
Georg-August-University Göttingen

M.Inf.1201

Exploring the Apache Jena Framework

Supervisor:

Prof. Dr. Wolfgang May

Author:

Stefan Siemer

June 18, 2019

Contents

1 Introduction 1

2 Installation & Setup 1

2.1 Apache Jena . 1

2.2 Tomcat . 2

2.3 SemWebJena . 2

2.4 JavaCC . 3

3 JavaCC Tutorial 3

3.1 CarGrammar Specification . 3

3.2 CarGrammar Implementation . 4

4 Jena SPARQL & RDF processing 8

5 Master’s thesis outlook 10

Exploring the Apache Jena Framework Winter Term 2019

1 Introduction

In order to work on new possibilities and approaches in the SPARQL language, two things are elementary.

On the one hand the fundamental knowledge of the theoretical foundations needed for this formal language.

On the other hand a practical framework as a playground is needed. A complete playground gives the

opportunity to test small ideas very fast in practice. The following document is a summary of practical work

and tutorials needed for this kind of academic work e.g. a master’s thesis. Therefore a brief description of

the Apache Jena Framework and its underlying architecture, tools and programming languages is given. In

the end there is a small outlook on what shall be covered in the upcoming master thesis.

2 Installation & Setup

First of all the various tools and frameworks need to be downloaded, installed and set up. The goal is to

have as few duplicate future work as possible.

2.1 Apache Jena

“A free and open source Java framework for building Semantic Web and Linked Data applica-

tions.” [1]

While this quote gives the general purpose of the whole framework, the essence of Jena lies in ARQ. ARQ

is a query engine that evaluates the SPARQL query language against RDF data. [2] The newest versions

of the Apache Jena releases can be found on https://jena.apache.org/download/index.cgi. The frameworks

binaries are available in different compressed formats. For developers the source code is fully accessable via

the mirrored github at https://gitbox.apache.org/repos/asf?p=jena.git. Older versions can also be found

on http://archive.apache.org/dist/jena. All the newer version are build with maven. Maven can be found

either on http://maven.apache.org/ or be installed via a package manager e.g. apt on ubuntu with sudo

apt-get install maven. Afterwards its location needs to be exported and added to the default classpath

PATH. This can be done by adding the following two lines to the ∼/.bashrc:

export M2 HOME=/opt /maven

export PATH=${M2 HOME}/ bin : ${PATH}

Now having everything at hand the binary can be build by navigating to the Jena folder and executing

maven by typing mvn clean install. If just the rebuild of a single subfolder is needed the same com-

mand can be used in the respective folder. The maven build produces a binary zip-file in the subfolder

apache-jena/target/apache-jena-x.x.x.zip. This can be unpacked at any desired location and must

afterwards be exported in the ∼/.bashrc to make it accessable via the wrapping command line scripts

included in Jena:

export JENAROOT=’<path to Jena>/jena ’

export JENA HOME=’<path to Jena>/jena ’

1

https://jena.apache.org/download/index.cgi
https://gitbox.apache.org/repos/asf?p=jena.git
http://archive.apache.org/dist/jena
http://maven.apache.org/

Exploring the Apache Jena Framework Winter Term 2019

export PATH=${JENAROOT}/ bin : ${PATH}
export PATH=${JENA HOME}/ bin : ${PATH}

Now with Jena set up, the command sparql -h gives you the possible arguments and modifications for the

command line tool of the sparql query engine. [1]

2.2 Tomcat

“Tomcat is a web servlet container with a simple web server.”[3] In order to run tomcat the binaries can

be downloaded from https://tomcat.apache.org/. [4] After that the variable CATALINA HOME is to be set in

∼/.bashrc:

export CATALINA HOME=<Path to Tomcat>

After putting a webapp foobla.war into the folder webapps tomcat can be started via the startup.sh script

in the bin subfolder. The webapp can then be found under http://localhost:8080/foobla. Since the

development process might require several restarts it is very convenient to add some aliases to the ∼/.bashrc:

a l i a s tomstart=’<Path to Tomcat>/bin / s ta r tup . sh ’

a l i a s tomshut=’<Path to Tomcat>/bin /shutdown . sh ’

a l i a s tomres tar t =’ tomstart && tomshut ’

2.3 SemWebJena

The SemWebJena tool is a wrapper for an older version (2.10.0) of the Jena framework developed by the DBIS

group of Georg-August-University Göttingen. [5] This wrapper is able to combine the Jena framework with

various reasoners and is used for research and teaching within the group. It can be found and downloaded

in the DBIS svn-repositories via the svn export command:

svn export https : // svn . in fo rmat ik . uni−goe t t ingen . de/ db i s /data−s t o r e /mondial−l od

