
Chapter 5
RDF Schema

Schema Information and Reasoning in an Open World

208

ONTOLOGIES

Schema languages, metadata languages, modeling languages, ontologies ...

Classical Data Models: seen as Specification and Constraints

• every schema description defines a (more or less complete) ontology:

• ER Model (1976, entity types, attributes, relationships with cardinalities),

• UML (1997, classes with subclasses, associations with cardinalities, OCL assertions to
schema components etc.).

Knowledge Representation

Metadata provides additional information about resources of a type, or about a property.

• F-Logic signatures (1989),

• ... RDFS and OWL (Web Ontology Language)

209



SCHEMA INFORMATION IN AN OPEN WORLD

• schema describes

– allowed properties for an object,

– datatype constraints for literal properties [Here: XSD literal types],

– allowed types/classes for reference properties,

– cardinality constraints.

Closed World: Schema as Constraints

• a database must satisfy the constraints. It must be a model of the formulas – the given
data alone must be a model.

Open World: potentially incomplete knowledge

• schema information as additional information

• since the world must be a model of the schema, some information can be derived from
the schema.

• complain only if information is contradictory to the schema.
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METADATA INFORMATION: TYPES, PROPERTIES, AND ONTOLOGIES

• Types and properties (i.e., everything that is used in a namespace ) are not only “names”,
but are resources “somewhere in the Web”, identified by a URI (used in RDF or in XML
via namespaces).

⇒ a domain ontology describes the notions used in a namespace.

Schema and Ontology Information

• what types/classes are there,

• subclass information,

• what properties objects of a given type must/can have,

• to what types some property is applicable and what range it has,

• cardinalities of properties,

• default values,

• that some properties are transitive, symmetric, subproperties of another or excluding
each other etc.
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5.1 RDF Schema Notions - Overview

• RDF is the instance level

• cf. XML: DTDs and XML Schema for describing the structure/schema of the instance
(DTD: no atomic datatypes, only tree structure; XSD has atomic datatypes)

• RDF Schema: stronger than DTD/XML – “semantic-level”

– describe the structure of the RDF instance (i.e. the “schema” of the RDF graph, not of
the RDF/XML file):

– describes the schema semantically in terms of an (lightweight) ontology (OWL
provides then much more features):

* class/subclass

* property/subproperty, domains and ranges

– atomic datatypes for literal properties.
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PREDEFINED RDFS CLASSES

The obvious ones

rdfs:Resource is “everything”. All things described by RDF are called resources, and are
instances of the class rdfs:Resource. This is the class of everything. All other classes are
subclasses of this class. rdfs:Resource is an instance of rdfs:Class.

rdfs:Class : all things (resources and literals) are of rdf:type of some rdfs:Class.
rdf:Properties have an rdfs:Class as domain and another rdfs:Class or rdfs:Datatype as
range.
mon:Country rdf:type rdfs:Class.

An rdfs:Class is simply a resource X that is of (X rdf:type rdfs:Class). Usually, class
names start with a capital letter.

Later, owl:Class will provide more interesting concepts of intensionally defined classes –
like “the class father is the class of things that are male and have children”.

rdf:Property is a subset of rdfs:Resource that contains all properties.

mon:capital rdf:type rdf:Property.

Usually, property names start with a non-capital letter.

[note: it’s rdf:Property, not rdfs:Property!]
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PREDEFINED RDFS CLASSES

rdfs:Datatype is the class of datatypes.

rdfs:Literal is the subclass of rdfs:Resource that contains all literals (i.e., values of
rdfs:Datatypes).
Literals do (usually) not have a URI, but a literal representation (as already discussed for
integers and strings).

E.g. the following holds

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
xsd:int rdf:type rdfs:Datatype .

