
6th Intl. Conference on Extending Database Technology(EDBT'98), March 23{27, 1998, Valencia, Spain.Springer LNCS 1377, pp. 404-418.Referential Actions: From Logical Semantics toImplementationBertram Lud�ascher Wolfgang MayInstitut f�ur Informatik, Universit�at Freiburg, Germanyfludaesch,mayg@informatik.uni-freiburg.deAbstract. Referential actions (rac's) are specialized triggers used to au-tomatically maintain referential integrity. While their local e�ects can begrasped easily, it is far from obvious what the global semantics of a setRA of interacting rac's should be. To capture the intended meaning ofRA, we �rst present an abstract non-constructive semantics. By formal-izing RA as a logic program PRA, a constructive semantics is obtained.The equivalence of the logic programming semantics and the abstractsemantics is proven using a game-theoretic characterization, which pro-vides additional insight into the meaning of rac's. As shown in previouswork, for general rac's, it may be infeasible to compute all maximal ad-missible solutions. Therefore, we focus on a tractable subset, i.e., rac'swithout modi�cations. We show that in this case a unique maximal ad-missible solution exists, and derive a ptime algorithm for computing thissolution. In case a set U� of user requests is not admissible, a maximaladmissible subset of U� is suggested.1 IntroductionWe study the following problem: Given a relational database D, a set of user-de�ned update requests U�, and a set of referential actions RA, �nd those setsof updates � which (i) preserve referential integrity in the new database D0,(ii) are maximal wrt. U�, and (iii) reect the intended meaning of RA. Thisnotion of intended \optimal" updates will be formalized using so-called maximaladmissible sets of updates.The problem is important both from a practical and theoretical point ofview: Referential integrity constraints (ric's) are a central concept of the rela-tional database model and frequently used in real world applications. Referentialactions (rac's) are specialized triggers used to automatically enforce integrity,thereby relieving the user from the burden of enumerating all induced updateswhich arise from an initial user request U�.Due to their practical importance, rac's have been included in the SQL2standard and SQL3 proposal [ISO92, ISO95]. In [DD94] and [Dat90], the problemof unpredictable behavior, i.e., ambiguities in determining the above � and D0,in certain situations is addressed. In [Hor92, CPM96], a solution is presented,based on a rather ad-hoc run-time execution model. In a di�erent approach,[Mar94] presents safeness conditions which aim at avoiding ambiguities at theschema level. However, as shown in [Rei96], it is in general undecidable whethera database schema with rac's is ambiguous. Summarizing, from a theoreticalpoint of view, the problem has not been solved in a satisfactory way.

In this paper, we continue our work on declarative semantics for referentialactions. First results have been reported in [LMR96]. In [LML97a], it is shownthat for rac's with modi�cations, it may be infeasible to compute all maximaladmissible solutions (intuitively, there are several equally justi�ed ways how topropagate the combined e�ect of modi�cations, leading to an exponential blowup, both in the number of rules for integrity maintenance and in the numberof solutions). Here, we therefore restrict to the tractable class of rac's withoutmodi�cations. This guarantees the existence of a unique optimal solution whichcan be e�ciently computed.In Section 2, we introduce the basics of referential integrity and illustratethe problem of ambiguity. In Section 3.1, we identify and formalize desirableabstract properties of updates which lead to a non-constructive global semanticsof rac's. A constructive de�nition providing a global semantics is obtained byformalizing a set of referential actions RA as a logic program PRA (Section3.2). The correctness of this characterization is proven via an equivalent game-theoretic characterization (Section 3.3) which allows intelligible proofs on a lesstechnical level (Section 4). From the logic programming characterization, analgorithm for computing the maximal admissible solution is derived (Section 5).2 Referential IntegrityNotation and Preliminaries. A relation schema consists of a relation nameR and a vector of attributes (A1; : : : ; An). We identify attribute names Ai ofR with the integers 1; : : : ; n. By A = (i1; : : : ; ik) we denote a vector of k � ndistinct attributes (usually A will be some key).Tuples of R are denoted by �rst-order atoms R(�X) with n-ary relation sym-bol R, and vector �X of variables or constants from the underlying domain. Toemphasize that such a vector is ground, i.e., comprises only constants, we write �xinstead of �X. The projection of tuples �X to an attribute vector A is denoted by�X[A]: e.g., if �x = (a; b; c), A = (1; 3), then �x[A] = (a; c). Deletions are denotedby del:R(�x).For a relation schema R with attributes A, a minimal subset K of A whosevalues uniquely identify each tuple in R is a candidate key. In general, the data-base schema speci�es which attribute vectors are keys. A candidate key R:K hasto satisfy the �rst-order sentence 'key for every database instance D:8 �X1; �X2 (R(�X1) ^ R(�X2) ^ �X1[K] = �X2[K]! �X1 = �X2) : ('key)Referential Integrity Constraints. A referential integrity constraint (ric) isan expression of the form RC :F!RP :K ;where F is a foreign key of the child relation RC , referencing a candidate key Kof the parent relation RP . A ric RC :F!RP :K is satis�ed by a given database D,if for every child tuple RC(�x) with foreign key values �x[F], there exists a tupleRP (�y) with matching key value, i.e., �x[F] = �y[K]. Thus, for a database instanceD, a ric is satis�ed if D j= 'ric:8 �X (RC(�X)! 9 �Y (RP (�Y) ^ �X [F] = �Y [K])) : ('ric)2

