Example: Italians Revisited

The italian-vs-english ontology from Slide 522 can be specified via Choice Rules (and implicit)
Denials (Line 1: either italian or english allowes):

0{ italian(X), english(X) }1 :- person(X), thing(X) .
person(X) :- italian(X), thing(X) .
person(X) :- english(X), thing (X) .
1{ lazy(X), latinlover(X) }1 :- italian(X), thing(X) .
italian(X) :- lazy(X), thing (X) .
italian(X) :- latinlover(X), thing(X) .
0{ gentleman(X), hooligan(X) }2 :- english(X), thing(X).
english(X) :- gentleman(X), thing(X) .
english(X) :- hooligan(X), thing(X) .
gentleman(X) :- latinlover(X), thing(X) .
italian(e).

thing(e) .

[Filename: Datalog/italians-english.s]
» do not query for ?- lazy(e) , butinspect the stable model(s).

* there is a single (total) stable model where lazy(e) holds.

647

SMODELS: PLANNING

Give a specification P of the workflow including constraints:

- if at least one total stable model S exists, the specification including the constraints is
satisfiable.
S describes the plan that must be followed.

« if several total stable model exist, each one represents a possible execution.
Different plans mean that choicepoints during the execution exist.

— they can be decided a priori: add the intended atoms to P:
« there is at least one stable model, but maybe still several ones.

— ... or decide them during execution of the workflow (e.g. to be able to react upon
external influences).

648

Planning Example: The Farmer’'s Puzzle

A farmer, travelling to the market with his dog, a goat, and a cabbage. He has to cross a small
river, where a boat can be used.

* When using the boat, he can transport only one item.
» He can cross the river as often as he wants.

» When the dog stays on the same side as the goat, and the farmer is not there, the dog
will kill and eat the goat.

» When the goat stays on the same side as the cabbage, and the farmer is not there, the
goat will eat the cabbage.

Is it possible for the farmer to bring all items to the other side? If yes, how?

649
Example (Cont'd)
state(1..8). % estimate the number of necessary states.
side(1l). side(x).
is(farmer,1,1). % farmer is on the left side in state 1 (with all items)

thing(cabbage). thing(goat). thing(dog).

is(X,1,1) :- thing(X).

otherside(X,Y) :- side(X), side(Y), X !'= Y.

0{ transport(cabbage,N), transport(goat,N), transport(dog,N) }1 :- state(N), not finish

:- transport(X,N), is(farmer,S1,N), is(X,S2,N), S1 != 82,
thing(X), state(N), side(S1), side(S2).

is(X,82,M) :- is(X,S1,N), thing(X), otherside(S1,82), transport(X,N), M = N+1, not fini
state(N), side(S1).

is(X,81,M) :- is(X,S1,N), thing(X), not transport(X,N), M = N+1, not finished(N),
state(N), side(S1). %% the "frame axiom"

is(farmer,S2,M) :- is(farmer,S1,N), otherside(S1,S2), M = N+1, not finished(N),
state(N), side(S1).

:- is(cabbage,S,N), is(goat,S,N), not is(farmer,S,N), state(N), side(S).

ed

:- is(goat,S,N), is(dog,S,N), not is(farmer,S,N), state(N), side(S).
finished(N) :- is(cabbage,r,N), is(goat,r,N), is(dog,r,N), state(N).
finished(M) :- finished(N), M = N+1, state(N).
:- not finished(8). [Filename: Datalog/farmer.s]

N).

bd (N

650

Example (Cont'd)

Two stable models:

1. first carry the goat to the other side (r)
(it must not be left with the dog or with the cabbage).

go back,

bring either the dog or the cabbage to the other side,
go back with the goat,

bring the remaining item to the other side,

go back,

take the goat and bring it to the right bank again,

© N o O k~ 0 D

continue traveling to the market.

= Step 3 is a choicepoint.

651

SMODELS: FURTHER EXAMPLES AND PUZZLES

 the smodels documentation (Section 6.1) contains
— the Graph 3-Coloring problem,

— some logical puzzles.

» Exercise: encode the Fish Puzzle (see Web page) in ASP and let smodels solve it.