• Note that reification takes place here: rdfs:Datatype is both an instance of and a subclass
of rdfs:Class! Each instance of rdfs:Datatype is a subclass of rdfs:Literal.
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PROPERTIES (OF CLASSES AND PROPERTIES) IN THE RDFS VOCABULARY

rdfs:subClassOf specifies that one rdfs:Class is an rdfs:subClassOf another:

:Cat rdfs:subClassOf :Animal .

rdfs:subPropertyOf specifies that one rdf:Property is an rdfs:subPropertyOf another:

:hasCat rdfs:subPropertyOf :hasAnimal .

rdfs:domain specifies that the domain of an rdf:Property is a certain rdfs:Class:

:hasCat rdfs:domain :Person .

rdfs:range specifies that the range of an rdf:Property is a certain rdfs:Class
(note that rdfs:Datatype is a subclass (and an instance) of rdfs:Class):

:hasCat rdfs:range :Cat .
:age rdfs:range xsd:int .
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INFERENCE RULES

• until now, the SPARQL query language was applied to pure RDF facts (extensional
knowledge)

• RDFS adds inference rules (= intensional knowledge)

• Queries are then not evaluated against the fact base, but against the model of the
factbase and the rules.

• for this, a reasoner is required.

⇒ underlying entailment relationship based on model theory.

– obviously, straightforward first-order logic model theory is not appropriate:

– talk not only about elements of the domain, but also about predicates (classes and
properties),

– but needs only simple conjunctive+union queries (SPARQL) and the above-mentioned
RDFS expressiveness.
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5.2 RDF/RDFS Model Theory

This section gives insights in the scientific background of defining new theoretical and
practical frameworks in general:

• intution: “I want to express .... and it should mean ... and it should work like this ...”

• theory: show that it works by formalizing it, investigating it, analyzing border cases and
limits.
Decidability and complexity results, calculi/algorithms,
leads to implementations.

• User’s perspective: grasp the idea, get documentation, get implementation, press button.
But depending on the expressiveness/complicatedness the user sometimes needs some
deeper intuitive understanding of the dirty details.

Example: what does SQL do with

select name
from river
where name not in (select river from located)

when located.river can hold null values?
(the answer set is empty, because null “could be” “this” river.name)
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5.2.1 “Model Theory”

An important notion from mathematical logic:

• Whenever defining a (logical) framework, its syntax and its “meaning/semantics”, i.e. the
meaning of truth in it, must be formally defined.

• Decidability and complexity issues are investigated based on the model theory.

• usually, it defines an entailment relation ϕ |= ψ

• E.g., first-order logic model theory is taught in the “Formal Systems” lecture; it is based
on the notion of first-order interpretations.

• Implementations (e.g. algorithms for symbolic reasoning) must be correct (and preferably
complete).

• In some cases, the model theory of a framework can be mapped onto another, existing
model theory (then reusing theorems, proof, algorithms etc.
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Different Model Theories: Examples – Overview
• E.g., first-order logic model theory is taught in the “Formal Systems” lecture; it is based on the

notion of first-order interpretations: Entailment: ϕ |= ψ if in all models of ϕ, also ψ holds.
It is in general undecidable, reasoners (based on calculi) are correct, but incomplete.

• SQL uses a different model theory: closed-world negation.
Its model theory is subject of the “Database Theory”/“Deductive Databases” lecture: the Datalog
language(s), Minimal Model, Stratified Model, Well-Founded Model, Stable Models.
While MinM and StratM are unique and total for every Datalog knowledge base, the WFM is unique,
but can be partial, and there may be zero to many stable models (covering disjunction).
Entailment: “cautious reasoning” - what holds in all stable models, “credulous reasoning”: what
holds in some stable model (“possible”).
Decidable; MinM, StratM, WFM polynomial (!), stable models exponential.

• Default Logics etc: handling sentences like “normally, birds fly”:
“Preferential models”: the “most normal” model(s). The more “normal” a model, the more
“preferred” is it. Heavily undecidable, and even in “commonsense cases” high complexity.

• Modal Logics (e.g., linear or branching temporal logics, logics of knowledge and belief) have their
own model theories modeling many states (usually based on propositional or FOL).

• Simple case FOL+Equality: in RDF, URIs are in the domain, and there can be equality between
them. Equality is already not a “normal” binary predicate in FOL, but has built-in axioms: it is
symmetric, transitive, and whenever c = d holds, these can be replaced by each other everywhere.
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FOL Model Theory does not (directly) cover RDFS Model Theory

• FOL: Recall the definition of a FOL interpretations: constant symbols are mapped to the
domain, while predicate symbols are mapped to relations over the domain,
i.e. they are not themselves in the domain.