A ric is violated by D if it is not satis�ed by D.Referential Actions. Rule-based approaches to referential integrity mainte-nance are attractive since they describe how ric's should be enforced using \lo-cal repairs": Given a ric RC :F!RP :K and an update operation insert, delete,or modify on RP or RC , a referential action (rac) de�nes some local operationon RC or RP , respectively. It is easy to see from the logical implication in ('ric)that insert into RP and delete from RC cannot introduce a violation of a ric,whereas the other updates can. For these, there are two strategies to maintainreferential integrity by local actions:� Cascade: propagate the update from the parent to the child,� Reject: reject an update on the parent if there exists a referencing tuple.The Problem of Ambiguity. With this local speci�cation of behavior, theremay be ambiguities wrt. the global semantics, leading to di�erent �nal states.A relational database schema S with rac's RA is ambiguous, if there is somedatabase instance D and some set of user requests U� s.t. there are di�erent�nal states D0 depending on the execution order of referential actions. As shownin [Rei96], it is in general undecidable whether a schema with rac's is ambiguous(given D and U�, the problem becomes decidable). The following example from[Rei96] illustrates the problem:Example 1 Consider the database with rac's depicted in Fig. 1. Solid arcs rep-resent ric's and point from RC to RP , rac's are denoted by dashed (CASCADE)or dotted (REJECT) arcs. Let U� = fdel:R1(a)g be a user request to delete thetuple R1(a). Depending on the order of execution of rac's, one of two di�erent�nal states may be reached:1. If execution follows the path R1{R3{R4, the tuple R3(a; y) cannot be deleted:Since R4(a; x; y) references R3(a; y), the rac for R4 forbids the deletion ofR3(a; y). This in turn forbids the deletion of R1(a). Thus, the user requestdel:R1(a) is rejected, and the database remains unchanged, i.e., D0 = D.2. If execution follows the path R1{R2{R4, the tuples R2(a; x) and R4(a; x; y)are requested for deletion. Hence, the rac for R4:(1; 3)!R3:(1; 2) can assumethat R4(a; x; y) is deleted, thus no referencing tuple exists in R4. Therefore,all deletions can be executed, resulting in a new database state D0 6= D.We argue that (2) is preferable to (1), since it accomplishes the desired userrequest without violating referential integrity. 22.1 Disambiguating StrategiesThe ambiguity in Example 1 can be eliminated by specifying that rac's of typeREJECT are always evaluated wrt. the database state either before starting thetransaction or after the complete transaction, leading to the following strategiesto maintain referential integrity by referential actions:� Cascade: propagate the update from the parent to the child,� Restrict: (i) reject an update on the parent if there exists a child referencingit in the original database state, or (ii) reject an update on the child if thereis no tuple with the respective parent key in the original database state,3

R11 � � �a � � �� � � � � �R21 2 � � �a x � � �� � � � � � � � � R31 2 � � �a y � � �� � � � � � � � �R41 2 3 � � �a x y � � �� � � � � � � � � � � �
R2:1!R1:1ON DELETE CASCADE R3:1!R1:1ON DELETE CASCADE

R4:(1; 2)!R2:(1; 2)ON DELETE CASCADE R4:(1; 3)!R3:(1; 2)ON DELETE REJECTFig. 1. Database with referential actions� No Action: similar to Restrict, but look at the database state after (hy-pothetically) applying all updates (in active database terminology, this cor-responds to change immediate coupling of referential actions into deferredcoupling).Since the �nal state depends on the updates to be executed, and these may inturn depend on the �nal state via No Action, there is a cyclic dependency. InSection 3, we show how to solve this semantical problem using di�erent (logicaland game-theoretic) characterizations of rac's.In SQL, referential actions for a given ric RC :F!RP :K are speci�ed withthe de�nition of the child relation:fCREATE j ALTERg TABLE RC� � �FOREIGN KEY F REFERENCES RP K[ON UPDATE fNO ACTION j CASCADE j RESTRICT j SET NULL j SET DEFAULTg][ON DELETE fNO ACTION j CASCADE j RESTRICT j SET NULL j SET DEFAULTg]� � �(RESTRICT is not contained in SQL2, but in the SQL3 proposal.)Due to lack of space, we do not consider insertions in the sequel. Note how-ever, that insertions can be handled in a straightforward way by rejecting updateswhich aim to insert a child tuple whose corresponding parent does not exist (thisis also the SQL strategy), and all results can be directly extended to incorporateinsertions (cf. [LML97a, LML97b]). Moreover, as mentioned above, we delib-erately exclude modi�cations (i.e., ON UPDATE triggers and SET NULL/DEFAULTactions, the latter being a special case of modi�cations), since this problem isintractable in general [LML97a].Thus, in this work, we investigate rics RC :F!RP :K with corresponding rac'sof the form RC :F!RP :K ON DELETE fCASCADE j RESTRICT j NO ACTIONg.3 Semantics of Referential ActionsIn order to avoid ambiguities and indeterminism like in Example 1, it is necessaryto specify the intended global semantics of rac's. First, we de�ne an abstract,4

