
AG Datenbanken und Informationssysteme · Institut für Informatik · Universität Göttingen

Database Theory
Winter Term 2016/17

Prof. Dr. W. May

3. Unit: Well-founded and Stable Semantics

Discussion by 4./6.2.2014

Exercise 1 (Well-Founded Model) a) Show that there are non-stratifiable Datalog¬ programs
that have a total well-founded model (i.e., no atoms undefined).

b) Are there (non-ground) non-stratifiable Datalog¬ programs that have a total well-founded model
for all EDB instances?

a) Take a simple win-move game that has only won and lost positions, no drawn ones:

pos(a). pos(b). pos(c).

move(a,b).

move(b,c).

win(X) :- move(X,Y), not win(Y).

The well-founded model is

({pos(a). pos(b). pos(c). move(a,b). move(b,c). win(b)},
{move(a,a). move(a,c). move(b,a). move(b,a). move(c,a). move(c,b). move(c,c). win(a). win(c).})

b) Consider EDB relations p/1, q/1, s0/1, t0/1. The program P is as follows:

r(x) :- p(x), not q(x).

s(x) :- s0(x).

s(x) :- q(x), not t(x).

t(x) :- t0(x).

t(x) :- r(x), not s(x).

Sketch: The program describes a partition that is based on splitting p into q vs. r. p ∧ q is one
side, p ∧ ¬q the other.

Based on this, relations s vs. t are defined (which are not necessarily disjoint): By “default”,
elements of q belong to s, while elements of r belong to t. The membership of elements can be
influenced by s0 and t0 that “overwrites” the above defaults, which is encoded into the q → s
and r → t rules that create a negative cyclic dependency. (Note that elements a can be assigned
to be both in s and t via s0(a) and t0(a)).

The dependency graph is q s s0

p

r t t0

¬ ¬ ¬

For each EDB instance that defines I(p), I(q), I(s0), I(t0), the well-founded model is total.

Exercise 2 (Well-Founded Model) Give an instance of the win-move game that has no total
stable model.

Vorlesung: Datenbanken 62

Cycle with three positions:

a

c

b

win(X) :- move(X,Y), not win(Y).

lose(X) :- pos(X), not win(X).

pos(a).

pos(b).

pos(c).

move(a,b).

move(b,c).

move(c,a).

% lparse -n 0 -d none --partial winmovenontotal1.s |smodels

[Filename: winmovenontotal1.s]

The only stable model is M with

valM (win(a)) = valM (win(b)) = valM (win(b)) = u,
valM (lose(a)) = valM (lose(b)) = valM (lose(b)) = u.

In general: any cycle with an odd number of positions, and where no position is lost due to an exit
from the cycle.

a1

c1 d1

b1

a2

c2 d2 e2

b2

win(X) :- move(X,Y), not win(Y).

lose(X) :- pos(X), not win(X).

pos(a1).

pos(b1).

pos(c1).

pos(d1).

move(a1,b1).

move(b1,c1).

move(c1,a1).

move(c1,d1).

pos(a2).

pos(b2).

pos(c2).

pos(d2).

pos(e2).

move(a2,b2).

Vorlesung: Datenbanken 63

move(b2,c2).

move(c2,a2).

move(c2,d2).

move(d2,e2).

% lparse -n 0 -d none --partial winmovenontotal2.s |smodels

[Filename: winmovenontotal2.s]

In the “1” game, the exit makes d1 a losing position and thus c1 is a winning position (move to
d1). Thus, b1 is lost and a1 is won.

In the “2” game, the exit makes e1 lost and d1 won, but c1 is not lost, since he player will move to
a1 and stay in the cycle.

Note: a minimal such example ist a win-move game with only a single node and move:

win(X) :- move(X,Y), not win(Y).

pos(a).

move(a,a).

Exercise 3 (Well-Founded Model) Consider again the win-move game from the lecture:

a b k n

f e c g

d l h i

m j

Consider to start the Alternating Fixpoint Computation for the rules win(X) :- move(X,Y),

not win(Y).

lose(X) :- pos(X), not win(X).

with H0 as

• some atoms that are correct: lose(k), win(b), win(d)

• some atoms that actually are in contrast to the well-founded model of the above game: win(f),
lose(c), win(m).