652

“PROVE” P |~ ¢

 up to now: answer queries, look for ground atoms.

It is only possible to prove that S |= ¢ for all stable models of P:

Prove P =5 ¢ (1st Alternative):
— generate all stable models Sy, ..., S,.

— for each of them check whether S; = ¢ (if not, it is a witness for a counterexample)

Prove P =5 ¢ (2nd Alternative):
— encode —y in a program P’,
— run smodels on P U P/,

— if there is a stable model, then, P [~ .

653

EXAMPLE: PARRICIDES IN GREEK MYTHODOLOGY

(from ESWC’07 SPARQL tutorial by Marcelo Arenas et al)

A parricide is a person who killed his/her father.

1{ parricide(X), nonParricide(X) }1 :- person(X).
person(iokaste). mnonParricide(iokaste).

hasChild(iokaste, oedipus).

person(oedipus). parricide(oedipus).

marriedto(oedipus, iokaste). %% irrelevant, but the reason why he became prominent
hasChild(oedipus, perineikes).

person(perineikes). %% unknown whether parricide or not.
hasChild(perineikes, thesandros).

person(thesandros) . nonParricide(thesandros).
parentOfParricide(X) :- hasChild(X,Y), parricide(Y).
parentOfNonParricide(X) :- hasChild(X,Y), nonParricide(Y).
parentOfParricideGrandparentOfNonParricide(X) :-

parentOfParricide(X), hasChild(X,Y), parentOfNonParricide(Y).

[Filename: Datalog/parricide.s]
Does P =g 3X : parentOfParricideGrandparentOfNonParricide(X)?

« two possibilities: either lokaste or Oedipus.

654

12.2 An Application: Semantics of Referential Actions in
SQL

Country
Name Code Capital Province
Germany D) Beriin Berlin
United States | US | Washington | Distr.Col.
SET NULL
City
Name Country | Province
Berlin D B
Washington USA Distr.Col.

Consider again the problem of ambiguous semantics of referential actions from Slide 230:

CASCADE

Province

Name Country Capital

__Berin | D Berlin

CASCADE
/ Distr.Col. US | Washington

DELETE FROM Country
WHERE Code=’D’

655

SQL STANDARD

« The SQL Standard gives a hard-to-understand procedural specification of referential

actions.

 Database Systems implemented only ON DELETE CASCADE (as optional alternative to
ON DELETE NO ACTION) for a long time (late 90s)

» Nondeclarative semantics if ON DELETE SET NULL or ON UPDATE CASCADE are
implemented.
e.g. Oracle 11: the most recently defined (more exactly: activated) referential action is
executed first.

« combination with transactions and PL/SQL and triggers becomes complex.

656

Concepts

* Intuitive concept of “Event Condition Action Rules”:
ON DELETE (of referenced tuple) CASCADE (update to referencing tuple(s)

* can be read as a declarative specification how integrity is to be maintained:
“Whenever the set U of updates includes the deletion of a referenced tuple wrt. referential
integrity constraint S.B — R.A) the cascaded update of the referencing tuple(s) must also
be contained in U. (etc. for other referential actions)”

= Set-oriented characterization of all updates that “complete” a transaction wrt. referential
integrity maintenance.

657

... from a declarative point of view, the semantics should be easy, and it must be
unambiguous. This lead us to playing around with Datalog (and Statelog) around Easter 1996:

Publications

The following papers are accessible via http://dblp.uni-trier.de/ (and partially via the
DBIS Publications Web pages):

 B. Ludéascher, W. May und J. Reinert. Towards a Logical Semantics for Referential
Actions in SQL. In Proc. Intl. Workshop on Foundations of Models and Languages for
Data and Objects: Integrity in Databases (FMLDQO’96), Dagstuhl Castle, Germany, 1996.

» B. Ludascher, W. May und G. Lausen. Referential Actions as Logical Rules. In Proc. ACM
Symposium on Principles of Database Systems (PODS’97), pp. 217-224, 1997.

 B. Ludascher und W. May. Referential Actions: From Logical Semantics to
Implementation. In Proc. Intl. Conference on Extending Database Technology (EDBT’98),
Springer LNCS 1377, pp. 404-418, 1998.

