 1∧X ! = 2)}, but this is not a positive characterization as a finite
set of tuples, since the possible values for X are not known. nicht kennt. For X , all values from
the domain D can be taken. If it is considered that the next step is G(X) = ∃Y : H(X,Y), a
possible characterization is {X |X ∈ D\{1}}, but this is not algebraic evaluation, but reasoning.

F can easily be expressed in SQL (with P (P1), Q(Q1), R(R1, R2)):

SELECT P1

FROM P

WHERE EXISTS (SELECT Q1

FROM Q

WHERE (P1,Q1) NOT IN (SELECT R1,R2 FROM R))

The equivalent expression in the relational algebra is
π[P1]((P ×Q)− ρ[R1 → P1, R2 → P2]R.

This is also obtained when translating from SRNF to RANF with “push-into-exist”:
F ′(X) = p(X) ∧ ∃Y : (p(X) ∧ q(Y) ∧ ¬r(X,Y)),

and then translates as usual to the relational algebra.

This corresponds to the (simpler) SQL query

SELECT P1

FROM P, Q

WHERE (P1,Q1) NOT IN (SELECT R1,R2 FROM R)

e) This formula is the pattern of the relational division, r ÷ q. It is equivalent with F (X) =
p(X) ∧ ∀Y : (q(Y) → r(X,Y)).

Vorlesung: Datenbanken 46

F (X) = p(X) ∧ ¬∃Y : (q(Y) ∧ ¬r(X,Y)),

G rr(G)
p(X) X
q(Y) Y
r(X,Y) X,Y
¬r(X,Y) ∅
q(Y) ∧ ¬r(X,Y) Y
∃Y : q(Y) ∧ ¬r(X,Y) ∅
¬∃Y : q(Y) ∧ ¬r(X,Y) ∅
p(X) ∧ ¬∃Y : q(Y) ∧ ¬r(X,Y) X

Since free(F) = {X} = rr(F), F is in SRNF.

F is –as in (d)– not in RANF since the subformula G = ∃Y : q(Y) ∧ ¬r(X,Y) is not self-
contained.

The example from (d) can be reused. With the mentioned argument that in the next step,
G(X) = ¬∃Y : H(X,Y) is asked for, it is clear that the answer set to G(X) = {{X/1}}. This
shows that for such a relational division, the answer can be restricted to π[$1](r) independently
from the surrounding formula (if the “required” set of combinations with q is not empty).

F can easily be expressed in SQL (with P (P1), Q(Q1), R(R1, R2)):

SELECT P1

FROM P

WHERE NOT EXISTS (SELECT Q1

FROM Q

WHERE (P1,Q1) NOT IN (SELECT R1,R2 FROM R))

The equivalent expression in the relational algebra is
P − π[P1]((P ×Q)− ρ[R1 → P1, R2 → P2](R)).

This is also obtained when translating from SRNF to RANF with “push-into-not-exist”:
F ′(X) = p(X) ∧ ¬∃Y : (p(X) ∧ q(Y) ∧ ¬r(X,Y)),

and then translates as usual to the relational algebra.

f) This is an example for a conjunction, where none of the conjuncts is self-contained:
F (X,Y) = ∃V : (r(V,X) ∧ ¬s(V,X, Y)) ∧ ∃W : (r(W,Y) ∧ ¬s(W,Y,X))

G rr(G)
r(V,X) X,V
s(V,X, Y) V,X, Y
¬s(V,X, Y) ∅
r(V,X) ∧ ¬s(V,X, Y) X,V
∃V : (r(V,X) ∧ ¬s(V,X, Y)) X
r(W,Y) W,Y
s(W,Y,X) W,Y,X
¬s(W,Y,X) ∅
r(W,Y) ∧ ¬s(W,Y,X) W,Y
∃W : (r(W,Y) ∧ ¬s(W,Y,X)) Y
(. . .) ∧ (. . .) X,Y

Since free(F) = {X,Y } = rr(F), F is in SRNF.

F is not in RANF since the subformulas ∃V : (r(V,X) ∧ ¬s(V,X, Y)) and ∃W : (r(W,Y) ∧
¬s(W,Y,X)) are not self-contained (again, the problem is located inside each of the subformulas,
as SAFE would complain about).

