Semantic Web 4
2. Unit: SPARQL Formal Semantics

Exercise 2.1 (SPARQL Formal Semantics) Consider the SPARQL Formal Semantics.

a) Define a “null-tolerant join” for the relational algebra that acts like the 1 of the SPARQL
algebra.

b) Which SQL construct is similar to the “\” operator in the SPARQL algebra?

¢) In the SPARQL algebra, OPT is expressed via left outer join, which is defined via “\” (while
a corresponding MINUS does not exist in the SPARQL syntax).

Such a MINUS (cf. part (b) of this exercise) provides a more intuitive idea of negation than
bound(z)”. Give a general pattern how to express (P MINUS P;) in SPARQL 1.0 syntax.

d) Recall the definition of =< in the relational algebra (DB lecture) and define SPARQL’s I in
a similar way.

“'

(Parts of the solution are taken from [PAGO6]: Jorge Pérez, Marcelo Arenas, Claudio Gutierrez:
Semantics and Complexity of SPARQL. International Semantic Web Conference 2006: 30-43, and
from [AGO8]: Renzo Angles and Claudio Gutierrez: The Expressive Power of SPARQL. Interna-
tional Semantic Web Conference 2008: 114-129; use http://www.dblp.org)

a) Consider R(A, B,C) and S(A, B, D) where A is non-null, and B can contain nulls. Then, the
null-tolerant join i,,;; can be defined by the following steps:
1) cartesian product of both relations, immediately evaluating the condition

ri.a =rg.aV (ri.aisnull) Vrg.a(is null) .

The result has the format [R;.A, R2.A, R1.B, R2.B, C, D).

— R;.A has always the same (non-null) value as Rz.A.
— R;.B and R,.B can contain the same non-null-value, but also any of them can contain
a null value, while the other is also null, or contains a non-null value.
2) apply a projection that removes Ry.A.

3) For handling B, a new basic operator has to be defined (similar to SQL’s binary “coalesce”
function: if the first argument is null, take the second one):

coalesce : ANY x ANY, (v1,v2) — vy; if vy is not null,
(null,v) — v

(note that coalesce(R;y.B, Re.B) = coalesce(Ry.B, Ry1.B) after evaluating the condition in
Step (1)).
b) SQL’s “WHERE NOT EXISTS ...” is similar.
Consider Ry and Ry as above.
SELECT * FROM R; WHERE NOT EXISTS (
SELECT * FROM Ry
WHERE R;.A = Ry.A AND (R;.B= Ry.B OR R;.B is null OR R,.B is null)).
¢) (taken from [AGO8], Section 3)
The basic idea is to replace (P; MINUS P,) by

((P, OPT P,) FILTER ('bound(?Y)))

where Y is a variable that occurs in P, but not in P;.
Two more aspects have to be considered:

o If P, is of the form (P OPT PJ), then ¥ must be a variable from P} — i.e., a non-optional
variable (otherwise there are solutions to P, that do not bind it).

Semantic Web 5

o If there is no such variable (i.e. all non-optional variables of P, occur also in P;, one must
introduce one: take any non-optional triple pattern 7" that
i) contains at least one new variable X’ and

ii) is sure to be satisfied whenever (P; and) P, is satisfied (i.e., it can be a renamed copy
(?7X q ?X’) of some triple pattern (?X q 7Z) from Py, or any arbitrary pattern that is
known to be satisfied in the application)

and use ((P, OPT (P, AND 7)) FILTER (!bound(X"))) .

In practice, instead of (X’ p t), any pattern can be used where it is sure that it is also bound

for each match of P;.

Example: all cities in a country which are not its capital:

cities-not-capital.sparql
prefix mon: <http://www.semwebtech.org/mondial/10/meta#>
prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
select 7X 7C
from <file:mondial.n3>
where { ?X a mon:Country; mon:hasCity 7C
OPTIONAL {?X mon:capital ?C . 7X mon:capital ?7C2}
FILTER (! bound(?7C2)) }

X and C occur in P; and in Py, so a (useless) triple pattern is added to bind Cs.