Afterwards the complete tool can be build and deployed by calling the build.xml via ant. Next to the

freshly build mondial-lod.jar the ant call will generate and deploy a mondial-lod.war web archive. In

order to execute the jar-file conveniently the creation of an alias in the ∼/.bashrc is advantageous:

a l i a s query=’ java −j a r <path to f o l d e r >/d i s t /mondial−l od . jar ’

With the command query -h all possible arguments and modifications are proposed. The web archive is to

be put into the webapps folder of tomcat. Afterwards tomcat needs to be started with:

<path to tomcat>/bin / s ta r tup . sh

2

https://tomcat.apache.org/

Exploring the Apache Jena Framework Winter Term 2019

If the server started without any errors the webapp can be accessed via http://localhost:8080/mondial-lod.

The default examples from the SemWeb lecture [6] must be stored in /home/teaching/SemWeb/RDF. This is

due to the teaching examples of the DBIS group on their webserver are in this folder precisely.

2.4 JavaCC

“Java Compiler Compiler is the most popular parser generator for use with java”[7]

This tool reads in grammar specifications and builds a Java program that parses matching expressions ac-

cording to the grammar by generating Java source code. Java classes and functions can be used and triggered

during the parsing process in order to e.g. fill own containers and objects with respective information. [7]

JavaCC binaries can be downloaded on https://javacc.org/download. Afterwards they need to be unpacked

e.g. with unzip javacc-x.x.zip. Finally add the bin folder to PATH e.g. in ∼/.bashrc:

export JAVACC HOME=’<Path to JavaCC>/javacc−x . x ’

export PATH=${JAVACC HOME}/ bin : ${PATH}

A closer look on the usage of JavaCC will be given in the next section 3.

3 JavaCC Tutorial

In this section a small example on JavaCC parsing is given. In the fictive scenario the data of a car shall

be read from a file, stored into a suitable Java object and be reprinted as a CSV-tuple. For this purpose

an easy grammar for a step by step example is created. All knowledge of the JavaCC syntax in this section

originates from the tutorials and code snippets on the JavaCC Website. [7] While there are multiple tutorials

for various use cases, this self made example shows the elemental knowledge needed to read and understand

the Jena grammar later on.

3.1 CarGrammar Specification

The formal specification of our grammar CarGrammar is given by the 4-tuple of non-terminals N , terminals

T , productions P and the start symbol S:

CarGrammar := {N,T, P, S}

with:

N := {Name,Color, Company, Price, Input},
T := {〈NAME〉, 〈COLOR〉, 〈COMPANY〉, 〈PRICE〉, 〈EOF〉, 〈LINEBREAK〉, 〈NUMERICVALUE〉, 〈STRINGVALUE〉},

3

http://localhost:8080/mondial-lod
https://javacc.org/download
https://javacc.org/tutorials/lookahead

Exploring the Apache Jena Framework Winter Term 2019

Comment. All 〈FOOBLA〉 terminal symbols are regular expressions. The exact regular expressions can be

seen in the implementation section in listing 2. Since regular expression can also be expressed by regular

sub-grammars within our grammar, they can be seen as a all in one processed terminal symbols.

S := Input,

P := {

Input → Name

Name → 〈NAME〉〈STRINGVALUE〉〈LINEBREAK〉Color | Color

Color → 〈COLOR〉〈STRINGVALUE〉〈LINEBREAK〉Company | Company

Company → 〈COMPANY〉〈STRINGVALUE〉〈LINEBREAK〉Price | Price

Price → 〈PRICE〉〈STRINGVALUE〉〈LINEBREAK〉〈EOF〉 | 〈EOF〉

}

3.2 CarGrammar Implementation

In order to have solid control over the car data within Java, a data wrapping class is needed. For the

previously defined scenario a simple class will do the job. First of all some strings to store the name, color

and company of the car as well as an integer for the price is needed. Since the object is to be build “on the fly”

(while parsing the data), getter and setter methods are far more important than any complex constructor.