(it is often called “seed” when starting an iterative algorithm with some initial values)

• Note: lose is actually not used in any rule body; interpreting lose as ¬ win does also not contain
any information for the seed, since ¬ win is assumed to hold by default.
→ in general, any negative seed does not have any consequence.

• So the seed is mainly an underestimate, and only the positive atoms add some flavour of
overestimate.

The first reduct, PH0
contains the following rules (all rules vor pairs x, y s.t. there is no move from

x to y are omitted):

Vorlesung: Datenbanken 64

win(a) : −move(a, f),¬win(f).
win(a) : −move(a, b),¬win(b).
win(b) : −move(b, c), ¬win(c) .
win(b) : −move(b, k), ¬win(k) .
win(c) : −move(c, d),¬win(d).
win(c) : −move(c, l), ¬win(l) .
win(l) : −move(l, d),¬win(d).
win(d) : −move(d, e), ¬win(e) .
win(e) : −move(e, a), ¬win(a) .
win(i) : −move(i, j), ¬win(j) .
win(g) : −move(g, i), ¬win(i) .
win(b) : −move(b, g), ¬win(g) .
win(g) : −move(g, h), ¬win(h) .
win(h) : −move(h,m),¬win(m).
win(m) : −move(m,h), ¬win(h) .

lose(a) : −¬win(a) true.
lose(b) : −¬win(b).
lose(c) : −¬win(c) true.
lose(d) : −¬win(d).
lose(e) : −¬win(e) true.
lose(f) : −¬win(f).
lose(g) : −¬win(g) true.
lose(h) : −¬win(h) true.
lose(i) : −¬win(i) true.
lose(j) : −¬win(j) true.
lose(k) : −¬win(k) true.
lose(l) : −¬win(l) true.
lose(m) : −¬win(m).
lose(n) : −¬win(n) true.

Thus, H1 = Tω

P0
(∅) = { win(b), win(c), win(d), win(e), win(g), win(i), win(m),

lose(a), lose(c), lose(e), lose(g), lose(h), lose(i), lose(j), lose(k), lose(l), lose(n)}

Note: Usually, H1 would be an overestimate, but win(a) is (still) missing, since f was wrongly set
to be won. Note that now, f is not re-derived to be won (i.e. it is already clear that is is not
supported), but also lose(f) is not yet there.
win(h) is not there, since m was fixed to be won (both are drawn in the original game).

The second reduct, PH1
contains the following rules (again, rules with no underlying move are

omitted):

win(a) : −move(a, f), ¬win(f) .
win(a) : −move(a, b),¬win(b).
win(b) : −move(b, c),¬win(c).
win(b) : −move(b, k), ¬win(k) .
win(c) : −move(c, d),¬win(d).
win(c) : −move(c, l), ¬win(l) .
win(l) : −move(l, d),¬win(d).
win(d) : −move(d, e),¬win(e).
win(e) : −move(e, a), ¬win(a) .
win(i) : −move(i, j), ¬win(j) .
win(g) : −move(g, i),¬win(i).
win(b) : −move(b, g),¬win(g).
win(g) : −move(g, h), ¬win(h) .
win(h) : −move(h,m),¬win(m).
win(m) : −move(m,h), ¬win(h) .

lose(a) : −¬win(a) true.
lose(b) : −¬win(b).
lose(c) : −¬win(c).
lose(d) : −¬win(d).
lose(e) : −¬win(e).
lose(f) : −¬win(f) true.
lose(g) : −¬win(g).
lose(h) : −¬win(h) true.
lose(i) : −¬win(i).
lose(j) : −¬win(j) true.
lose(k) : −¬win(k) true.
lose(l) : −¬win(l) true .
lose(m) : −¬win(m).x
lose(n) : −¬win(n) true .