non-constructive semantics which serves as the basis for a notion of correctness.Next, we show how to translate a set of rac's into a logic program, whose declar-ative semantics provides a constructive de�nition. An equivalent game-theoreticcharacterization is developed which will be used to prove the correctness of thelogic programming semantics (Section 4).3.1 Abstract SemanticsLet D be a database represented as a set of ground atoms, RA a set of rac's,and U� = fdel:R1(�x1); : : : ; del:Rn(�xn)g a set of (external) user delete requestswhich are passed to the system. D and RA de�ne three graphs DC (ON DELETECASCADE), DR (ON DELETE RESTRICT), and DN (ON DELETE NO ACTION) cor-responding to the di�erent types of references:DC := f (RC(�x); RP (�y)) 2 D �D jRC :F!RP :K ON DELETE CASCADE 2 RA and �x[F] = �y[K]g;DR and DN are de�ned analogously. DC� denotes the reexive transitive clo-sure of DC. Note that the graphs describe potential interactions due to rac's,independent of the given user requests U�. To capture the intended semantics,U� has to be considered:De�nition 1 Given RA, D, and U�, a set � of delete requests is called� founded, if del:R(�x)2� implies (R(�x); R0(�x0))2DC� for some del:R0(�x0)2U�,� complete, if del:RP (�y) 2 � and (RC(�x); RP (�y)) 2 DC implies del:RC(�x) 2 �,� feasible, if{ (RC(�x); RP (�y)) 2 DR implies del:RP (�y) =2 �, and{ del:RP (�y) 2 � and (RC(�x); RP (�y)) 2 DN implies del:RC(�x) 2 �,� admissible, if it is founded, complete, and feasible. 2Foundedness guarantees that all deletions are \justi�ed" by some user request,completeness guarantees that no cascading deletions are \forgotten", and feasi-bility ensures that RESTRICT/NO ACTION rac's are \obeyed".De�nition 2 (Maximal Admissible Sets, Intended Semantics)Let RA, D, and U� be given.� The set of induced updates �(U) of a set of user requests U � U� is the leastset � which contains U and is complete.� A set of user requests U � U� is admissible if �(U) is admissible, andmaximaladmissible if there is no other admissible U 0, s.t. U (U 0 � U�.� The intended semantics are the maximal admissible subsets of U�. 2Proposition 1 (Correctness)a) If U � U�, then �(U) is founded and complete.b) If � is complete and feasible, then D0 := D ��(U) satis�es all rics. 2Proof a) �(U) is de�ned as the least complete set. It follows that �(U)is founded. b) Completeness guarantees that all ric's labeled with ON DELETECASCADE in RA are satis�ed, feasibility guarantees that all ric's labeled with ONDELETE RESTRICT/NO ACTION are satis�ed. �5

Theorem 2 (Uniqueness)Given RA, D, and U�, there is exactly one maximal admissible Umax � U�.Proof Observe that U1 [U2 is admissible if U1; U2 � U� are admissible. Thus,the union of all admissible subsets of U� yields Umax. �3.2 Logic Programming CharacterizationWe show how a set RA of rac's is compiled into a logic program PRA whoserules specify their local behavior. The advantage of this logical formalization isthat the declarative semantics of PRA de�nes a precise global semantics.The following rule derives for every user request del:R(�x) 2 U� an internaldelete request req del:R(�x), provided there is no blocking blk del:R(�x):req del:R(�X) del:R(�X);:blk del:R(�X): (I)Referential actions are speci�ed as follows:� RC :F!RP :K ON DELETE CASCADE is encoded into two rules: the �rst onepropagates internal delete requests downwards from the parent to the child:req del:RC(�X) req del:RP (�Y); RC(�X); �X[F] = �Y [K]: (DC1)Additionally, blockings are propagated upwards, i.e., when the deletion of achild is blocked, the deletion of the referenced parent is also blocked:blk del:RP (�Y) RP (�Y); blk del:RC(�X); �X[F] = �Y [K]: (DC2)� RC :F!RP :K ON DELETE RESTRICT blocks the deletion of a parent tuple ifthere is a corresponding child tuple:blk del:RP (�Y) RP (�Y); RC(�X); �X[F] = �Y [K]: (DR)� RC :F!RP :K ON DELETE NO ACTION blocks the deletion of a parent tuple ifthere is a corresponding child tuple which is not requested for deletion:blk del:RP (�Y) RP (�Y); RC(�X); :req del:RC(�X); �X [F] = �Y [K]: (DN)Due to the negative cyclic dependency req del :; blk del :; req del , PRA is ingeneral not strati�ed.Well-Founded Semantics. The well-founded model [VGRS91] is widely ac-cepted as a (skeptical) declarative semantics for logic programs. The well-foundedmodel WRA of PRA [D [U� assigns a third truth value unde�ned to atomswhose truth cannot be determined using a \well-founded" argumentation.Often, even if not all requested updates can be accomplished, it is still possibleto execute some of them while postponing the others. Thus, the informationwhich tuple or update really causes problems is valuable for preparing a re�nedupdate that realizes the intended changes and is acceptable:Example 2 Consider the database with rac's in Fig. 2, and the user requestU� = fdel:R1(a); del:R1(b)g. del:R1(b) is not admissible since it is blocked byR5(b). However, the other request, del:R1(a), can be executed without violating6