« W. May und B. Ludascher. Understanding the Global Semantics of Referential Actions
using Logic Rules. In ACM Transactions on Database Systems (TODS), 27(4):343-397,
2002.

658

12.2.1 Straightforward Logical Semantics: Encoding as Rules

« consider only ON DELETE CASCADE/SET NULL:

% prov(Country) refs country(code) on delete cascade

del_province (PN, C,PPop,PA,PCap,PCapProv) :- del_country(N,C,Cap,CapP,A,P),
province (PN,C,PPop,PA,PCap,PCapProv) .

% city(Country) refs country(code) on delete set null

upd_city(CN,C,CP,CPop,Long,Lat,E1,CN,null,CP,CPop,Long,Lat,E1) :-
del_country(N,C,Cap,CapP,A,P), city(CN,C,CP,CPop,Long,Lat,El).

% city(Country,Province) refs province(name,country) on delete cascade

del_city(CN,C,PN,CPop,Long,Lat,E1) :- del_province(PN,C,PPop,PA,PCap,PCapProv),
city(CN,C,PN,CPop,Long,Lat,E1) .
inconsistent :- del_city(CN,C,CP,CPop,Long,Lat,El),

upd_city(CN,C,CP,CPop,Long,Lat,E1,CN2,C2,CP2,CPop2,Long2,Lat2,E12).
country("Germany","D","Berlin","Berlin",356910,83536115).
province("Berlin","D",3472009,889,"Berlin","Berlin").
city("Berlin","D","Berlin",3472009,13,52,null).
del_country("Germany","D","Berlin","Berlin",356910,83536115).
% 7- error. [Filename: Datalog/refint.s]

 cascaded updates and “inconsistent” are true.

659

Deletions: Encoding as Rules

« ON DELETE/UPDATE NO ACTION:

— if there is a referencing tuple that is not deleted (or modified to reference another
parent) in the same transaction, then the update is not allowed, e.g., Reference
Organization(City,Country,Province) — City(City,Country,Province) ON DELETE NO
ACTION ON UPDATE CASCADE

= all potential updates during the transaction must be considered.
» ext_ACTION (“external”): the updates issued by the user/by the program.

* pot_ACTION (“potential”): all updates issued by the user/by the program or resulting from
these by any referential action.

660

12.2.2 Deletions: Encoding as Rules

» Consider only deletions and ON DELETE CASCADE/NO ACTION.

pot_del_country(N,C,Cap,CapP,A,Pop) :- ext_del_country(N,C,Cap,CapP,A,Pop),
country(N,C,Cap,CapP,A,Pop) .
% Province(Country) refs Country(code) on delete cascade
pot_del_province(P,C,PPop,PA,PCap,PCapProv) :- pot_del_country(N,C,Cap,CapP,A,Pop),
province(P,C,PPop,PA,PCap,PCapProv) .
% City(Country) refs Country(code) on delete cascade
pot_del_city(CN,C,P,CPop,Long,Lat,E1l) :-
pot_del_country(N,C,Cap,CapP,A,Pop),
city(CN,C,P,CPop,Long,Lat,E1).
% City(Country,Province) refs Province(name,country) on delete cascade
pot_del_city(CN,C,P,CPop,Long,Lat,E1l) :-
pot_del_province(P,C,PPop,PA,PCap,PCapProv),

city(CN,C,P,CPop,Long,Lat,E1). [Filename: Datalog/refint1.s]

661

Deletions: Encoding as Rules
* block deletions/updates if ON UPDATE NO ACTION
* propagate blocking upwards through CASCADES

pot_del_organization(0,N,Ci,Co,P,E) :- ext_del_organization(0,N,Ci,Co,P,E),
organization(0,N,Ci,Co,P,E).
% refs from isMember to Country and Organization: ON DELETE CASCADE.
pot_del_isMember(C,0,T) :- pot_del_country(N,C,Cap,CapP,A,Pop),
isMember(C,0,T).
pot_del_isMember(C,0,T) :- pot_del_organization(0,N,Ci,Co,P,E),
isMember(C,0,T). [Filename: Datalog/refint2.s]

