

```
Yesterday: "Symbolic Reasoning"
Background: Philosophical logics, mathematical logics, model theory aspects:
               human reasoning about properties of the logic).
Each logic, and thus also First-Order Logic provides a framework
            that can be used for symbolic reasoning:
```

FOL Formulas are strings, FOL reasoning are algorithms that work on their parse trees.

=> symbolic reasoning: all about Syntax, not Semantics

Formulas are evaluated wrt. first-order-logic structures/interpretations

Syntax: the symbols used for writing formulas:

* logical symbols: ^, ∃, ...

* variables: x, y, \dots

* depending on the application: predicate

symbols and function symbols, "signature" Σ

for mondial: $\Sigma = \{\text{Country, City, name, hasCapital, ...}\}$

FOL Structure: S = (I, D)

 $\mathcal D$ is the domain ... the things in the real world.

I maps the symbols from Σ to the domain ...

Example: our "real-world-application" contains a (green) frog, and strings and numbers:

 $\mathcal{D} = \{ \overset{\textcircled{\scale}}{=} \} \cup \text{Strings} \cup \text{Numbers} \dots$

Signature to talk about the frog and its properties: (1-ary and 2-ary predicates and constant symbols)

 $\Sigma = \{$ Frog/1, Green/1, name/2, bob/c0 $\}$

Interpret the symbols in OUR structure/model S (=current situation):

I (bob) = (🀸) (an element from \mathcal{D}) I (name) = { ($\overset{(\text{loc})}{=}$,"Bob"), ... } (a set of 2-tuples over \mathcal{D}) *I* (Frog) = {(≝), ... } (a set of 1-tuples over \mathcal{D})

Knowledge base \mathcal{K} : all frogs are green.

 $\forall x : \operatorname{Frog}(x) \rightarrow \operatorname{Green}(x)$

Our S must be a model of \mathcal{K} :

Tableau calculus: what can we derive?

 $\forall x : \operatorname{Frog}(x) \rightarrow \operatorname{Green}(x)$ Frog(bob) $Frog(X1) \rightarrow Green(X1)$ (introduce a tableau variable X1) \neg Frog (X1) \lor Green(X1) equivalent open two branches ¬Frog(X1) Green(X1) \Box X1 \leftarrow bob ► Green(bob)

=> conclusion by reasoning: bob must be green in our ${\cal S}$

 \Rightarrow $I(Green) \supseteq I(bob)$ $I(Green) \supseteq \{ (\clubsuit) \}$

I practically is a database, containing unary and binary tables: (note: DB is only on the syntax level, so bob <->

(the constant bob/c0 is like an object identifier)