In the end the implementation of the serialize method gives the possibility to handle the data as a 4-tuple

of (name, color, company, price). The source code of this class can be seen in listing 1

1 class CarJava{
2 private St r ing name ;

3 private St r ing c o l o r ;

4 private St r ing company ;

5 private int p r i c e ;

6

7 // De fau l t Constructor

8 public CarJava () {}
9

10 // Se t t e r

11 public void setName (St r ing name) { this . name = name ;}
12 public void s e tCo lo r (S t r ing c o l o r) { this . c o l o r = c o l o r ;}
13 public void setCompany (St r ing company) { this . company = company ;}
14 public void s e t P r i c e (S t r ing p r i c e) { this . p r i c e = I n t e g e r . valueOf (p r i c e) ;}
15

16 //Get ter

17 public St r ing getName () { return name ;}
18 public St r ing getColor () { return c o l o r ;}

4

Exploring the Apache Jena Framework Winter Term 2019

19 public St r ing getCompany () { return company ;}
20 public int ge tPr i c e () { return p r i c e ;}
21

22 // S e r i a l i z e the o b j e c t as CSV

23 public St r ing s e r i a l i z e a s C S V () {
24 return ””

25 + getName () + ” , ”

26 + getColor () + ” , ”

27 + getCompany () + ” , ”

28 + ge tPr i c e () + ”\n” ;

29 }
30 }

Listing 1: Java class to store car data

In the listing 2 the definitions of TOKENS is given. TOKENS serve as terminal symbols. Parsing these is

not only needed for determining the next rule but can also be used to return the parsed content e.g. as a

string. As an example the string “bla bla” can be matched by 〈STRINGVALUE〉 and also its stringvalue

can be returned to e.g. set an object property.

1 TOKEN:

2 {
3 < STRINGVALUE: [”a”−”z” , ”A”−”Z”] ([”a”−”z” , ”A”−”Z” , ” ” , ” ” , ”0”−”9”]) ∗ >

4 |
5 < NUMERICVALUE: [”0”−”9”] ([”0”−”9”]) ∗ >

6 |
7 < LINEBREAK: ”\n” >

8 |
9 < NAME: ”name : ” >

10 |
11 < COLOR: ” c o l o r : ” >

12 |
13 < COMPANY: ”company : ” >

14 |
15 < PRICE: ” p r i c e : ” >

16 }

Listing 2: Regular Expression representing the terminals

The production rules of JavaCC look very similar to regular Java functions. Once chosen, a production

rule will also behave like a Java function e.g. defining objects and returning values. As an example the

production rule Stringvalue() assigns the parsed part to a token and returns its string value. JavaCC

is designed to commit to terminal choices without any backtracking algorithm. In oder to commit to a

terminal the Lookahead value is specified. This value determines how many TOKENS in the future are to

5

Exploring the Apache Jena Framework Winter Term 2019

be considered for the next choice. By default this value is one. Further the processing of the grammar can

be extended by e.g. logical “or” “|” or a logical “optional” “[Foobla()]”. Listing 3 shows all productions

needed for the CarGrammar example.

1 void Input () :{}
2 { [Name()] [Color ()] [Company ()] [Pr i ce ()] <EOF> }
3

4 void Name() :{ St r ing va l ;}
5 { <NAME> va l = St r ingva lue () { car . setName (va l) ;} <LINEBREAK> }
6

7 void Color () :{ St r ing va l ;}
8 { <COLOR> va l = St r ingva lue () { car . s e tCo lo r (va l) ;} <LINEBREAK> }
9

10 void Company () :{ St r ing va l ;}
11 { <COMPANY> va l = St r ingva lue () { car . setCompany (va l) ;} <LINEBREAK> }
12

13 void Pr ice () :{ St r ing va l ;}
14 { <PRICE> va l = Numericvalue () { car . s e t P r i c e (va l) ;} <LINEBREAK> }
15

16 St r ing St r i ngva lue () : {Token t ;}
17 { t = <STRINGVALUE> {return t . image ;} }
18

19 St r ing Numericvalue () : {Token t ;}
20 { t = <NUMERICVALUE> {return t . image ;} }

Listing 3: Productions with function names beein non-terminals

The JavaCC section from PARSERBEGIN to PARSEREND gives the opportunity to implement everything needed

for the parsing process e.g. objects to be filled. It is also very common to inherit some functions and

background processing of the parser from a PARSERBASE class by just specifying this inheritance. In the

car example (listing 4) this code section is used to create a fresh CarJava object to be filled during the

parsing process. Also a main function is included to enable playing with the grammar right away. Line 11

shows the starting non-terminal symbol Input() beeing called to initialize the parsing process.