662

Deletions: Encoding as Rules

 Organization(City,Country,Province) — City(City,Country,Province) ON DELETE NO
ACTION ON UPDATE CASCADE

* block deletions/updates if ON UPDATE NO ACTION and child tuple remains,

* propagate blocking upwards through CASCADEs.

blk_del_city(Ci,Co,P,CPop,Long,Lat,El) :- pot_del_city(Ci,Co,P,CPop,Long,Lat,El),
organization(0,N,Ci,Co,P,E), rem_organization(0,N,Ci,Co,P,E).
rem_organization(O,N,Ci,Co,P,E) :- organization(O,N,Ci,Co,P,E),
not del_organization(0,N,Ci,Co,P,E). %%% del not yet defined
blk_del_province(P,C,PPop,PA,PCap,PCapProv) :- pot_del_city(CN,C,P,CPop,Long,Lat,El),
blk_del_city(CN,C,P,CPop,Long,Lat,El), pot_del_province(P,C,PPop,PA,PCap,PCapProv).
blk_del_country(N,C,Cap,CapP,A,Pop) :- pot_del_province(P,C,PPop,PA,PCap,PCapProv),
blk_del_province(P,C,PPop,PA,PCap,PCapProv), pot_del_counqFuéﬂaﬁugapegaggyﬁeﬁﬁﬂp3]

663

Deletions: Encoding as Rules
» (if any update is blocked do nothing).

 execute (and appropriately cascade) all external updates that are not blocked.

del_country(N,C,Cap,CapP,A,Pop) :- ext_del_country(N,C,Cap,CapP,A,Pop),
country(N,C,Cap,CapP,A,Pop), not blk_del_country(N,C,Cap,CapP,A,Pop).

del_province(P,C,PPop,PA,PCap,PCapProv) :- del_country(N,C,Cap,CapP,A,Pop),
province(P,C,PPop,PA,PCap,PCapProv) .

del_city(CN,C,P,CPop,Long,Lat,E1l) :- del_country(N,C,Cap,CapP,A,Pop),
city(CN,C,P,CPop,Long,Lat,E1).

del_city(CN,C,P,CPop,Long,Lat,E1l) :- del_province(P,C,PPop,PA,PCap,PCapProv),
city(CN,C,P,CPop,Long,Lat,E1) .

del_isMember(C,0,T) :- del_country(N,C,Cap,CapP,A,P), isMember(C,0,T).

del_organization(0,N,Ci,Co,P,E) :- ext_del_organization(0,N,Ci,Co,P,E),
organization(0,N,Ci,Co,P,E), not blk_del_organization(0,N,Ci,Co,P,E).

del_isMember(C,0,T) :- del_organization(0,N,Ci,Co,P,E), isMember(C,0,T).

[Filename: Datalog/refint4.s]

» Dependency graph: ext——> pot—> blk - > del

N

rem

664

Deletions: Encoding as Rules

country("Germany","D","Berlin","Berlin",356910,83536115).
province("Berlin","D",3472009,889, "Berlin","Berlin").
city("Berlin","D","Berlin",b3472009,13,52,null).
ext_del_country("Germany","D","Berlin","Berlin",6356910,83536115).
organization("EU","European Union","Brussels","B","Brabant","1992-02-07").
isMember ("D","EU", "member") .

% lparse -n O refintl.s refint2.s refint3.s refint4.s refint-del-d.s| smodels

[Filename: Datalog/refint-del-d.s]
There is only one stable model (i.e., it coincides with the well-founded model) which is total:

pot_del_country("Germany","D","Berlin","Berlin",6356910,83536115)
pot_del_province("Berlin","D",3472009,889,"Berlin","Berlin")
pot_del_city("Berlin","D","Berlin",b3472009,13,52,null)
pot_del_isMember ("D","EU", "member")
del_country("Germany","D","Berlin","Berlin",356910,83536115)
del_province("Berlin","D",3472009,889,"Berlin","Berlin")
del_city("Berlin","D","Berlin",3472009,13,52,null)

del_isMember ("D","EU", "member")

rem_organization("EU","European Union","Brussels","B","Brabant","1992-02-07")

665

Deletions: Encoding as Rules

ext_del_country("Belgium","B","Brussels","Brabant",30510,10170241).
country("Belgium","B","Brussels","Brabant",30510,10170241).
city("Brussels","B","Brabant",951580,null,null,null).

province ("Brabant","B",2253794,3358, "Brussels", "Brabant") .
organization("EU","European Union","Brussels","B","Brabant","1992-02-07").
isMember ("B","EU", "member") .