Q1 Qs = (21 <1 Q2)U(21\ (21 < Q2)) where the semijoin is defined as usual as Q1 < Qg =
w[var(Q1)](Q1 < Q2), and \ s denotes the classical set difference from set algebra.

Note that it is not necessary to extend the second part of the union with null values, as it is
done in the relational algebra.

Exercise 2.2 (Outer Join) Recall that SPARQL’s OPTIONAL corresponds to a left outer join.

a)

b)

Give a general pattern how to express a full outer join (i.e., “outer” to both sides) in the
SPARQL algebra (consider as input two mappings R and S and give an expression for R < S)
and in SPARQL.

Give all cities (name as 7XN) that are the capital of a country (:capital) or that are located at
a river (:locatedAt) or both (return the names ?CN of the country and/or the river (?RN)).

Replace the full outer join by a two left outer joins: (R =<1.5)U(S =<1 R). Note that the intersec-
tion of both subterms is the inner join. With set semantics, these duplicates are automatically
removed. Otherwise apply a DISTINCT.

Alternatively, the inner join can be removed from the second term:

(R45) U (S R) \s (S 4 R))
or (R=<1S)U((ST<R)\ (S < R))

(recall that \ denotes the not-exists-like operator from the SPARQL algebra, and \s denotes
the classical set difference).
For SPARQL, the query is of the form
DISTINCT ... WHERE { { P_R(X) OPTIONAL P_S(Y) }
UNION
{ P_S(Y) OPTIONAL P_.R(X) } }
or
. WHERE { { P_R(X) OPTIONAL P_S(Y) }
UNION
{ P_S(Y) OPTIONAL P_R(X) FILTER !bound(X) } }

Semantic Web 6

b) There is an intuitive solution that replaces the outer join by two optionals: take a city, and if
it is a capital, list the country, and if it is located at a river, list the river:

capitals-at-rivers-1.sparql

prefix mon: <http://www.semwebtech.org/mondial/10/meta#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

select 7XN 7CN 7RN

from <file:mondial.n3>

where { ?X a mon:City ; mon:name 7XN.
OPTIONAL { ?C a mon:Country; mon:name ?CN; mon:capital ?X }
OPTIONAL { ?X mon:locatedAt 7R . 7R a mon:River; mon:name 7RN}
FILTER (bound(?C) || bound(7R)) }

The query yields one line for each city, including those that are neither capitals, nor located at
a river. These can be removed by adding
FILTER (bound(7C) || bound(?RN)).

The second solution applies the solution of (a):

capitals-at-rivers-2.sparql
prefix mon: <http://www.semwebtech.org/mondial/10/meta#>
prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
select 7XN ?CN 7RN
from <file:mondial.n3>
where {{ ?X a mon:City ; mon:name 7XN .
?C a mon:Country; mon:name 7CN; mon:capital 7X
OPTIONAL { ?X mon:locatedAt 7R . ?R a mon:River; mon:name ?RN } }
UNION
{ ?X a mon:City ; mon:name 7XN .
7?X mon:locatedAt 7R . 7R a mon:River; mon:name ?7RN
OPTIONAL { ?C a mon:Country; mon:name ?CN; mon:capital 7X }
FILTER (!bound(?C)) }}

Exercise 2.3 (SPARQL Formal Semantics: OPTIONAL) Consider the SPARQL Formal

Semantics.
Prove or show a counterexample:
The statement (from W3C SPARQL Working Draft 20061004)

If OPT(A, B) is an optional graph pattern, where A and B are graph patterns, then S is a
solution of OPT(A,B) if
e S is a pattern solution of A and of B, or

e S is a solution to A, but not to A and B.
describes the same semantics as above.