1 PARSER BEGIN(CarGrammar)

2 public class CarGrammar {
3

4 stat ic CarJava car ;

5

6 /∗∗ Main entry po in t . ∗/
7 public stat ic void main (St r ing args []) throws ParseException {
8 CarGrammar par s e r = new CarGrammar(System . in) ;

9 car = new CarJava () ;

6

Exploring the Apache Jena Framework Winter Term 2019

10 /∗∗ Ca l l i n g the s t a r t symbol ∗/
11 par s e r . Input () ;

12 System . out . p r i n t (car . s e r i a l i z e a s C S V ()) ;

13 }
14

15 }
16 PARSER END(CarGrammar)

Listing 4: Core part of the CarData Parser

Having the CarGrammar.jj and CarJava.java at hand the java compiler compiler javacc compiles all the

needed source codes. Afterwards all Java files need to be compiled with a the regular java compiler.

1 $ javacc CarGrammar . j j

2 Java Compiler Compiler Vers ion 6 .0 1 (Parser Generator)

3 (type ” javacc ” with no arguments for help)

4 Reading from f i l e CarGrammar . j j . . .

5 F i l e ”TokenMgrError . java ” i s be ing r e b u i l t .

6 F i l e ” ParseException . java ” i s be ing r e b u i l t .

7 F i l e ”Token . java ” i s be ing r e b u i l t .

8 F i l e ”SimpleCharStream . java ” i s be ing r e b u i l t .

9 Parser generated s u c c e s s f u l l y .

10 $ javac ∗ . java

11 $

Listing 5: Building the final parser program

After creating the Java program CarGrammar, a small testing example with random values is given in listing

6.

1 name : Golf 6

2 c o l o r : b lue

3 company : Volkswagen

4 p r i c e : 20000

Listing 6: Data of a Car to be parsed

The above CarData.txt can then be used as input for the program. The output is a nicely formatted

CSV-formatted string.

1 $ java CarGrammar < CarData . txt

2 Golf 6 , blue , Volkswagen ,20000

Listing 7: Output with complete & correct Datafile

7

Exploring the Apache Jena Framework Winter Term 2019

As a second test example the same data from CarData.txt 6 is used with the deletion of line 2. The results

show the same CSV-format with a null value for the missing line 2.

1 $ java CarGrammar < CarDataIncomplete . txt

2 Golf 6 , nu l l , Volkswagen ,20000

Listing 8: Output with incomplete & correct Datafile

The last testcase shows the parsers behaviour with syntactically wrong input by adding the line “doors: 4”

to the CarData.txt file. The parser prints out an exception with the malicious string and what was expected

instead.

1 $ java CarGrammar < CarDataIncorrect . txt

2 Exception in thread ”main” ParseException : Encountered ” <STRINGVALUE> ” doors

”” at l i n e 5 , column 1 .

3 Was expect ing :

4 <EOF>

5 at CarGrammar . generateParseExcept ion (CarGrammar . java : 2 75)

6 at CarGrammar . j j consume token (CarGrammar . java : 2 1 3)

7 at CarGrammar . Input (CarGrammar . java : 5 3)

8 at CarGrammar . main (CarGrammar . java : 1 2)

Listing 9: Data of a car to be parsed

All in all this small example gives a brief insight in how to use JavaCC. Also the toy-example itself is build

very similar to the grammar used in the Apache Jena framework.

4 Jena SPARQL & RDF processing

This section gives a brief overview of SPARQL and RDF processing. The specification of the SPARQL grammar

is given in the file master.jj. By using javacc, this grammar is compiled to a parser that will be used

by default in the QueryFactory. A QueryFactory object describes how a Query object shall be build e.g.

what parser shall be used. Having a parser at hand the QueryFactory can create a Query object from a

SPARQL-file. Those Query objects are the internal Java representation of every information parsed by the

Parser e.g. query form, prefixes. Query objects do also contain a list of references to RDF source-files. These

sources get parsed seperately by a DatasetFactory. The created model is then, together with the query

object, given to the QueryExecutionFactory to create a QueryExecution. The internal conversion of the

abstract Query object to a Algebra-Plan is a currently not of interest and therefore omitted. The following

Figure 1 gives a fundamental overview of the processing as a simple flow chart. [8] [9]

8

Exploring the Apache Jena Framework Winter Term 2019

master.jj

ParserSPARQL.java

QueryFactory.java

Query.java

QueryExecutionFactory.java

QueryExecution.java

Execute Query

Foo.sparql Bar.rdf

DatasetFactory.java

Model.java – Dataset

javacc

creates

creates

re
fe

re
n

ce
s

creates

Figure 1: Jena flow from parsing files to an execution object

9

Exploring the Apache Jena Framework Winter Term 2019

5 Master’s thesis outlook

Typically a SPARQL query has the three main building blocks of SELECT, FROM and WHERE. The SELECT

is the most common representative of the possible query forms. In the FROM section typically references

to RDF source-files are given. Finally the WHERE describes the graph pattern to be matched for possible

solutions. Listing 10 gives a simple example of a typical SPARQL query returning all subjects of the triples

in foobla.n3.