% lparse -n O refintl.s refint2.s refint3.s refint4.s refint-del-bl.s| smodels

[Filename: Datalog/refint-del-b1.s]
Again, a total unique stable model = well-founded model — it contains blockings:

ext_del_country("Belgium","B","Brussels","Brabant",30510,10170241)
pot_del_country("Belgium","B","Brussels","Brabant",30510,10170241)
pot_del_isMember ("B","EU", "member")
pot_del_province("Brabant","B",2253794,3358, "Brussels", "Brabant")
pot_del_city("Brussels","B","Brabant",951580,null,null ,null)

rem_organization("EU","European Union","Brussels","B","Brabant","1992-02-07") <L

blk_del_city("Brussels","B","Brabant",951580,null,null ,null) <L
blk_del_province("Brabant","B",2253794,3358, "Brussels", "Brabant") <<
blk_del_country("Belgium","B","Brussels","Brabant",30510,10170241) <<

666

Deletions: Encoding as Rules

ext_del_country("Belgium","B","Brussels","Brabant",30510,10170241).
ext_del_organization("EU","European Union","Brussels","B","Brabant","1992-02-07").
country("Belgium","B","Brussels","Brabant",30510,10170241) .
city("Brussels","B","Brabant",951580,null,null,null).
province("Brabant","B",2253794,3358, "Brussels", "Brabant") .
organization("EU","European Union","Brussels","B","Brabant","1992-02-07").
isMember ("B","EU", "member") .

% lparse -n O refintl.s refint2.s refint3.s refint4.s refint-del-b2.s| smodels

[Filename: Datalog/refint-del-b2.s]
Again, a total unique stable model = well-founded model:

ext_del_country("Belgium","B","Brussels","Brabant",30510,10170241)
ext_del_organization("EU","European Union","Brussels","B","Brabant","1992-02-07")
pot_del_ [...]

del_country("Belgium","B","Brussels","Brabant",30510,10170241)
del_city("Brussels","B","Brabant",951580,null,null,null)
del_province("Brabant","B",2253794,3358, "Brussels", "Brabant")

del_isMember ("B","EU", "member")

del_organization("EU","European Union","Brussels","B","Brabant","1992-02-07")

667

Deletions: Encoding as Rules

» Change the reference from City to Province from CASCADE to NO ACTION:
(in refint1.s and refint4.s)

pot_del_country(N,C,Cap,CapP,A,Pop) :- ext_del_country(N,C,Cap,CapP,A,Pop),
country(N,C,Cap,CapP,A,Pop) .
% Province(Country) refs Country(code) on delete cascade
pot_del_province(P,C,PPop,PA,PCap,PCapProv) :- pot_del_country(N,C,Cap,CapP,A,Pop),
province(P,C,PPop,PA,PCap,PCapProv) .
% City(Country) refs Country(code) on delete cascade
pot_del_city(CN,C,P,CPop,Long,Lat,E1l) :-
pot_del_country(N,C,Cap,CapP,A,Pop),
city(CN,C,P,CPop,Long,Lat,E1).
% City(Country,Province) refs Province(name,country) on delete no action <<<<<<<<
blk_del_province(P,C,PPop,PA,PCap,PCapProv) :-
pot_del_province(P,C,PPop,PA,PCap,PCapProv),
city(CN,C,P,CPop,Long,Lat,E1), rem_city(CN,C,P,CPop,Long,Lat,E1).
rem_city(CN,C,P,CPop,Long,Lat,E1l) :- city(CN,C,P,CPop,Long,Lat,El),
not del_city(CN,C,P,CPop,Long,Lat,E1l).