• In RDF, predicates (predicate symbols) are also objects of discourse.
[note that classes are just unary predicates while properties are binary predicates]
One of the important goals of RDF and the Semantic Web is to make (certain kinds of)
statements about classes and predicates!

⇒ classes and predicates must be in the domain, and they must be interpreted by the
domain

⇒ RDFS requires a specific model theory that is not covered by FOL.

Further reading

1. “Three Theses of Representation in the Semantic Web”,
Ian Horrocks and Peter Patel-Schneider, in World-Wide-Web Conference (WWW 2003).
Note: can be found by google or via http://www.dblp.de
(discusses three ways to define a model theory for RDFS)
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RDFS Axiomatic Triples

Some axioms that are expected to hold in any RDFS model can be expressed inside RDF
itself independent from the chosen logic (cf. http://www.w3.org/TR/rdf-mt):

rdf:type rdfs:domain rdfs:Resource .
rdfs:domain rdfs:domain rdf:Property .
rdfs:range rdfs:domain rdf:Property .
rdfs:subPropertyOf rdfs:domain rdf:Property .
rdfs:subClassOf rdfs:domain rdfs:Class .

rdf:type rdfs:range rdfs:Class .
rdfs:domain rdfs:range rdfs:Class .
rdfs:range rdfs:range rdfs:Class .
rdfs:subPropertyOf rdfs:range rdf:Property .
rdfs:subClassOf rdfs:range rdfs:Class .

rdfs:Datatype rdfs:subClassOf rdfs:Class .

... and some more.
The interesting things with RDFS are not these (rather trivial) axioms, but the built-in
semantics of rdfs:domain/range/subClassOf/subPropertyOf.
For them, some model theory is required.
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GENERAL CONSIDERATIONS

Needed: a domain (the things talked about), and a signature (the predicate names (that are
used in the logic formalization)).

Straightforward (and intuitive) idea

• the domain are the resources and the blank nodes,
classes are mapped to unary predicates
(e.g. person(john)), properties are mapped to binary predicates,
(e.g. age(john,32) and child(john,alice)) .

• problem: rdfs:subClassOf, rdfs:range etc. talk about classes and properties

Alternatives (see subsequent slides)

1. FOL with reification, i.e., handling classes and properties also as domain items, and
having only one meta-predicate “holds”,

2. resorting to Second-Order-Logic,

3. a special model theory not based on any other logic (as in
http://www.w3.org/TR/rdf-mt) .
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A MAPPING OF RDF/RDFS TO FOL

• The set of constant symbols consists of all IRIs, Blank node identifiers RDF-B, and
Literals RDF-L as constant symbols,

• there is a a single “holds” predicate that represents the triples.

• Herbrand-style interpretation: all terms are "interpreted by themselves", i.e., since there
are no function symbols in RDF, the domain D is just the set of constant symbols (which
include everything: individuals, literals, classes, properties).

• a single “holds” property that represents the triples:

I(holds) = {(s, p, o)|(s, p, o) holds in the given RDF ontology}

Advantages

• mapping to a well-known and well-investigated formalism,

• RDFS semantics can easily be specified by logical axioms, e.g.,
rdfs:range specifies that the range of an rdf:Property is a certain rdfs:Class:

M |= ∀c, p : ( holds(p, rdfs:range, c) →
(∀x, y : holds(x, p, y) → holds(y, rdf:type, c)))
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Mapping of RDF/RDFS to FOL (cont’d)

I(holds) = {(s, p, o)|(s, p, o) holds in the given RDF ontology}

Problems
This is just a mapping to an artificial predicate.

1. FOL in general is undecidable (i.e. there are no complete reasoners for it), while RDFS
reasoning itself decidable, even only polynomial.

2. later: OWL builds on RDF and is based on the DL SHOIN (D), which is a decidable
subset of FOL.
The original translation of SHOIN (D) to FOL has also to be mapped to the “holds”
predicate.
Again, this would be a mapping from a decidable formalism to an undecidable one.

3. Unrestricted reification can lead to paradoxes (cf. Slide 228).
⇒ Sorted FOL can be used to partition the domain into "sorts" (individuals, classes,
properties) and to constrain the usage of the quantifiers.