R11 � � �a � � �b � � �� � � � � �R21 2 � � �a x � � �b x � � �� � � � � � � � � R31 2 � � �a y � � �b y � � �� � � � � � � � � R51 � � �b � � �� � � � � �R41 2 3 � � �a x y � � �b x y � � �� � � � � � � � � � � �
R2:1!R1:1ON DELETE CASCADE R3:1!R1:1ON DELETE CASCADE

R4:(1; 3)!R3:(1; 2)ON DELETE NO ACTIONR4:(1; 2)!R2:(1; 2)ON DELETE CASCADE
R5:1!R1:1ON DELETE NO ACTION

Fig. 2. Extended database with modi�ed rac'sany ric by deleting R1(a), R2(a; x), R3(a; y), and R4(a; x; y). Thus, the extendedset U 0� = fdel:R1(a); del:R1(b); del:R5(b)g is a candidate for a re�ned updaterequest which accomplishes the deletion of R1(a) and R1(b).The well-founded semantics reects the di�erent status of the single updates:Given the user request U� = fdel:R1(a)g, the delete requests req del forR1(a), R2(a; x), R3(a; y), R4(a; x; y), as well as the blockings blk del for R1(a)and R3(a; y) will be unde�ned in the well-founded model.For the user request U 0� = fdel:R1(b)g, blk del is true for R1(b) due to thereferencing tuple R5(b). Thus, req del:R1(b) is false, and del:R1(b) is not admis-sible; hence there are no cascaded delete requests. Due to the referencing tupleR4(b; x; y) which cannot be deleted in this case, blk del:R3(b; y) is also true. 2WRA contains some ambiguities which can be interpreted constructively asdegrees of freedom: The blockings and deletions induced by U� = fdel:R1(a)gin Example 2 are unde�ned due to the dependency req del :; blk del :; req del.This freedom may be used to de�ne di�erent global policies by giving priorityeither to deletions or blockings (cf. Theorems 10 and 11).3.3 Triggers as GamesThe following game-theoretic formalization provides an elegant characterizationof rac's yielding additional insight into the well-founded model of PRA and theintuitive meaning of rac's.The game is played with a pebble by two players, I (the \Deleter") and II(the \Spoiler"), who argue whether a tuple may be deleted. The players movealternately in rounds ; each round consists of two moves. A player who cannotmove loses. The set of positions of the game is D[U�[frestrictedg. The possiblemoves of I and II are de�ned below. Note that I moves from D to U�, while IImoves from U� to D [frestrictedg. Initially, the pebble is placed on some tuplein D (or U�) and I (or II) starts to move. If II starts the game, the �rst roundonly consists of the move by II. 7

By moving the pebble from R(�x) 2 D to some del:R0(�x0) 2 U� which cascadesdown to R(�x), I claims that the deletion of R(�x) is \justi�ed" (i.e., founded)by del:R0(�x0). Conversely, II claims by her moves that del:R0(�x0) is not feasible.II can use two di�erent arguments: Assume that the deletion of R0(�x0) cascadesdown to some tuple RP (�xP). First, if the deletion of RP (�xP) is restricted bya referencing child tuple RC(�xC), then II may force I into a lost position bymoving to restricted (since I cannot move from there). Second, II can move toa child tuple R0C(�x0C) which references RP (�xP) with a NO ACTION trigger. Withthis move, II claims that this reference to RP (�xP) will remain in the database,so RP (�xP) and, as a consequence, R0(�x0) cannot be deleted. In this case, I maystart a new round of the game by �nding a justi�cation to delete the referencingchild R0C(�x0C). More precisely:Player I can move from R(�x) todel:R0(�x0) if (R(�x); R0(�x0)) 2 DC�and there is no RC(�xC) 2 D s.t.(RC(�xC); R(�x)) 2 DR.Player II can move from del:R0(�x0)� to restricted if there are RP (�xP) andRC(�xC) s.t. (RP (�xP); R0(�x0)) 2 DC�and (RC(�xC); RP (�xP)) 2 DR.� to R0C(�x0C), if (RP (�xP); R0(�x0)) 2 DC�and (R0C(�x0C); RP (�xP)) 2 DN .
del:R0(�x0) del:R00(�x00)RP (�xP) RP (�xP)R(�x)RC(�xC) restricted R0C(�x0C)
DC�I DC�DR IIDC� DNII DC� ILemma 3 (Claims of I and II)1. If I can move from R(�x) to del:R0(�x0), then deletion of R0(�x0) induces thedeletion of R(�x).2. If II can move from del:R(�x) to restricted, then deletion of R(�x) is forbiddenin the original database state.3. If II can move from del:R(�x) to R0(�x0), then deletion of R(�x) is only admissibleif R0(�x0) is also deleted. 2Proof 1. The move of I implies that (R(�x); R0(�x0)) 2 DC�.The move of II means that either2. there are RP (�xP), RC(�xC) s.t. (RP (�xP); R(�x)) 2 DC� and (RC(�xC); R0(�x0)) 2DR. Then, by (1), deletion of R(�x) induces the deletion of RP (�xP), but thedeletion of RP (�xP) is restricted by RC(�xC), or3. (R0(�x0); R(�x)) 2 DN�DC�, i.e., there is a RP (�xP) s.t. (RP (�xP); R(�x)) 2 DC�and (R0(�x0); RP (�xP)) 2 DN . Hence, by (1), deletion of R(�x) induces deletionof RP (�xP), which is only allowed if R0(�x0) is also deleted.1 �Lemma 4 The moves are linked with the logical speci�cation as follows:� The moves of I correspond to rule (DC1): I can move from R(�x) to del:R0(�x0)if, given the fact req del:R0(�x0), req del:R(�x) can be derived using (DC1).1 DN � DC� := f(x; y) j 9z : (x; z) 2 DN and (z; y) 2 DC�g.8

