2. Sheet: SPARQL Formal Semantics

Exercise 2.1 (SPARQL Formal Semantics) Consider the SPARQL Formal Semantics.

a) Define a “null-tolerant join” for the relational algebra that acts like the <t of the SPARQL
algebra.

b) Which SQL construct is similar to the “\” operator in the SPARQL algebra?

¢) In the SPARQL algebra, OPT is expressed via left outer join, which is defined via “\” (while
a corresponding MINUS does not exist in the SPARQL syntax).

Such a MINUS (cf. part (b) of this exercise) provides a more intuitive idea of negation than
bound(z)”. Give a general pattern how to express (P MINUS P,) in SPARQL 1.0 syntax.

d) Recall the definition of =< in the relational algebra (DB lecture) and define SPARQL’s I in
a similar way.

“'

Exercise 2.2 (Outer Join) Recall that SPARQL’s OPTIONAL corresponds to a left outer join.

a) Give a general pattern how to express a full outer join (i.e., “outer” to both sides) in the
SPARQL algebra (consider as input two mappings R and S and give an expression for R < S)
and in SPARQL.

b) Give all cities (name as ?XN) that are the capital of a country (:capital) or that are located at
a river (:locatedAt) or both (return the names ?CN of the country and/or the river (?RN)).

Exercise 2.3 (SPARQL Formal Semantics: OPTIONAL) Consider the SPARQL Formal

Semantics.
Prove or show a counterexample:
The statement (from W3C SPARQL Working Draft 20061004)
If OPT(A, B) is an optional graph pattern, where A and B are graph patterns, then S is a
solution of OPT(A,B) if
e S is a pattern solution of A and of B, or
e S is a solution to A, but not to A and B.

describes the same semantics as above.

Exercise 2.4 (SPARQL: Filter-Safe Expressions) Consider the following definition:

Definition 1 ([PAGO06, AG 08]) A SPARQL expression is filter-safe, if for every subexpression
of the form (P FILTER R), var(R) C var(P).

a) Give a SPARQL query for the following: For each country, give the capital and its population,
and, if exist, all cities in that country that have a higher population, as a result table of the
following form
C CAP | CapPop | City CityPop
D Berlin | 3472009
CH | Bern | 128848 | Ziirich | 384786
CH | Bern | 128848 | Genf 191557

b) Make your query filter-safe (if it is not yet filter-safe).
¢) Give the same query in SQL (hint: use the LEFT OUTER JOIN ... ON ... construct)

d) Sketch an algorithm that rewrites non-filter safe queries into safe ones. First, try it on your
own, then maybe look in [AGOS].

e) Give a SPARQL query for “Give the names of all countries, such that there is some city in that
country where more than 1/4 of the population are living in”, and make it filter-safe.

f) Give a SPARQL query for “Give the names of all countries, such that there is no city in that
country where more than 1/4 of the population are living in”, and make it filter-safe.

g) Is there a similar thing in SQL, in the relational algebra, and in the relational calculus (DBT
Lecture)?

