
Semantic Web 1

1. Unit: SPARQL

Exercise 1.1 (SPARQL-Queries) Give SPARQL queries against mondial.n3 that yield an-
swers to the following questions:

• Name and population (ordered) of all countries that have more than 10.000.000 inhabitants.

• Name of all countries that have at least one city with more than 1.000.000 inhabitants.

• Name of all countries that have no city with more than 1.000.000 inhabitants.

• Name of all european countries that have no membership in the European Union.

• Abbreviations of all organizations whose headquarter is located in the capital of a member
country (together with the names of the country and the city).

bigcountries.sparql

prefix mon: <http://www.semwebtech.org/mondial/10/meta#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?N ?P

FROM <file:mondial.n3>

WHERE {?X rdf:type mon:Country . ?X mon:name ?N . ?X mon:population ?P .

FILTER (?P > 10000000) }

ORDER BY DESC(?P)

bigcities.sparql

prefix mon: <http://www.semwebtech.org/mondial/10/meta#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT DISTINCT ?N

FROM <file:mondial.n3>

WHERE {?X rdf:type mon:Country . ?X mon:name ?N .

?X mon:hasCity ?C . ?C mon:population ?P .

FILTER (?P > 1000000) }

nobigcities.sparql

prefix mon: <http://www.semwebtech.org/mondial/10/meta#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT distinct ?N

FROM <file:mondial.n3>

WHERE {?X rdf:type mon:Country . ?X mon:name ?N .

OPTIONAL { ?X mon:hasCity ?C . ?C mon:population ?P . FILTER (?P > 1000000) } .

FILTER (!BOUND(?P)) }

no-eu.sparql

prefix mon: <http://www.semwebtech.org/mondial/10/meta#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT distinct ?N

FROM <file:mondial.n3>

WHERE {?X rdf:type mon:Country . ?X mon:name ?N .

?X mon:encompassed [mon:name ’Europe’] .

Semantic Web 2

OPTIONAL { ?X mon:isMember [mon:name ’European Union’] .

?X mon:name ?XX }

FILTER (!BOUND(?XX)) }

bind XX (to anything ...) in case that EU membership is satisfied

cap-hq.sparql

prefix mon: <http://www.semwebtech.org/mondial/10/meta#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?XN ?OA ?CN

FROM <file:mondial.n3>

WHERE {?O rdf:type mon:Organization . ?O mon:abbrev ?OA .

?O mon:hasHeadq ?C .

?X rdf:type mon:Country . ?X mon:carCode ?XN .

?X mon:capital ?C . ?C mon:name ?CN .

?X mon:isMember ?O }

ORDER BY ?CN

This is an example for a cyclic join: Organization - hasHeadq - City - isCapital - Country -
isMember - Organization. Note the occurrence of the join variable O that closes this circle. When
evaluated in the same order as stated in the query, the last triple pattern acts as a selection (the
actual evaluation order is defined by the optimizer).

Exercise 1.2 (SPARQL Optional)

Give a SPARQL query against mondial.n3 that yield answers to the following question:

• For each country, give the name, and the population.
If more than 1/4 of the population are living in its capital, give also the name and the population
of the capital.

• Give the same query in SQL (against relational Mondial) and in XML/XQuery (against mon-
dial.xml).

cities-not-capital.sparql

prefix mon: <http://www.semwebtech.org/mondial/10/meta#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

select ?N1 ?P1 ?N2 ?P2

from <file:mondial.n3>

where { ?X a mon:Country; mon:name ?N1; mon:population ?P1 .

OPTIONAL {?X mon:capital [mon:name ?N2; mon:population ?P2]

FILTER (?P2 > 0.25 * ?P1) }}

The central issue of this exercise is the “if-”functionality of the OPTIONAL with a filter in it.

The same in XQuery can explicitly use XQuery’s functional-style if-construct:

for $c in //country

let $pop := $c/population[position()=last()],

$cap := id($c/@capital),

$cappop := $cap/population[position()=last()]

Semantic Web 3

return

<result code="{$c/@car_code}" pop="{$c/population[position()=last()]}">

{ if ($cappop > 0.25 * $pop)

then (attribute{"cap"}{$cap/name}, attribute{"cappop"}{$cappop})

else ()

}

</result>

The algebraically closest SQL relative to SPARQL’s OPTIONAL is the outer join (note that
the outer SELECT-FROM is semantically redundant, but syntactically required; cf. that for the
UNION operator it would not be necessary)

SELECT x.code, x.population, y.name, y.population

FROM

(SELECT code, population

FROM country) x

LEFT OUTER JOIN

(SELECT country.code, city.name, city.population

FROM city,country

WHERE city.name=country.capital AND city.country=country.code

AND city.province= country.province

AND city.population > 0.25 * country.population) y

ON x.code = y.code

Another way with classical SQL is a UNION (note the OR-NULL check in the second subquery):

(SELECT x.code, x.population, y.name, y.population

FROM Country x, City y

WHERE x.capital = y.name AND x.code=y.country AND x.province=y.province

AND y.population > 0.25* x.population)

UNION

(SELECT x.code, x.population, NULL, NULL

FROM Country x, City y

WHERE x.capital = y.name AND x.code=y.country AND x.province=y.province

AND (y.population IS NULL

OR NOT(y.population > 0.25* x.population)))

SQL today also supports the functional CASE-WHEN-THEN-ELSE construct:

SELECT x.code, x.population,

CASE WHEN y.population > 0.25* x.population THEN y.name ELSE NULL END AS cap,

CASE WHEN y.population > 0.25* x.population THEN y.population ELSE NULL END AS cappop

FROM Country x, City y

WHERE x.capital = y.name AND x.code=y.country AND x.province=y.province

It is important to know which constructs a language supports and when and how to use them.