4. Equality: for properties p1, p2, p1 = p2 holds by definition only if I(p1) = I(p2) which
means identity
⇒ needs actually FOL+Equality
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A MAPPING TO HIGHER-ORDER LOGIC

A second-order-logic domain D consists of two disjoint subsets:

• first-order objects D1: Let IRIobj and RDF-Bobj denote all IRIs and blank nodes that
denote objects. Literals also belong to that partition.

• second-order objects D2: predicates (and functions).
For RDF, the predicates are classes IRIcls and properties IRIprop.
(only when defining derived classes (in OWL), there will be blank nodes RDF-Bcls that
represent classes.)

• 1st-order predicates are interpreted by relationships over the object domain.

• general: predicates of order n are interpreted over the domain of order n and are objects
of the domain of order n+ 1.

• Quantifiers range either over 1st-order objects or over 2nd-order objects, e.g.
rdfs:range is now a 2nd-order predicate:

M |= ∀C,P : rdfs:range(P,C) → (∀x, y : P (x, y) → C(y))
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Mapping to Higher-Order Logic (cont’d)

Assuming a given alphabet of rdfs:Classes and rdf:Properties, each of them induces a unary
or binary predicate, respectively.

• Objects: IRIobj ∪ RDF-Bobj

• Predicates: IRIp (note that rdf:type and rdf:Property are excluded)

• for class symbols c in IRIc: I(c) ⊆ IRIobj ∪ RDF-Bobj

E.g. <foo://bla/meta#Person>(<foo://bla/persons/john>)

• for property symbols p in IRIp (p 6= rdf:Type):
I(p) ⊆ (IRIobj ∪ RDF-Bobj)× (IRIobj ∪ RDF-Bobj ∪ RDF-L)
E.g. <foo://bla/meta#child>(<foo://bla/persons/john>, <foo://bla/persons/alice>)

• the class rdf:Property is mapped to a 3rd-order unary predicate s.t.
I(rdf:Property) = IRIprop.

• rdf:type is only implicitly represented by the interpretation of IRIcls.
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Mapping to Higher-Order Logic (cont’d)

Advantages

• intuitive mapping of properties and classes

• equality: for properties p1, p2, p1 = p2 holds I(p1) = I(p2) which is the case if both have
the same extension,

• can also express OWL notions like transitivity of properties.

Problems

• some RDF/RDFS notions don’t even fit:

– the class rdf:Property is mapped to a 3rd-order unary predicate,

– rdf:type would have one first-order argument and one second-order argument.

• Usage of Higher-Order Logics:

– can be used to axiomatize complex domains, like mathematics

– highly intractable (= non-decidable, often even no heuristics-based incomplete proof
methods)

– HOL provers exist: they are used for interactively proving correctness, safety etc.
(e.g., HOL (1993) and Isabelle (1994))
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REIFICATION

Reification (here) is applied to treat a higher-order object like a lower-order object:

• treat a class as an object, or

• treat a property as an object

i.e., to break the partitioning of the sorts/orders (which puts the mapping to Sorted FOL into
FOL).

REIFICATION CAN LEAD TO PARADOXES

Reasoning with things that are both classes and instances reveals a famous paradox:

• define p as the set of all sets that do not contain themselves as an element:

∀s : (p(s) ↔ ¬s(s))

• is p in p?

p(p) ↔ ¬p(p)

• any set of formulas that contains this definition has no model!
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W3C RDF/RDFS MODEL THEORY

RDF Semantics, W3C Recommendation 10 February 2004

(http://www.w3.org/TR/rdf-mt)

• a semantics and model theory for RDFS (which borrows some features from higher-order
ideas) (see next slide)

• without resorting to an encoding in any other logic
⇒ no possibility to use theoretical results or reasoning algorithms.

Advantages

• handles intensional equality of classes or properties,

• expresses the specific RDF/RDFS ideas

Problems

• RDF constructs are not axiomatized logically as formulas,

• but incorporated into the semantics/model theory.

• no support by any reasoner,

• not extensible/adaptable to OWL.
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Aside: formal details of http://www.w3.org/TR/rdf-mt

An RDF/RDFS interpretation I consists of the following:

• Universe = set IR of Resources: includes resources and literals (!?)