F can easily be expressed in SQL (with P (P1), Q(Q1), R(R1, R2)):

Vorlesung: Datenbanken 47

SELECT rv.R2, rv.R2

FROM R rv, R rw

WHERE NOT EXISTS (SELECT * FROM S

WHERE S1=rv.R1 and S2=rv.R2 and S3=rw.R2)

AND NOT EXISTS (SELECT * FROM S

WHERE S1=rw.R1 and S2=rw.R2 and S3=rv.R2)

oder

SELECT rv.R2, rw.R2

FROM R rv, R rw

WHERE NOT (rv.R1, rv.R2, rw.R2 IN (SELECT * FROM S))

AND NOT (rw.R1, rw.R2, rv.R2 IN (SELECT * FROM S))

The equivalent expression in the relational algebra is ... not that easy.

Thus, F has to be transformed from SRNF to RANF by moving the first conjunct into the
second by “push-into-exists” and vice versa:

F ′ = ∃V ∃W : ϕ ∧ ∃W∃V : ϕ

where (after reordering the atoms, which are the same in both subformulas) ϕ = r(V,X) ∧
r(W,Y)∧¬s(V,X, Y))∧¬s(W,Y,X). The formula F ′ is self-contained since free(ϕ) = {V,W,X, Y } =
rr(ϕ) and free(F ′) = {X,Y } = rr(F ′).

The human “solver” sees that the formula is redundant, and can be reduced to

F ′ = ∃V ∃W : ϕ .

According to the RANF-to-algebra transformation algorithm given in the lecture, the following
has to be done:

• build the (V XY) component of ϕ, subtract s,

• in parallel build the (WYX) component of ϕ, subtract s,

• these are the triples of bindings that “survive”,

• join them on XY ,

• and project to XY :

π[X,Y]((π[V,X, Y](ρ[R1 → V,R2 → X](r)× ρ[R1 → W,R2 → Y](r))
−ρ[R2 → V, S1 → X,S2 → Y](s))

⊲⊳ (π[X,Y,W](ρ[R1 → V,R2 → X](r) × ρ[R1 → W,R2 → Y](r))
−ρ[R2 → W,S1 → Y, S2 → X](s)))

Note: the pure algorithmic procedure would maybe not detect that redundancy, and translate
it straightforwardly in a redundant tree. Database-internal algebraic optimization would then
remove the redundancy.

Note: another approach, also using a typical formula transformation, would go another way
from the beginning:

• pull out the ∃ quantifiers (since A(...) ∧ ∃x : B(x, ...) ≡ ∃x : (A(...) ∧B(x, ...)) if A does not
contain x),

• obtain immediately F ′′ = ∃V,W : ϕ.

• F ′′ is in prenex form, i.e., all quantifiers are pulled in front. Here, it is even in prenex
literal normal form, i.e. negations are pushed down until only literals are negated. The
example formula is even only conjunctive, which will be required later on for Datalog.

The problem can be illustrated with the following database instance, which supports locking
scheduler in a datbase system: unterstützt: r(Ti, x) means that transaction Ti asks for an object

Vorlesung: Datenbanken 48

x to lock it for using it, and s(Ti, x, y) means that Ti, before it will again unlock x, requires
object y. Thus F (X,Y) means that these objects are currently not in danger of a deadlock, and
can be locked.

r
T1 b
T2 a
T3 c
T4 d

s
T1 b a
T2 a b
T2 c a
T2 c b

Die Antwort zu G(X,Y) = ∃V : (r(V,X) ∧ ¬s(V,X, Y)) sind also alle Paare (x, y) von Ob-
jekten, so dass es keine Transaktion V gibt, die X hält, und Y benötigen würde, bevor sie X
wieder freigeben kann. Dies läßt sich nicht beantworten, welche Objekte Y überhaupt zur Zeit
existieren, bzw. relevant sind.

Die Einschränkung ∃V,W : r(V,X) ∧ r(W,Y) hingegen erlaubt es, die Betrachtung auf alle
Objekte einzuschränken, die derzeit im Besitz irgendeiner Transaktion sind.