� The moves by II are reected by the rules (DC2) and (DR)/(DN):{ II can move from del:R(�x) to restricted if blk del:R(�x) is derivable using (DR)and (DC2) only, or{ II can move from del:R(�x) to R0(�x0) if blk del:R(�x) is derivable using (DC2)and an instance of (DN) if req del:R0(�x0) is assumed to be false.� The negative dependencies in (I), req del ; :blk del, and (DN), blk del ;:req del, mirror the alternation of moves between I and II, respectively. 2De�nition 3 A position R(�x) 2 D is won (for I), if I can win the game startingfrom R(�x) no matter how II moves; del:R(�x) 2 U� is won for II, if II can alwayswin the game starting from del:R(�x). If p 2 D [U� is won (lost) for a player, pis lost (won) for the opponent. A position which is neither lost nor won is drawn.In the sequel, \is won/lost" stands for \is won/lost for I". 2Drawn positions can be viewed as ambiguous situations. For the game above,this means that neither can I prove that R(�x) has to be deleted, nor can II provethat it is infeasible to delete R(�x).Example 3 Consider again Fig. 2 with U� = fdel:R1(a); del:R1(b)g. From eachof the \a"-tuples, fR1(a); R2(a; x); R3(a; y); R4(a; x; y)g, I can move to del:R1(a),while II can move from del:R1(a) to R4(a; x; y). Thus, after I has started thegame moving to del:R1(a), II will answer with the move to R4(a; b; c), so I movesback to del:R1(a) again, etc. Hence the game is drawn for each of the \a"-tuples.In contrast, for the \b"-tuples, there is an additional move from del:R1(b) toR5(b) for II, who now has a winning strategy: by moving to R5(b), there is nopossible answer for I, so I loses. 2Theorem 5 (Game Semantics) For every tuple R(�x) 2 D:� R(�x) is won , there is a sequence of user requests from U� which deletesR(�x), and if this sequence is executed serially (independent from the order ofexecution of cascaded deletions), at no stage any ric is violated.� R(�x) is won or drawn , simultaneous execution of all user delete requestsdel:R0(�x0) which are won or drawn does not violate any ric and deletes R(�x).� R(�x) is lost , it is not possible with the given set of user delete requests todelete R(�x) without violating a ric.Proof Note that if R(�x) is won or drawn, then (RC(�xC); R(�x)) =2 DR for anyRC(�xC) 2 D (otherwise, if I moves from R(�x) to some Rd(�xd), II moves torestricted since (RC(�xC); Rd(�xd)) 2 DR � DC� and wins). Thus, no ric of theform ON DELETE RESTRICT is violated when deleting some won or drawn tuple.� Let U�;n := fu 2 U� j u is won in n roundsg. Let R(�x) be won in n rounds:{ I can move from R(�x), thus there exists a del:Rd(�xd) 2 U�;n such that(R(�x); Rd(�xd)) 2 DC�. Hence, executing U�;n also deletes R(�x).{ For every R0(�x0): if (R0(�x0); R(�x)) 2 DC, then also (R0(�x0); Rd(�xd)) 2 DC� andR0(�x0) is won in n rounds, and will also be deleted. Thus, no rac ON DELETECASCADE is violated when executing U�;n.9

{ For every R0(�x0) s.t. (R0(�x0); R(�x)) 2 DN , (R0(�x0); Rd(�xd)) 2 DN �DC�, thusII can move from del:Rd(�xd) to R0(�x0) which then must be won in n{1 rounds,thus it is already deleted when executing U�;n{1. Thus, no ric of the form ONDELETE NO ACTION is violated when executing U�;n.{ Let Ei be some enumeration of U�;i. (E1; E2; : : :) can be executed sequentiallyand at no stage any ric is violated.� Let R(�x) be won or drawn. Then there is a user request del:Rd(�xd) whereI can move to (i.e., (R(�x); Rd(�xd)) 2 DC�), which is also won or drawn.Thus, when executing del:Rd(�xd), R(�x) is deleted. Since all tuples R0(�x0)s.t. (R0(�x0); R(�x)) 2 DC [DN are also won or drawn (since II can movefrom Rd(�xd) to R0(�x0)), they will also be deleted. Thus, no ric ON DELETECASCADE/NO ACTION is violated.� A tuple R(�x) is lost in n rounds if either{ (n = 0) there is no user request del:Rd(�xd) s.t. (R(�x); Rd(�xd)) 2 DC�, i.e., thedeletion of R(�x) is unfounded, or{ (n > 0) every user request del:Rd(�xd) s.t. (R(�x); Rd(�xd)) 2 DC� is lost in � nrounds, i.e., either II can move from del:Rd(�xd) to restricted (in this case, byLemma 3(2), del:Rd(�xd) is forbidden), or there is some tuple R0(�x0) s.t. IIcan move from del:Rd(�xd) to R0(�x0) and which is lost in � n{1 rounds. Byinduction hypothesis, R0(�x0) cannot be deleted, but by Lemma 3(3), it mustbe deleted if R(�x) is be deleted. Thus, R(�x) cannot be deleted. �Theorem 6 (Correctness)The game-theoretic characterization is correct wrt. the abstract semantics:� Uw := fu 2 U� j u is wong and Uw;d := fu 2 U� j u is won or drawng areadmissible,� Uw;d = Umax,� �(Uw) = fdel:R(�x) j R(�x) is wong and�(Umax) = �(Uw;d) = fdel:R(�x) j R(�x) is won or drawng.4 Equivalence and CorrectnessWe show that the logical characterization is equivalent to the game-theoretic one.Thus, the correctness of the logical characterization reduces to the correctnessof the game-theoretic one proven above.4.1 Well-Founded SemanticsThe alternating �xpoint computation (AFP) is a method for computing the well-founded model based on successive rounds [VG93]. This characterization �nallyleads to an algorithm for determining the maximal admissible subset of a givenset U� of user requests. We introduce AFP usingStatelog, a state-oriented extension of Datalog which allows to integrate activeand deductive rules [LML96]. It can be seen as a restricted class of logic programswhere every predicate contains an additional distinguished argument for state10