• IS interprets URIs (= constant symbols) into the universe IR
(http://www.w3.org/TR/rdf-mt defines and uses I(X) := IS(x) here).

• mappings ICEXT (for classes) and IEXT (for properties) from IR to 2IR and 2(IR×IR):

• the set of classes is IC = ICEXT (IS(rdfs:Class)) ⊂ IR,

• for each class URI y and each URI x,
IS(x) ∈ ICEXT (IS(y)) ⇔ (IS(x), IS(y)) ∈ IEXT (IS(rdf:type))

• the set of properties, IP ⊂ IR.
for each URI x, IS(x) ∈ IP ⇔ (IS(x), IS(rdf:Property)) ∈ IEXT (IS(rdf:type))

• for each property URI p, IEXT (IS(p)) ⊂ IR× IR models the triples.

• RDFS notions are not expressed by formulas, but as “semantic conditions” in the model
theory, e.g.,

– (for rdfs:range): if (IS(x), IS(y)) ∈ IEXT (IS(rdfs:range)) and
(IS(u), IS(v)) ∈ IEXT (IS(x)) then IS(v) ∈ ICEXT (IS(y)).
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5.2.2 RDFS Entailment: Practical Use of the Model Theory

An RDF Graph G RDFS-entails another RDF Graph H (which extends G with some edges)

• if every RDFS-interpretation which satisfies G also satisfies H.

For the translation to FOL, the following holds,

• if φG ∪ φRDFS |=FOL φH where φG and φH denote the FOL-translations of G and H, and
φRDFS encodes the RDFS axioms (e.g. by rules), then G |=RDFS H.
[this is what rule-based reasoners do]

SPARQL on RDFS

• input: Turtle triples, seen as an RDF Graph G (including RDFS statements)

• query: a SPARQL graph pattern P

• answers: the answer bindings of all ground instances β(P ) of P s.t. G |=RDFS β(P ).

⇒ query wrt. RDFS answering requires (a bit) more than only algebraic evaluation of
conjunctive queries.
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RDFS REASONING

• expressible in a decidable fragment of FOL: positive recursive Datalog

– naive implementation: bottom-up graph completion by rules

– querying: top-down Datalog evaluation (of any Datalog/Prolog system)

– only issue: existentials from blank nodes (blank nodes mapped by skolemization, but it
must be considered that two blank nodes describe the same individual)

⇒ use the FOL mapping

⇒ the following slides give the semantics of RDFS notions wrt. the FOL mapping.
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REASONING WITH RDF, RDF SCHEMA AND OWL

• theoretical details will be discussed later. The underlying thing is either

– graph completion by rules (RDFS, OWL-RL profile),
(can be translated to positive Datalog)

– Description Logic (DL) Reasoning (OWL DL)
(requires a DL reasoner, based on tableaux techniques)

• there are reasoners available for the Jena Framework:

– an internal one:
jena -q -inf -qf sparql-file
for invoking SPARQL with its internal reasoner

– an external one:
(integrated into the semweb.jar used in the lecture as plug-in)
jena -q -pellet -qf sparql-file
for invoking SPARQL with the Pellet DL reasoner class

– external ones as Web Services ...

233



USE OF THE JENA TOOL

• option “-t”: transform (between Turtle and RDF/XML)
jena -t -pellet -if rdf-file .

(-t is not complete for checking inconsistencies)

• option “-q”: query
jena -q -pellet [-if rdf-input-file] -qf query-file .

• option “-e”: export the class tree (available only when the pellet reasoner is activated).
Input is an RDF or OWL file:

jena -e -pellet -if rdf-file.
(for checking consistency, use -e)
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PELLET COMMANDLINE FOR SPARQL-DL QUERIES

• download pellet, set alias for pellet/pellet.sh

• see pellet help for further information

• pellet query -q query-file input-file

– does not use FROM line(s) in SPARQL, input file must be given explicitly,

– only one input file possible.
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ASIDE: DIG INTERFACE - DESCRIPTION LOGIC IMPLEMENTATION GROUP

• Web page: http://dl.kr.org/dig/

• agreed “tell-and-ask-interface” of DL Reasoners as Web Service:

• tell them the facts and ask them queries, or for the whole inferred model

• e.g. supported by “Pellet”