Exercise 2 (Relationale Anfragen an Mondial: Schweizer Sprachen) Give expressions in
the relational calculus for the following queries against the Mondial database. Compare with the
same queries in the relational Algebra and in SQL.

a) All codes of countries, in which some languages is spoken that is also spoken in Switzerland.

b) All codes of countries, in which only languages are spoken that are not spoken in Switzerland.

c) All codes of countries, in which only languages are spoken that are also spoken in Switzerland.

d) All codes of countries in which all languages that are spoken in Switzerland are also spoken.

a) F (C) = ∃L, Perc1, P erc2 : (language(′CH ′, L, Perc1) ∧ language(C,L, Perc2))

b) F (C) =∃CN,A, Pop, Cap, CapP :
(country(CN,C,A, Pop, Cap, CapP)∧
¬∃L, Perc1, P erc2 : (language(′CH ′, L, Perc1) ∧ language(C,L, Perc2)))

Algebra:
a) π[country]

⊲⊳

π[name]

σ[country=“CH”]

language

language

(b) \

ρ[code→country]

π[code]

country

tree from (a)

c) F (C) =(∃CN,A, Pop, Cap, CapP : country(CN,C,A, Pop, Cap, CapP)) ∧
¬∃L, Perc1 : (language(C,L, Perc1) ∧ ¬∃Perc1 : language(′CH ′, L, Perc2))

d) F (C) =(∃CN,A, Pop, Cap, CapP : country(CN,C,A, Pop, Cap, CapP)) ∧
∀L : ((∃Perc1 : language(′CH ′, L, Perc1)) → (∃Perc2 : language(C,L, Perc2)))

Exercise 3 (RANF to Algebra – Minus) Give expressions in the relational algebra and in
the relational calculus for the query “Full names of all countries that have more than 1000000

inhabitants and are not member of the EU”.

Vorlesung: Datenbanken 49

Check whether the calculus expression is in SRNF and RANF, and transform it into the relational
algebra. Compare the result with the algebra expression.

A straightforward algebra expression is

π[name]

⊲⊳

σ[population>1000000]

country

−

π[code]

country

π[code]

σ[org = “EU”]

isMember

The calculus expression is

F (N) = ∃C,Cap, CapProv,A, Pop :
(country(N,C,Cap, CapProv,A, Pop) ∧ Pop > 1000000∧ ¬∃T : isMember(C, “EU” , T)) .

It is in SRNF, it is safe range, and it is in RANF. Recall that for the subformula ¬∃T : isMember(C, “EU” , T),
RANF requires rr(∃T : isMember(C, “EU” , T)) = free(∃T : isMember(C, “EU” , T)) = {C} which is
the case.

For the relational algebra,

isMember(C, “EU” , T) ⇒ ρ[$1 → C, $3 → T](π[$1, $3](σ[$2 = “EU”](isMember)))
∃T : isMember(C, “EU” , T) ⇒ π[$1](ρ[$1 → C, $3 → T](π[$1, $3](σ[$2 = “EU”](isMember))))

= ρ[$1 → C](π[$1](σ[$2 = “EU”](isMember)))

For ¬∃T : isMember(C, “EU” , T), let the expression E denote the algebra expression that enume-
rates all values of the active domain. With this,

¬∃T : isMember(C, “EU” , T) ⇒ ρ[$1 → C](E)− ρ[$1 → C](π[$1](σ[$2 = “EU”](isMember)))

Altogether, the whole query translates to

π[N]

⊲⊳

σ[P > 1000000]

ρ[$1 → N, $2 → C, $3 → Cap,
$4 → CapProv, $5 → A, $6 → P]

country

−

ρ[$1 → C]

E

ρ[$1 → C]

π[$1]

σ[$2 = “EU”]

isMember

Vorlesung: Datenbanken 50

Obviously, the term ρ[$1 → C](E) can be replaced by ρ[$2 → C](π[$2](country)) which enumerates
a superset of all values of C that can result from the left subtree.

Instead, also ρ[$2 → C](π[$2](σ[$6 > 1000000](country))) is sufficient, which makes the left subtree
(nearly) unnecessary. From it, only the full name must still be obtained.

π[N]

⊲⊳

π[N,C] −

π[C]

σ[P > 1000000]

ρ[$1 → N, $2 → C, $3 → Cap,
$4 → CapProv, $5 → A, $6 → P]

country

ρ[$1 → C]

π[$1]

σ[$2 = “EU”]

isMember

Another possibility is the anti-join ⊲ (which is one of the built-in operators of internal algebras):

π[N]

⊲

π[N,C]

σ[P > 1000000]

ρ[$1 → N, $2 → C, $3 → Cap,
$4 → CapProv, $5 → A, $6 → P]

country

ρ[$1 → C]

π[$1]

σ[$2 = “EU”]

isMember

Exercise 4 (RANF to Algebra – Minus) Transfer the notion of domain-independence to SQL
and Relational Algebra expressions. Is there any danger, or why not?