[Filename: Datalog/refint1b.s]

668

Deletions: Encoding as Rules
del_country(N,C,Cap,CapP,A,Pop) :- ext_del_country(N,C,Cap,CapP,A,Pop),
country(N,C,Cap,CapP,A,Pop), not blk_del_country(N,C,Cap,CapP,A,Pop).

del_province(P,C,PPop,PA,PCap,PCapProv) :- pot_del_country(N,C,Cap,CapP,A,Pop),
del_country(N,C,Cap,CapP,A,Pop), province(P,C,PPop,PA,PCap,PCapProv) .
del_city(CN,C,P,CPop,Long,Lat,E1l) :- pot_del_country(N,C,Cap,CapP,A,Pop),
del_country(N,C,Cap,CapP,A,Pop), city(CN,C,P,CPop,Long,Lat,E1).
del_isMember(C,0,T) :- pot_del_country(N,C,Cap,CapP,A,P),
del_country(N,C,Cap,CapP,A,P), isMember(C,0,T).
del_organization(0,N,Ci,Co,P,E) :- ext_del_organization(0O,N,Ci,Co,P,E),
organization(0,N,Ci,Co,P,E), not blk_del_organization(O,N,Ci,Co,P,E).
del_isMember(C,0,T) :- del_organization(O,N,Ci,Co,P,E), isMember(C,0,T).
[Filename: Datalog/refint4b.s]

* using pot_del is sometimes redundant, and only required for providing smodels with a
domain predicate.

669

Deletions: The Resulting Models

% lparse -n O refintlb.s refint2.s refint3.s refintd4b.s refint-del-d.s| smodels
« 3 stable models, 2 of them total, one partial.

ext_del_country("Germany","D","Berlin","Berlin",6356910,83536115)
pot_del_country("Germany","D","Berlin","Berlin",356910,83536115)
pot_del_province("Berlin","D",3472009,889, "Berlin","Berlin")
pot_del_city("Berlin","D","Berlin",b3472009,13,52,null)
pot_del_isMember ("D","EU", "member")
del_province("Berlin","D",3472009,889,"Berlin","Berlin")
del_country("Germany","D","Berlin","Berlin",356910,83536115)
del_city("Berlin","D","Berlin",3472009,13,52,null)

del_isMember ("D","EU", "member")

ext_del_country("Germany","D","Berlin","Berlin",b356910,83536115)
pot_del_country("Germany","D","Berlin","Berlin",356910,83536115)
pot_del_[...]
blk_del_country("Germany","D","Berlin","Berlin",356910,83536115)
blk_del_province("Berlin","D",3472009,889, "Berlin","Berlin")
rem_city("Berlin","D","Berlin",3472009,13,52,null)

* in the partial stable model (=the well-founded model), all pot_del are true, all b1k_del
and all del are undefined.

670

Deletions: Interpreting the Resulting Models
3 stable models:
1. the well-founded, partial one:
all pot_del are true, the blk_del and del are undefined.
« two total stable ones:

2. all pot_del are true, the del are true, and the blk_del are false (since the reason for
blk_del_prov(...) is deleted).

3. all pot_del are true, the blk_del are true, and the del are false (since the deletion of
the province is not allowed due to blocking).

Application-Specific Priorities (cf. EDBT paper)
+ the “intended” one is the stable model (2) that gives priority to deletions against blockings.
* including game-theoretic interpretation:

— “del_p(x)” is won if deletion is possible

— counter-moves: “how?” and “what about this referencing tuple q(y)”,

— justification “cascaded from “del_r(z)” and “claim: del_q(y)”,

— infinite games (cycling around via deleted blocking tuples) are won for the deleter.

— the well-founded model can be used — polynomial.

671

Deletions: Encoding as Rules

» Sets of (external) delete requests are monotonic:
Let del(D) denote the actual set of (cascaded) deletions on the database.

° del(Dl U Dg) = del(Dl) U del(Dg),

 If D; and D, are admissible (wrt. NO ACTION), then D, U D, is admissible
(but not vice versa, recall the “Belgium” example — D; U D5 is admissible even though D,
alone is not admissible).

« with CASCADE and SET NULL, conflicts can arise;
« with DELETE+CASCADE/SET NULL and UPDATE even more conflicts can arise.