1 p r e f i x : <f oo : // bla /blubb#>

2 select ?S

3 from <f o ob l a . n3>

4 where { ?S ?P ?O }

Listing 10: Regular simple SPARQL query

If there is an other CONSTRUCT query instead of a RDF file, this is called a nested CONSTRUCT query. Such

a nested CONSTRUCT query is shown in Listing 11.

1 p r e f i x : <f oo : // bla /names#>

2 select ?X

3 from

4 { cons t ruc t { ?G : grandch i ld ?X . ?X : name ?N}
5 from < f i l e : john . n3>

6 from < f i l e : parents . n3>

7 where {?G : hasChi ld ?P . ?P : hasChi ld ?X . ?X : name ?N}
8 }
9 where { ?X ?P ?Y }

Listing 11: Nested CONSTRUCT query[6]

These kind of queries are not yet possible in SPARQL 1.1, because they are believed to be fully replaceable by

nested SELECT queries. This is more or less proven by Polleres et al. [10] by defining a rewriting algorithm.

However these approaches of rewriting such a query are exponential in the depth of nested CONSTRUCTS.

[10] That is why a nested CONSTRUCT might be a useful feature in the SPARQL language. The upcoming

master’s thesis will go deeper into the theoretical parts of nested CONSTRUCT queries. Also a experimental

implementation for testing these kind of queries will be created. Therefore the Jena framework will be slightly

rewritten. The goal is to have the grammar accept nested CONSTRUCTS and afterwards handle these in a

suitable way. If these nested CONCSTRUCTS are a useful feature, they will be added to the SemwebJena

tool.

10

Exploring the Apache Jena Framework Winter Term 2019

References

[1] The Apache Software Foundation. Apache Jena. https://jena.apache.org/index.html, 2019. [On-

line; accessed 11.06.2019].

[2] The Apache Software Foundation. ARQ. https://jena.apache.org/documentation/query/index.

html, 2019. [Online; accessed 11.06.2019].

[3] Wolfgang May. Playground page for the XML Course. http://www.stud.informatik.

uni-goettingen.de/xml-lecture/#tomcat, 2019. [Online; accessed 11.06.2019].

[4] The Apache Software Foundation. Apache Tomcat. https://tomcat.apache.org/, 2019. [Online;

accessed 11.06.2019].

[5] Wolfgang May. Databases and Information Systems. https://www.dbis.informatik.

uni-goettingen.de/, 2019. [Online; accessed 11.06.2019].

[6] Wolfgang May. Semantic Web Lecture. https://www.dbis.informatik.uni-goettingen.de/

Teaching/SemWeb-WS1819/, 2018/2019. [Online; accessed 11.06.2019].

[7] JavaCC Team. JavaCC - The Java Parser Generator. https://javacc.org/, 2019. [Online; accessed

11.06.2019].

[8] The Apache Software Foundation. ARQ - Application API. https://jena.apache.org/

documentation/query/app_api.html, 2019. [Online; accessed 11.06.2019].

[9] S. Harris and A. Seaborne. SPARQL 1.1 Query Language. https://www.w3.org/TR/sparql11-query/,

2019. [Online; accessed 11.06.2019].

[10] Axel Polleres, Juan Reutter, and Egor V Kostylev. Nested constructs vs. sub-selects in sparql. Alberto

Mendelzon International Workshop on Foundations of Data Management, 10, 2016.

11

https://jena.apache.org/index.html
https://jena.apache.org/documentation/query/index.html
https://jena.apache.org/documentation/query/index.html
http://www.stud.informatik.uni-goettingen.de/xml-lecture/#tomcat
http://www.stud.informatik.uni-goettingen.de/xml-lecture/#tomcat
https://tomcat.apache.org/
https://www.dbis.informatik.uni-goettingen.de/
https://www.dbis.informatik.uni-goettingen.de/
https://www.dbis.informatik.uni-goettingen.de/Teaching/SemWeb-WS1819/
https://www.dbis.informatik.uni-goettingen.de/Teaching/SemWeb-WS1819/
https://javacc.org/
https://jena.apache.org/documentation/query/app_api.html
https://jena.apache.org/documentation/query/app_api.html
https://www.w3.org/TR/sparql11-query/

	Introduction
	Installation & Setup
	Apache Jena
	Tomcat
	SemWebJena
	JavaCC

	JavaCC Tutorial
	CarGrammar Specification
	CarGrammar Implementation

	Jena SPARQL & RDF processing
	Master's thesis outlook