SQL:

• SFW queries: The FROM clause (and WHERE join conditions) specify a conjunctive query
that acts as an upperbound and uses only tuples from the database.

• Don’t forget the binary operations:

– INTERSECT, MINUS: the first subquery acts as a restricted upper bound.

– UNION: both subqueries are SFW queries. The condition that their number of columns (and
datatypes) must match guarantees that nothing can be undefined/unrestricted.

• Note that the outer join could be a risk, similar to the ∨ in the calculus. The outer join specifies
to fill the “open” positions with NULL values.

Vorlesung: Datenbanken 51

Algebra: structural induction over the set of top operators of a tree of height n and subtrees of size
n− 1.

• π, σ, ⊲⊳, ρ, ×: always applied to a safe subtree by induction hypothesis.

• \: The left subtree acts as an upper bound.

• union: the formats of both subtrees must fit, so there is no “open” position as in the ∨ in the
calculus. Both subtrees are domain-independent by induction hypothesis.

• Note: the outer join is covered as a derived operator consisting of ∪ and ×. Furthermore, when
the outer join’s definition is considered alone, the “completion” with null values for the “open”
positions guarantees domain-independence.

Exercise 5 (Division: Äquivalenz von Algebra und Kalkül) For the relational algebra, the
division operator has been introduced as a derived operator (cf. lecture “Databases”). Consider the
relation schemata r(A,B) and s(B).

r ÷ s = {µ ∈ Tup(A) | {µ} × s ⊆ r} = π[A](r) \ π[A]((π[A](r) × s) \ r).

Derive a query in the relational calculus from the left-hand side, and prove the equivalence with
the right-hand side.

The left-hand side expression: the set of all possible tuples over a A is described by F (X) =
ADOM(X). The specification of the set then states that for all values Y in S, the combination of
X and Y must be in R:

F (X) = ADOM(X) ∧ ∀Y : (s(Y) → r(X,Y)) .

There are two possibilities to prove the equation, a “human reasoning” one, and a purely symbolic
one:

• For a human, it is obvious that instead ADOM(X), the consideration can be restricted to the
A-values of R, i.e., F (X) = ∃Z : r(X,Z) ∧ ∀Y : (s(Y) → r(X,Y))

Here, it is obvious that instead ADOM(X), the consideration can be restricted to the A-values
of R:

F (X) = ∃Z : r(X,Z) ∧ ∀Y : (s(Y) → r(X,Y)) .

The query is not in SRNF. It is equivalent to

F (X) = ∃Z : r(X,Z) ∧ ¬∃Y : (s(Y) ∧ ¬r(X,Y)) ,

which is in SRNF (thus, domain-independent), but not in RANF.

Transformation to RANF (“push-into-not-exists”):

F (X) = ∃Z : r(X,Z) ∧ ¬∃Y : (∃Z2 : r(X,Z2)) ∧ s(Y) ∧ ¬r(X,Y))

Derivation of the algebra expression:

F Algebra
(∃Z : r(X,Z)) ∧ s(Y) ∧ ¬r(X,Y) (π[A](r) × s) \ r
∃Y : (∃Z : r(X,Z)) ∧ s(Y) ∧ ¬r(X,Y) π[A]((π[A](r) × s) \ r)

(the expression has the format A)
∃Z : r(X,Z) π[A](r) (has again the format A)
F (X) as above π[A](r) \ π[A]((π[A](r) × s) \ r)

... is exactly the right-hand side.

Vorlesung: Datenbanken 52

• Purely symbolic, following the algorithm of the lecture:

The query is not in SRNF. It is equivalent to

F (X) = ADOM(X) ∧ ¬∃Y : (s(Y) ∧ ¬r(X,Y)) ,

which is in SRNF (thus, domain-independent), but not in RANF.

Transformation to RANF (“push-into-not-exists”):

F (X) = ADOM(X) ∧ ¬∃Y : (ADOM(X) ∧ s(Y) ∧ ¬r(X,Y))

Derivation of the algebra expression:

F Algebra
¬r(X,Y) (ρ[$1 → X](ADOM)× ρ[$1 → Y](ADOM)) \ r
(ADOM(X) ∧ s(Y) ∧ ¬r(X,Y) (ρ[$1 → X](ADOM)× ρ[$1 → Y](s)) ⊲⊳ (ρ[$1 → X](ADOM)× ρ[$1 → Y](AD
∃Y : (∃Z : r(X,Z)) ∧ s(Y) ∧ ¬r(X,Y) π[A]((π[A](r) × s) \ r)

(the expression has the format A)
∃Z : r(X,Z) π[A](r) (has again the format A)
F (X) as above π[A](r) \ π[A]((π[A](r) × s) \ r)

... is exactly the right-hand side.

