2. Unit: SPARQL Formal Semantics

Exercise 2.1 (SPARQL Formal Semantics) Consider the SPARQL Formal Semantics.

a) Define a “null-tolerant join” for the relational algebra that acts like the <t of the SPARQL
algebra.

b) Which SQL construct is similar to the “\” operator in the SPARQL algebra?

¢) In the SPARQL algebra, OPT is expressed via left outer join, which is defined via “\” (while
a corresponding MINUS does not exist in the SPARQL syntax).

Such a MINUS (cf. part (b) of this exercise) provides a more intuitive idea of negation than
bound(z)”. Give a general pattern how to express (P MINUS P) in SPARQL 1.0 syntax.

d) Recall the definition of < in the relational algebra (DB lecture) and define SPARQL’s =< in
a similar way.

“'

Exercise 2.2 (Outer Join) Recall that SPARQL’s OPTIONAL corresponds to a left outer join.

a) Give a general pattern how to express a full outer join (i.e., “outer” to both sides) in the
SPARQL algebra (consider as input two mappings R and S and give an expression for R < S)
and in SPARQL.

b) Give all cities (name as ?XN) that are the capital of a country (:capital) or that are located at
a river (:locatedAt) or both (return the names ?CN of the country and/or the river (?RN)).

Exercise 2.3 (SPARQL Formal Semantics: OPTIONAL) Consider the SPARQL Formal

Semantics.
Prove or show a counterexample:
The statement (from W3C SPARQL Working Draft 20061004)

If OPT(A, B) is an optional graph pattern, where A and B are graph patterns, then S is a
solution of OPT(A,B) if
e S is a pattern solution of A and of B, or

e S is a solution to A, but not to A and B.

describes the same semantics as above.

Exercise 2.4 (SPARQL: Filter-Safe Expressions) Counsider the following definition:

Definition 1 ([PAGO06, AG 08]) A SPARQL expression is filter-safe, if for every subexpression
of the form (P FILTER R), var(R) C var(P).

Filters of the forbidden form are rather commonly used, e.g.,

{ ?P1 a :Person; :age 7Al. 7P2 a :Person
OPTIONAL { ?P2 :age 7A2 . FILTER (7A2 > 7A1) }}

a) Sketch an algorithm that rewrites non-filter safe queries into safe ones. First, try it on your
own, then maybe look in [AGOS].

b) Give a SPARQL query for “Give the names of all countries, such that there is some city in that
country where more than 1/4 of the population are living in”, and make it filter-safe.
Give also its SPARQL algebra expression.

¢) Give a SPARQL query for “Give the names of all countries, such that there is no city in that
country where more than 1/4 of the population are living in”, and make it filter-safe.
Give also its SPARQL algebra expression.

d) Is there a similar thing in SQL, in the relational algebra, and in the relational calculus?