672

12.2.3 Updates: Encoding as Rules

 with updates, the modeling is more involved:
— updates can create new foreign keys,
— usually such updates are cascaded from the appropriate parent,
— but overlapping FKs induce interferences with other K/FKs.

— Consider S.X—R.Y ON UPDATE NO ACTION and r(a),r(b)and s(a).
A transaction that modifies r(a) — r(c) and s(a) — s(b) is admissible.

= not only tuple-based, but key-foreign-key-based.

— different cascaded modifications can be applied at the same time to a tuple.

* Recall:

— SET NULL cannot create new foreign keys — null values cannot violate any SQL
integrity constraint (except NOT NULL).

— actual conflicts in a “diamond” from a single update can only result from CASCADE
and SET NULL since then different changes are applied.

* the approach must cover the general “worst case”, not only “intuitive” cases.

673

Updates: Encoding as Rules

« for every key and foreign key:
pot_chg_R_Kj...Kx(X1,.... X, Y1,...,Yr) and chg_R_Kj..Ki(Xq1,....%,Y 1,00, Yk)
(change f/key attributes K, ..., K of tuple R(Xy,...,X,) o Y1,...,Y%).

» propagation for every FK/K reference (ON UPDATE CASCADE):
pot_prp_Rp_Re Fi...Fp(X1,... X0, Y1,..,Yi)
(propagate update from Rp’s keys to FK Fi, ..., Fy of tuple Ro (X1, ..., X,)).

* user updates: projection to the keys and foreign keys (K7, ..., Ki) of R:
pot_prp_ext R Ki..Kp(X1,...X,,Yi1,...,Yig) -
ext_ mod R(Xi,....X,.,Y1,...,Y,), (Yig,...,YiR) 1= (Xiq,...,Xig).

« collect propagated changes to keys/foreign keys (overlappings!):
Simplified pattern: Consider two “incoming” propagations from Rp,.A — R..K; and
Rp,.B — R¢.K, concern the key (K, K») of Re:
pot_chg Re Ki,Ko(Xq,....X,,Y1,Y2) -
pot_prp_Rp, Reo_ Ki(Xi,...X,, Y1), pot_prp_Rp, Re_Kao(Xq,..., X, Y2),
(Y1,Y2) I= (XK, XK,)-
(for the fully general rule see (C H;) in the TODS paper)

674

Updates: Encoding as Rules

Changes of Primary Keys Rp(K;, ..., K}\) are then handled according to the referential
actions of their “child tuples”

* Ro(Fy,...,Fr) REFERENCES Rp(Kj, ..., Kx) ON UPDATE NO ACTION:
blk_chg Rp_ Ki,... ,Ke(X1,. o, X0, Y1500, Y5) -
pot chg Rp_Ki,...,Kp(X1,....X5,Y1,...,Y%), rem_refd Rp Re Fi. Fr(Yq,...,Yg).

* Ro(Fy,...,Fy) REFERENCES Rp(Ky,...,K)) ON UPDATE CASCADE:
pot prp_Rp_Re_Fi..Fip(Z1,...Z0,Y1,...,Yk) -
pot chg Rp Ki,... . Kie(X1,.... %X, Y1,...,Y),
7[F1se .o, Fel(Z1y00Zy) = 7[Key o KEN (X0 X))
and (block propagation if change of child is blocked)
blk prp Rp_Re_Fi..Fe(X1,0.0, X0, Y 1,0, Yg) -
pot_ prp_Rp Re Fi...Fr(Xy,.... X0, Y1, k),
blk chg Rc Fi,...,Ki(X1,0e0, X0, Y150 .0, Y5)
and (block parent change if propagation to some child is blocked)
blk chg Rp Ki,...,Kp(X1,...,.%,,Y1,...,Y%),
pot chg Rp Ki,... . Ke(X1,..o,. X0, Y1,. ., Y5),
blk_prp_ Rp_Rc_Fi..Fi(Z1,....2,,Y1,...,Y 1),
7[F1se . FEl(Z1y0Zy) = 7[Ke, o KEN(X 0 X))

675