terms of the form [S+k]. Here, S is the distinguished state variable ranging overIN0. Statelog rules are of the form[S+k0] H(�X) [S+k1] B1(�X1); : : : ; [S+kn] Bn(�Xn) ;where the head H(�X) is an atom, Bi(�Xi) are atoms or negated atoms, andk0 � ki, for all i 2 f1; : : : ; ng. A rule is local, if k0 = ki, for all i 2 f1; : : : ; ng.In Statelog, AFP is obtained by attaching state terms to the given non-strati�ed program P such that all positive literals refer to [S+1] and all nega-tive literals refer to [S]. The resulting program PAFP computes the alternating�xpoint of P :[S+1] req del:R(�X) del:R(�X); [S] :blk del:R(�X): (IA)% RC :F!RP :K ON DELETE CASCADE:[S+1] req del:RC(�X) RC(; �X); �X[F] = �Y [K]; [S+1] req del:RP (�Y): (DCA1)[S+1] blk del:RP (�Y) RP (�Y); �X[F] = �Y [K]; [S+1] blk del:RC(�X): (DCA2)% RC :F!RP :K ON DELETE RESTRICT:[S+1] blk del:RP (�Y) RP (�Y); RC(�X); �X[F] = �Y [K]: (DRA)% RC :F!RP :K ON DELETE NO ACTION: (DNA)[S+1] blk del:RP (�Y) RP (�Y); RC(�X); �X[F] = �Y [K]; [S] :req del:RC(�X):PAFP is locally strati�ed, thus there is a unique perfect model [Prz88]MAFP ofPAFP [D [U�. MAFP mimics the alternating �xpoint computation of WRA:even-numbered states [2n] correspond to the increasing sequence of underesti-mates of true atoms, while odd-numbered states [2n+1] represent the decreasingsequence of overestimates of true or unde�ned atoms. The �nal state nf of thecomputation is reached if M[2nf] =M[2nf+2]. Then, for all relations R, thetruth value of atoms R(�x) in WRA can be determined fromMAFP as follows:WRA(req del:R(�x)) =8>><>>: true if MAFP j= [2nf] req del:R(�x) ;undef if MAFP j= [2nf] :req del:R(�x) ^[2nf+1] req del:R(�x) ;false if MAFP j= [2nf+1] :req del:R(�x) :Theorem 7 (Equivalence)The well-founded model is equivalent to the game-theoretic characterization:� R(�x) is won/lost/drawn , WRA(req del:R(�x)) = true=false=undef .Proof The proof is based on a lemma which is easy to prove from Lemma 4:Lemma 8� I wins at R(�x) within � n rounds i�MAFP j= [2n] req del:R(�x).� II wins at R(�x) within � n rounds i�MAFP j= [2n+1] :req del:R(�x). 2From this, Theorem 7 follows directly: The nth overestimate excludes deletionsprovably non-admissible in n rounds, whereas the nth underestimate containsall deletions which can be proven in n rounds. Thus, there is an n such thatMAFP j= [2n] req del:R(�x) i� WRA(req del:R(�x)) = true, and there is an n suchthatMAFP j= [2n+1] :req del:R(�x) i� WRA(req del:R(�x)) = false .11