Exercise 6 (Kalkül: Gruppierung und Aggregation) Define a syntactical extension for the
relational calulus, that allows to use aggregate functions similar to the GROUP BY functionality of
SQL.

For this, consider only aggregate functions as simple applications over single attributes like max(population),
but not more complex expressions like max(population/area).

• What is the result of an aggregate function, and how can it be used in the calculus?

• Which inputs does an aggregate function have?

• how can this input be obtained from the database?

Give a calculus expression for the query “For each country give the name and the total number of
people living in its cities”.

The result is a number. It can be bound to a variable or it can be used in a comparison. Thus, the
aggregate function is to be considered as a term (whose evaluation yields a value).

The immediate input to an aggregate function is a set/list of values, over which the aggregate is
computed (sum, count, . . .).

This list can be obtained as results of a (sub)formula (similar to a correlated subquery) with a free
variable.

The results are grouped by zero, one or more free variables of the subquery. Usually, these also
occur in other literals outside the aggregation.

X = agg-op{var [group-by-vars]; subq-fml}

where in subq-fml the group-by-vars and var have free occurrences. E.g.,

F (CN,SumCityPop) =
∃C,A, P,Cap, CapProv : country(CN,C,A, P, Cap, CapProv) ∧
SumCityPop = sum{CityPop [C];

∃CtyN,CtyProv, L1, L2 : city(CtyN,CtyProv, C,CityPop, L1, L2)}

Vorlesung: Datenbanken 53

groups by C, computes the sum over CityPop and binds the value to SumCityPop.

Comments:

• a similar syntax is used in F-Logic;

• the usage in XSB is similar, but the user has to program it more explicitly:

– the list is created by the Prolog predicate “bagof”;

– the aggregation operation over the list must be programmed in the common Prolog style for
handling a list.

Exercise 7 (Kalkül→Algebra) Consider the relation schemata R(A,B), S(B,C) und T (A,B,C).

a) Give an equivalent algebra expression for the following safe relational calculus expression:

F1(X,Y) = T (Y, a, Y) ∧ (R(a,X) ∨ S(X, c)) ∧ ¬T (a,X, Y)

Proceed as shown in the lecture for the equivalence proof.

b) Simplify the expression.

c) Extend the expression from (a) to

F2(Y) = ∃X : (F1(X,Y) ∧X > 3)

a) First, consider each of the three conjuncts (denoted as F2, F1 and F3) separately:

The literal F1(Y) = T (Y, a, Y) corresponds to the subexpression

E1 = ρ[A → Y](π[A](σ[(A = C) ∧ (B = a)](T))) .

The subformula F2(X) = R(a,X) ∨ S(X, c) corresponds to the expression

E2 = ρ[B → X](π[B](σ[A = a](R))) ∪ ρ[B → X](π[B](σ[C = c](S))) .

The negated literal F3(X,Y) = ¬T (a,X, Y) corresponds to the expression

E4 = ρ[B → X,C → Y](π[B,C](σ[A = a](T)))

The expression corresponding to F3(X,Y) is then

E3 = ρ[$1 → X, $2 → Y](ADOM2)− ρ[B → X,C → Y](π[B,C](σ[A = a](T)))

where ADOM2 = ((π[A](R) ∪ π[B](R) ∪ π[B](S) ∪ π[C](S) ∪ π[A](T) ∪ π[B](T) ∪ π[C](T)) ×
(π[A](R) ∪ π[B](R) ∪ π[B](S) ∪ π[C](S) ∪ π[A](T) ∪ π[B](T) ∪ π[C](T))) contains all 2-tuples
of values from the database.

Thus, E = E1 ⊲⊳ E2 ⊲⊳ (ADOM2 − E4) is the complete algebra expression.

b) Simplify: E1 and E2 have no variable/column in common, thus it can be simplified as (E1 ×
E2) ⊲⊳ (ADOM2−E4). Both subterms bind X and Y , thus, ADOM2 can be omitted, obtaining
E′ = (E1 × E2)− E4.

c) The additional comparison is expressed as a selection, and the ∃X quantification is expressed
as a projection to Y :

π[Y](σ[X > 3](E′))