Thus, H2 = Tω

PH1

(∅) = { win(a), win(b), win(c), win(e), win(g), win(i), win(m),
lose(a), lose(f), lose(h), lose(j), lose(k), lose(l), lose(n)}

Note: Usually, H2 would be an underestimate. win(a) and lose(f) are now there, thus, the f issue
is already corrected. But, win(e) is there, which is a consequence of having lose(a) before ... the f
issue propagates through the game now.
Note that win(d) is not there, although it was there in the seed (an is finally true), but not yet
supported.
win(c) is there, lose(c) is not there, so the c issue is also corrected (if there would be a longer chain
between c and b, it would propagate through it until finally dying).
lose(h) and win(m) are both there (both are drawn in the original game, but win(m) was fixed in
the seed).

Vorlesung: Datenbanken 65

The third reduct, PH2
contains the following rules (again, rules with no underlying move are

omitted):

win(a) : −move(a, f), ¬win(f) .
win(a) : −move(a, b),¬win(b).
win(b) : −move(b, c),¬win(c).
win(b) : −move(b, k), ¬win(k) .
win(c) : −move(c, d), ¬win(d) .
win(c) : −move(c, l), ¬win(l) .
win(l) : −move(l, d), ¬win(d) .
win(d) : −move(d, e),¬win(e).
win(e) : −move(e, a),¬win(a).
win(i) : −move(i, j), ¬win(j) .
win(g) : −move(g, j),¬win(j).
win(b) : −move(b, g),¬win(g).
win(g) : −move(g, h), ¬win(h) .
win(h) : −move(h,m),¬win(m).
win(m) : −move(m,h), ¬win(h) .

lose(a) : −¬win(a).
lose(b) : −¬win(b).
lose(c) : −¬win(c).
lose(d) : −¬win(d) true.
lose(e) : −¬win(e).
lose(f) : −¬win(f) true.
lose(g) : −¬win(g).
lose(h) : −¬win(h) true.
lose(i) : −¬win(i).
lose(j) : −¬win(j) true.
lose(k) : −¬win(k) true.
lose(l) : −¬win(l) true .
lose(m) : −¬win(m).
lose(n) : −¬win(n) true .

Thus, H3 = Tω

PH2

(∅) = { win(a), win(b), win(c), win(g), win(i), win(l), win(m),
lose(d), lose(f), lose(h), lose(j), lose(k), lose(l), lose(n)}

H3 would be an overestimate, but currently contains neither win(e) nor lose(e). This is still a
consequence of the f issue.
On the other hand, the sequence shows that g, h, i, j, k, l, m and n do not change any more. One
can also know that a (win because of f), b (win because of k) and f (lose) will not change any
more.

The rest follows and corrects then from the usual well-founded characteristics of the AFP compu-
tation.

The process can also be visualized by the original game (Green= win, recall that the lose predicate
has been introduced only for demonstrational issues):
(“win: can move to a non-win node”)

H0: a b k n

f e c g

d l h i

m j

H1: a b k n

f e c g

d l h i

m j

Vorlesung: Datenbanken 66

H2: a b k n

f e c g

d l h i

m j

H3: a b k n

f e c g

d l h i

m j

H4: a b k n

f e c g

d l h i

m j

H5: a b k n

f e c g

d l h i

m j

H6: a b k n

f e c g

d l h i

m j

H7 = H6, is one of the two total stable models, namely the one which makes the seeded win(m)
true.

Conclusions:

• “Seeding” correct positive atoms does not help much if the seed does not contain their support
(recall: checking stability of the well-founded model is actually a full seed and reproduces in a
single step!).

Vorlesung: Datenbanken 67

• “Seeding” wrong positive atoms will remove them since they are not supported.

• “Seeding” positive atoms where the well-founded model is undefined can result in a stable model
(if the support for there stability is also contained in the seed).

• “Seeding” positive atoms in general will not result in a fixpoint (seeding into a 3-cycle, where
no total stable model exists; or only one win-position into a four-cycle, which is not sufficient
to reproduce).

Note that it does in general not extend the interpretation to a stable model. Nevertheless, this
can be used for strategies to find stable models.