• URL for download see Lecture Web page

may@dbis01:~/SemWeb-Tools/pellet-1.3$ ./pellet-dig.sh &
PelletDIGServer Version 1.3 (April 17 2006)
Port: 8081

• invoke the SPARQL Jena interface by
jena -q -qf sparql-file -inf -r reasoner-url
(e.g.: http://localhost:8081)

• note: the tell-functionality seems to transfer only part of the knowledge → incomplete
reasoning → currently not recommended.
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5.3 RDFS Vocabulary

SEMANTICS OF SUBCLASSES AND SUBPROPERTIES

rdfs:subClassOf specifies that one rdfs:Class is an rdfs:subClassOf another:

for any model M of the RDFS model theory,

M |= ∀C1, C2 : ( holds(C1, rdfs:subClassOf, C2) →
(∀x : (holds(x, rdf:type, C1) → holds(x, rdf:type, C2))))

rdfs:subPropertyOf specifies that one rdf:Property is an rdfs:subPropertyOf another:

M |= ∀P1, P2 : ( holds(P1, rdfs:subPropertyOf, P2) →
(∀x, y : (holds(x, P1, y) → holds(x, P2, y))))
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SEMANTICS OF DOMAIN AND RANGE

rdfs:domain specifies that the domain of an rdf:Property is a certain rdfs:Class:

M |= ∀C,P : ( holds(P, rdfs:domain, C) →
(∀x : (∃y : holds(x, P, y)) → holds(x, rdf:type, C)))

rdfs:range specifies that the range of an rdf:Property is a certain rdfs:Class
(note that rdfs:Datatype is a subclass (and an instance) of rdfs:Class):

M |= ∀C,P : ( holds(P, rdfs:range, C) →
(∀y : (∃x : holds(x, P, y)) → holds(y, rdf:type, C)))

Exercise

• Give an implementation by Datalog Rules for RDFS constructs.
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SUBCLASS, DOMAIN, RANGE: EXAMPLE

@prefix : <foo://bla/meta#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

:has_cat rdfs:domain :Person .
:has_cat rdfs:range :Cat .
:Person rdfs:subClassOf :LivingBeing .
:Cat rdfs:subClassOf :LivingBeing .
<foo://bla/persons/john> :has_cat <foo://bla/cats/garfield>.
<foo://bla/persons/mary> rdf:type :Person.

[Filename: RDF/subclass.n3]

prefix : <foo://bla/meta#>
prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
select ?X ?T
from <file:subclass.n3>
where {?X rdf:type ?T}

[Filename: RDF/subclass.sparql]

• activate the reasoner (internal or pellet) when invoking Jena.
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SUBCLASS, DOMAIN, RANGE: EXAMPLE (CONT’D)

Recall the previous example. Given the following facts:

:has_cat rdfs:domain :Person .
:has_cat rdfs:range :Cat .
:Person rdfs:subClassOf :LivingBeing .
:Cat rdfs:subClassOf :LivingBeing .
<foo://bla/persons/john> :has_cat <foo://bla/cats/garfield>.
<foo://bla/persons/mary> rdf:type :Person.

The domain/range information does not act as a constraint, but as information. From that
knowledge, the following facts can be inferred :

• :has_cat implies that the subject (John) is a Person, and the object (Garfield) is a cat,

• both are thus LivingBeings.
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SUBPROPERTIES

• outlook: combine it with owl:TransitiveProperty.

@prefix : <foo://bla/meta#> .
@prefix p: <foo://bla/persons/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.

p:john :hasChild p:alice, p:bob.
p:kate :hasChild p:john.
:hasChild rdfs:subPropertyOf :descendant.
:descendant rdf:type owl:TransitiveProperty.

[Filename: RDF/descendants.n3]

prefix : <foo://bla/meta#>
select ?X ?Y
from <file:descendants.n3>
where {?X :descendant ?Y}

[Filename: RDF/descendants.sparql]
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COMPARISON

SQL

• queries only against the database (no intensional knowledge),

• equivalent to tree expressions in relational algebra, based on set theory,

• formal semantics can be given purely syntactically with the algebra,

⇒ in the DB lecture, we did not need logic.

