
:name

:population isa

:hasCapital

isa

:germany

'Germany'

83000000

:name isaisa

:berlin

isa
rdfs:subClassOf

:Country

'Berlin'

:PoliticalArea

owl:Class

isa

:City

isa

rdfs:domain

rdfs:range

:hasCapital

rdf:Property

rdfs:domain

rdfs:range

:name

isa
rdfs:subClassOf

:Province

owl:Thing isaxs:string owl:Datatype

Yesterday: "Symbolic Reasoning"

Each logic, and thus also First-Order Logic provides a framework
that can be used for symbolic reasoning:

FOL Formulas are strings, FOL reasoning are algorithms that
work on their parse trees.

=> symbolic reasoning: all about Syntax, not Semantics
Formulas are evaluated wrt. first-order-logic

 structures/interpretations

for mondial: = {Country, City, name, hasCapital, ...}

FOL Structure:
 is the domain ... the things in the real world.
 maps the symbols from to the domain ...

Example: our "real-world-application" contains a (green) frog, and strings and numbers:
 = { � } Strings Numbers ...

Signature to talk about the frog and its properties: (1-ary and 2-ary predicates and constant symbols)

 Frog() Green()

Our must be a model of :
Tableau calculus: what can we derive?

=> conclusion by reasoning: bob must be green in our
=> (Green) (bob)

(Green) { (�)}

 practically is a database, containing unary and binary tables:

name

bob "Bob"

: :

(note: DB is only on the syntax level, so bob <-> �)

Background: Philosophical logics, mathematical logics, model theory aspects:
human reasoning about properties of the logic).

Syntax: the symbols used for writing formulas:
* logical symbols: ∧, ∃, ...
* variables: , , ...

* depending on the application: predicate
symbols and function symbols, "signature"

 Frog/1, Green/1, name/2, bob/c0
Interpret the symbols in OUR structure/model (=current situation):

 (bob) = (�)
 (name) = { (� ,"Bob"), ... }
 (Frog) = {(�), ... }

(a set of 2-tuples over)
(a set of 1-tuples over)

(an element from)

Knowledge base : all frogs are green.

 Frog() Green()
Frog(bob)

Frog(X1) Green(X1) (introduce a tableau variable X1)
 Frog (X1) Green(X1) equivalent

open two branches

Frog(X1) Green(X1)
 X1 bob Green(bob)

Frog

bob

(the constant bob/c0 is like an object identifier)

RDF (and also UML class diagrams): only binary relationships
ER: relationships may have attributes;
 ternary, and n-ary relationships

Country Organization<0,*> <2,*>isMember

type

RDF:

:isMember

:inMembership

:germany

:hasMembership

:eu

:type

isa

 :d-in-eu "full member"

Reification of the "Membership" (relationship) instance

isa:Membership

Note: the same holds when modeling relationships with attributes in UML class diagrams.
UML provides "association classes" for such cases.

Reification has also to be used for ternary (or -ary in general) relationships in UML, and in
RDF. True ternary relationships are rare. Those who did the BSc here may remember the
first exercise sheet of the "Introduction to Databases" lecture.
The reference solutions for it (in German) can be found at
<https://www.dbis.informatik.uni-goettingen.de/Teaching/DB-WS1920/DBBlatt1ML.pdf>.

owl:Class

Set-oriented semantics

Class:

graphically: set of its instances
relational database:
(unary) tuples in a unary table
FOL: interpretation of a unary predicate,
e.g. (country) = { (germany), (france), ... }
unary tuples(!), each containing an element of the domain
RDF graph: all the (oval) nodes having an

isauri class

edge to that class

germany berlin:capital

356000germany
:area

Relationship

graphically: set of arrows between things (or things and
literals)
relational database: binary tuples in a table
FOL: interpretation of a binary predicate
e.g. (capital) = { (germany, berlin), (france, paris), ...}

(area) = {(germany, 356000), (france, 500000), ... }
binary tuples each containing a pair of elements from the
domain
RDF graph: set of all tuples connected by an arrow labeled
with the property (name)