The game is drawn at R(�x) if for every tuple R0(�x0) which II chooses, I can�nd a user request which deletes it, and conversely, II has a witness against eachof those user requests. Thus, no player has a \well-founded" proof for or againstdeleting those tuples. �With Theorem 6, the correctness of the logic programming formalization follows:Theorem 9 (Correctness)The logic programming characterization is correct wrt. the abstract semantics:� Ut := fdel:R(�x) 2 U� j WRA(req del:R(�x)) = trueg andUt;u := fdel:R(�x) 2 U� j WRA(req del:R(�x)) 2 ftrue; undef gg are admissible,� Ut;u = Umax, and� �(Umax) = �(Ut;u) = fdel:R(�x) j WRA(req del:R(�x)) 2 ftrue; undef gg.In the following section, it is shown that the maximal admissible subset of U�,Ut;u, also corresponds to a total semantics of P .4.2 Stable ModelsThe unde�ned atoms in the well-founded model leave some scope for furtherinterpretation. This is carried out by stable models :De�nition 4 (Stable Model) [GL88] Let MP denote the minimal model ofa positive program P . Given an interpretation I , and a ground-instantiatedprogram P , P=I denotes the reduction of P wrt. I , i.e., the program obtained byreplacing every negative literal of P by its truth-value wrt. I . An interpretationI is a stable model if MP=I = I . 2Every stable model S extends the well-founded model W wrt. true and falseatoms: Strue � W true , Sfalse �W false . Not every program has a stable model.Theorem 10 Let SRA be de�ned bySRA := D [U� [freq del:R(�x) j WRA(req del:R(�x)) 2 ftrue; undef gg[fblk del:R(�x) j WRA(blk del:R(�x)) = trueg :Then, SRA is a total stable model of PRA [D [U�.SRA is the \maximal" stable model in the sense that it contains all delete requestswhich are true in some stable model. Consequently, deletions have priority overblockings (cf. Example 2).Theorem 11 (Correctness) Let S be a stable model of PRA [D [U�. Then� US := fdel:R(�x) j S j= req del:R(�x)g \ U� is admissible and�(US) = fdel:R(�x) j S j= req del:R(�x)g.� Umax = USRA and �(Umax) = fdel:R(�x) j SRA j= req del:R(�x)g.Proof Foundedness : follows directly from the fact that S is stable (unfoundedreq del:R(�x) would not be stable).Completeness : For every ric RC :F!RP :K ON DELETE CASCADE, if S j= RC(�x)^req del:RP (�y) ^ �x[F] = �y[K], then, due to (DC1), S =MP=S j= req del:RC(�x).12

Feasibility : Suppose a ric RC :F!RP :K ON DELETE RESTRICT orRC :F!RP :K ONDELETE NO ACTION would be violated: Then S j= req del:RP (�y)^RC(�x)^�x[F] =�y[K] (for NO ACTION also S j= :req del:RC(�x)), and thus because of (DR) resp.(DN), S = MP=S j= blk del:RP (�y). Thus, by (DC2), for the founding deleterequest del:R(�z), S j= blk del:R(�z), and by (I), S j= :req del:R(�z) which is acontradiction to the assumption that del:R(�z) is the founding delete request.�S � �(US) follows from foundedness, and �S � �(US) follows from com-pleteness. �5 A Procedural TranslationAnother, more \algorithmic" implementation in Statelog is obtained by \cut-ting" the cyclic dependency at one of the possible points, i.e., at the rules (I)and (DN).Cutting in (DN) implements the de�nition of SRA, corresponding to theobservation that SRA takes exactly the blockings from the underestimate andthe internal delete requests from the overestimate.The rules (DC1), (DC2) and (DR) are already local rules:[S] req del:RC(�X) RC(�X); �X[F] = �Y [K]; [S] req del:RP (�Y): (DCS1)[S] blk del:RP (�Y) RP (�Y); �X[F] = �Y [K]; [S] blk del:RC(�X): (DCS2)[S] blk del:RP (�Y) RP (�Y); RC(�X); �X [F] = �Y [K]: (DRS)The rule (I) is also translated into a local rule:[S] req del:R(�X) del:R(�X); [S] :blk del:R(�X): (IS)(DN) incorporates the state leap and is augmented to a progressive rule (DNS):[S+1] blk del:RP (�Y) RP (�Y); RC(�X); �X[F] = �Y [K]; [S] :req del:RC(�X):In the following, we refer to this program as PS .PS is state-strati�ed, which implies that it is locally strati�ed, so there is aunique perfect modelMS of PS [D[U�. The state-strati�cation fblk del:Rg �freq del:Rg, mirrors the stages of the algorithm: First, the blockings are com-puted by (DNS) (the only progressive rule; for the initial state, this rule does not�re) and (DRS), the induced blockings are derived by (DCS2), also determiningthe blocked user delete requests. The remaining user delete requests raise inter-nal delete requests (IS) which are cascaded by (DCS1). From these, the resultingblockings for the next iteration are computed.Lemma 12 MAFP corresponds toMS as follows:1. MAFP j= [2n] blk del:R(�x) , MS j= [n] blk del:R(�x).2. MAFP j= [2n+1] req del:R(�x) , MS j= [n] req del:R(�x). 2Proof PS and PAFP di�er in the rules (IS) and (IA): In every iteration, PStakes the blockings from the underestimate and the delete requests from theoverestimates, resulting in SRA. �13