• equivalent to the relational calculus, semantics of queries can be given by the calculus.
Equivalent to nonrecursive Datalog (cf. Database Theory Lecture) with “negation as
failure” (top-down) stratification (bottom-up).

RDFS + SPARQL

• only restricted negation

• RDFS: built-in rules (positive, recursive Datalog)

• SPARQL: positive, nonrecursive Datalog

• intuitive bottom-up semantics
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USING RDF IN THE WORLD WIDE WEB

• The (Semantic) Web is not seen as a collection of documents, but as a collection of
correlated information (described via documents)

• using RDF, everybody can make statements about any resource
(cf. link-bases in XLink)

– incremental, world wide data and meta-data

– distributed RDFS,

– distributed RDF,

– real URLs (Linked Open Data; cf. Slides 286 ff) vs. only virtual resources (URIs).

• not assumed that complete information about any resource is available.

• Open world, no notion of (implicit) negation.

• potentially inconsistent information;

• statements can be equipped with probabilities or labeled as opinions;
fuzzy reasoning, belief revision ...

• ... lots of artificial intelligence applications ...
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REASONING BASED ON RDFS

• RDF/RDFS model theory as above,

• rather simple Datalog rules, graph completion,

• queries: against the (completed) graph by matching (SPARQL).

• incomplete knowledge when reasoning: “open world assumption”

• only very restricted negation (none in RDFS; “!bound” in SPARQL 1.0 and “FILTER NOT
EXISTS” in SPARQL 1.1 allow for negation of failure)

Preview: OWL

• based on DLs

• OWL-DL includes constructs that are not expressible by Datalog (union/disjunction) –
requires “Disjunctive Datalog”
⇒ totally different complexity and reasoning algorithms

• OWL-Lite is a simpler fragment (e.g., only 0-1-*-cardinalities) ... turned out that tools are
not much simpler to design

• The OWL-RL profile: can be translated to positive recursive Datalog.
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EXAMPLE/EXERCISE

Consider again the employee-manages-departments example (Slide 22).

• Give the RDF Graph.

• give the Turtle triples and feed them into the Jena tool.
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ADDITIONAL RDF/RDFS VOCABULARY

The rdf/rdfs namespaces provide some more vocabulary:

Like most data models, RDF provides a representation for Collections:

• Collections: rdf:Alt, rdf:Bag, rdf:Seq, rdf:List are collections.
Lists have properties rdf:first (a resource) and rdf:rest (a list). Others have
properties _1, _2, . . . that refer to their members.

• (rdfs:Container, rdfs:member, rdfs:ContainerMembershipProperty)

... these are partially used implicitly (e.g., collections in owl:intersectionOf, owl:OneOf), but
often not supported by OWL reasoners if used explicitly (see Slides 430 ff.).
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EXAMPLE: THE MONDIAL ONTOLOGY

See mondial.n3, mondial-europe.n3 and mondial-meta.n3 on the Web page.

Note that it is highly redundant: defining just rdfs:domain and rdfs:range of properties implies
most of the classes (and also most of the rdfs:type relationships in mondial.n3).

prefix mon: <http://www.semwebtech.org/mondial/10/meta#>
prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
select ?X
from <file:mondial.n3>
from <file:mondial-meta.n3>
where {?X rdf:type mon:Country}

[Filename: RDF/mondial-meta-query.sparql]

• activate Jena with reasoner (if mondial.n3 is too big, use mondial-europe.n3 instead)

Mondial is not an interesting example for RDFS (and OWL):

• it’s mainly data, no intensional knowledge, no complex ontology

• for that reason it is a good example for SQL and XML.

• RDFS and OWL is interesting when information is combined and additional knowledge
can be derived.
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Developing Ontologies

• have an idea of the required concepts and relationships (ER, UML, ...),

• generate a (draft) n3 or RDF/XML instance,

• write a separate file for the metadata,

• load it into Jena with activating a reasoner.

• If the reasoner complains about an inconsistent ontology, check the metadata file alone. If
this is consistent, and it complains only when also data is loaded:

– it may be due to populating a class whose definition is inconsistent and that thus must
be empty.

– often it is due to wrong datatypes. Recall that datatype specification is not interpreted
as a constraint (that is violated for a given value), but as additional knowledge.
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