
2. Unit: SPARQL Formal Semantics

Exercise 2.1 (SPARQL Formal Semantics) Consider the SPARQL Formal Semantics.

a) Define a “null-tolerant join” for the relational algebra that acts like the ⊲⊳ of the SPARQL
algebra.

b) Which SQL construct is similar to the “\” operator in the SPARQL algebra?

c) In the SPARQL algebra, OPT is expressed via left outer join, which is defined via “\” (while
a corresponding MINUS does not exist in the SPARQL syntax).
Such a MINUS (cf. part (b) of this exercise) provides a more intuitive idea of negation than “!
bound(x)”. Give a general pattern how to express (P1 MINUS P2) in SPARQL 1.0 syntax.

d) Recall the definition of ⊐⊲⊳ in the relational algebra (DB lecture) and define SPARQL’s ⊐⊲⊳ in
a similar way.

Exercise 2.2 (Outer Join) Recall that SPARQL’s OPTIONAL corresponds to a left outer join.

a) Give a general pattern how to express a full outer join (i.e., “outer” to both sides) in the
SPARQL algebra (consider as input two mappings R and S and give an expression for R⊐⊲⊳⊏S)
and in SPARQL.

b) Give all cities (name as ?XN) that are the capital of a country (:capital) or that are located at
a river (:locatedAt) or both (return the names ?CN of the country and/or the river (?RN)).

Exercise 2.3 (SPARQL Formal Semantics: OPTIONAL) Consider the SPARQL Formal
Semantics.

Prove or show a counterexample:

The statement (from W3C SPARQL Working Draft 20061004)

If OPT(A, B) is an optional graph pattern, where A and B are graph patterns, then S is a
solution of OPT(A,B) if

• S is a pattern solution of A and of B, or

• S is a solution to A, but not to A and B.

describes the same semantics as above.

Exercise 2.4 (SPARQL: Filter-Safe Expressions) Consider the following definition:

Definition 1 ([PAG06, AG 08]) A SPARQL expression is filter-safe, if for every subexpression
of the form (P FILTER R), var(R) ⊆ var(P).

Filters of the forbidden form are rather commonly used, e.g.,

{ ?P1 a :Person; :age ?A1. ?P2 a :Person

OPTIONAL { ?P2 :age ?A2 . FILTER (?A2 > ?A1) }}

a) Sketch an algorithm that rewrites non-filter safe queries into safe ones. First, try it on your
own, then maybe look in [AG08].

b) Give a SPARQL query for “Give the names of all countries, such that there is some city in that
country where more than 1/4 of the population are living in”, and make it filter-safe.
Give also its SPARQL algebra expression.

c) Give a SPARQL query for “Give the names of all countries, such that there is no city in that
country where more than 1/4 of the population are living in”, and make it filter-safe.
Give also its SPARQL algebra expression.

d) Is there a similar thing in SQL, in the relational algebra, and in the relational calculus?