Theorem 13 (Termination) For every database D and every set U� of userdelete requests, the program reaches a �xpoint, i.e., there is a least nf � jU�j,s.t.MS [nf] =MS [nf+1].Proof A �xpoint is reached if the set of blocked user delete requests becomesstationary. Since this set is nondecreasing, there are at most jU�j iterations. �From Lemma 12 and Theorem 10, the correctness of PS follows:Theorem 14 (Correctness)The �nal state ofMS,MS [nf], represents Umax and �(Umax):� MS [nf] = SRA,� Umax = fdel:R(�x) j MS[nf] j= req del:R(�x)g \ U�, and� �(Umax) = fdel:R(�x) j MS [nf] j= req del:R(�x)g.5.1 Implementation in a Procedural Programming LanguageThe Statelog formalization PS can be easily translated into the following algo-rithm AlgS:Input: A consistent database D and a set U� of user delete requests.B := fall blockings which result from ON DELETE RESTRICT triggersg.1. (Re)Compute the set of induced blockings B�, which result from Bby propagating blockings upwards the ON DELETE CASCADE chain.2. (Re)Compute the set U� of internal requests which result from usercascading delete requests U� which are not blocked: U� := (U�nB�)�.3. Add to B all blockings which are issued by ON DELETE NO ACTIONtriggers from tuples not in U�, i.e., which are not requested for dele-tion.4. If B nB� 6= ; then goto 1 else execute requests from U�.Output: The new consistent database after executing Umax and the setsUmax of committed and U� n Umax of aborted user requests.Initially, it is assumed that there are only those blockings which result directlyfrom ON DELETE RESTRICT triggers. Then, blockings are propagated upwards theON DELETE CASCADE chains, �nally blocking the triggering user requests. For theremaining unblocked user requests, the cascaded requests are recomputed. Thus,some more tuples will remain in the database, which could block other requests.In the next step, all blockings are computed which are caused by ON DELETENO ACTION triggers from tuples which are not reachable via cascaded deletions.These steps are repeated until a �xpoint is reached. Observe that each iterationcorresponds to the evaluation of a query with ptime data complexity. Moreover,since the �xpoint is reached after at most jU�j iterations (Theorem 13), theoverall algorithm also has polynomial data complexity.Theorem 15 Algorithm AlgS is correct: Umax = U�\U� and �(Umax) = U�:14

Proof In the nth iteration, B� = fblk del:R(�x) j MS j= [n] blk del:R(�x)g, andU� = freq del:R(�x) j MS j= [n] req del:R(�x)g. �For given D, U�, and RA, the above algorithm computes the maximal subsetUmax of U� which can be executed without violating any ric, and the set U� ofinternal deletions which are induced by it. In case U� is not admissible, U�nUmaxcontains the rejected update requests, and by following the chains of blockingsfrom them, the tuples which cause the rejection can be determined. Additionally,by investigating the stages of the algorithm, it can be determined if the blockingis due to the rejection of another request.References[CPM96] R. Cochrane, H. Pirahesh, and N. Mattos. Integrating Triggers and Declar-ative Constraints in SQL Database Sytems. In Proc. VLDB, pp. 567{578,Mumbai (Bombay), India, 1996.[Dat90] C. Date. Relational Database Writings 1985-1989. Addison-Wesley, 1990.[DD94] C. Date and H. Darwen. A Guide to the SQL Standard: A User's Guide tothe Standard Relational Language SQL. Addison-Wesley, 1994.[GL88] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Pro-gramming. In Proc. ICLP, pp. 1070{1080, 1988.[Hor92] B. M. Horowitz. A Run-Time Execution Model for Referential IntegrityMaintenance. In Proc. Intl. Conf. on Data Engineering, pp. 548{556, 1992.[ISO92] ISO/IEC JTC1/SC21. Information Technology { Database Languages {SQL2, July 1992. ANSI, 1430 Broadway, New York, NY 10018.[ISO95] ISO/ANSI Working draft. Database Languages { SQL3, October 1995.[LML96] B. Lud�ascher, W. May, and G. Lausen. Nested Transactions in a LogicalLanguage for Active Rules. In Proc. Intl. Workshop on Logic in Databases(LID), LNCS 1154, pp. 196{222, 1996. Springer.[LML97a] B. Lud�ascher, W. May, and G. Lausen. Referential Actions as LogicalRules. In Proc. PODS'97, pp. 217{224, 1997.[LML97b] B. Lud�ascher, W. May, and G. Lausen. Triggers, Games, and Stable Mod-els. Technical report, Institut f�ur Informatik, Universit�at Freiburg, 1997.[LMR96] B. Lud�ascher, W. May, and J. Reinert. Towards a Logical Semantics for Ref-erential Actions in SQL. In Proc. 6th Intl. Workshop on Foundations of Mod-els and Languages for Data and Objects: Integrity in Databases, Dagstuhl,Germany, 1996.[Mar94] V. M. Markowitz. Safe Referential Integrity and Null Constraint Structuresin Relational Databases. Information Systems, 19(4):359{378, 1994.[Prz88] T. C. Przymusinski. On the Declarative Semantics of Deductive Databasesand Logic Programs. In J. Minker, editor, Foundations of DeductiveDatabases and Logic Programming, pp. 191{216. Morgan Kaufmann, 1988.[Rei96] J. Reinert. Ambiguity for Referential Integrity is Undecidable. In Con-straint Databases and Applications, LNCS 1034, pp. 132{147. Springer, 1996.[VG93] A. Van Gelder. The Alternating Fixpoint of Logic Programs with Negation.Journal of Computer and System Sciences, 47(1):185{221, 1993.[VGRS91] A. Van Gelder, K. Ross, and J. Schlipf. The Well-Founded Semantics forGeneral Logic Programs. Journal of the ACM, 38(3):620 { 650, July 1991.This article was processed using the LATEX macro package with LLNCS class.15