The given characterization is the one from the W3C SPARQL Recommendation from 20061004.
The counterexample is taken from [PAGO06], Examples 1 and 3:

Consider the RDF database D:

D ={ (B;y name paul), (B; phone 7T77-3426),
(B2 name john), (B2 email john@acd.edu),
(B3 name george), (B3 webPage www.george.edu),
(B4 mname r1ingo), (B4 email ringo@acd.edu),
(By email www.starr.edu), (B4 phone 888-4537) }

Semantic Web 7
Query pattern:
P = ((?X ,name, paul) OPT ((?Y, name, george) OPT (?X, email, 77))) =: (P OPT (P> OPT F3)).

[Pr] = {{X/B1}}.

[P2] = {{Y/Bs}}.

[Ps] = {{X/Bz, Z/john@}, {X/By, Z/ringo@}}.

[[PQ OPT Pg]] = [[PQ o Pg]] = {{X/BQ, Y/Bg, Z/‘]Ohn@}7 {X/B4, Y/Bg, Z/rmgo@}}

[[P]] = [[Pl]] HNIIPQ jl><]P3]] = {{X/Bl}}

On the other hand according to the textual W3C characterization, S := {{X/B1,Y/B3s}} is a

solution to P: S := {{X/B1,Y/Bs}} is a solution to P, and to P, OPT Ps; the latter holds since
it is a solution to Ps, although not to Ps.

The counterexample exploits the fact that it is not well-designed (i.e., X occurs inside the inner
optional, and in the outermost pattern, but not directly outside the inner optional).

Note that the “declarative”, but non-algebraic W3C characterization is also problematic from the
operational aspect since the solution must first be guessed before being tested. An algebraic (and
thus compositional) semantics allows a bottom-up computation from inside-out.

Exercise 2.4 (SPARQL: Filter-Safe Expressions) Consider the following definition:

Definition 1 ([PAGO06, AG 08]) A SPARQL expression is filter-safe, if for every subexpression
of the form (P FILTER R), var(R) C var(P).

Filters of the forbidden form are rather commonly used, e.g.,

{ 7P1 a :Person; :age 7Al. 7?P2 a :Person
OPTIONAL { 7P2 :age 7A2 . FILTER (7A2 > 7A1) }}

a) Sketch an algorithm that rewrites non-filter safe queries into safe ones. First, try it on your
own, then maybe look in [AGOS].
b) Give a SPARQL query for “Give the names of all countries, such that there is some city in that

country where more than 1/4 of the population are living in”, and make it filter-safe.
Give also its SPARQL algebra expression.

¢) Give a SPARQL query for “Give the names of all countries, such that there is no city in that
country where more than 1/4 of the population are living in”, and make it filter-safe.
Give also its SPARQL algebra expression.

d) Is there a similar thing in SQL, in the relational algebra, and in the relational calculus?

a) An intuitive solution is to duplicate (relevant parts of) the pattern outside the OPTIONAL for
binding of the variable to inside:
{ ?P1 a :Person; :age 7Al. 7P2 a :Person
OPTIONAL { ?P1 a :Person; :age 7Al1 . 7?P2 a :Person . 7P2 :age 7A2 . FILTER (7A2 > 7A1) } }
The variables occurring in the inner pattern and in the outer pattern act as join variables when
computing the outer join.
The complete algorithm can be found in [AGO08]. There, the fourth if-case (lines 7-10) covers
the above case. The fifth if-case (lines 12-24) just throws an error in case a filter is still unsafe.
Note (DB Theory lecture): consider the similarity with the transformation of general formulas
into RANF when moving conjuncts into negated subformulas to make them self-contained.

Semantic Web 8

b) The solution is of the same form as above:

nobigcities2.sparql

prefix mon: <http://www.semwebtech.org/mondial/10/meta#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT distinct 7N

FROM <file:mondial.n3>

WHERE {7X rdf:type mon:Country; mon:name ?N; mon:population 7XP .
OPTIONAL { ?7X mon:hasCity ?C . 7C mon:population ?CP . FILTER (7CP > 0.25 x 7XP) } .
FILTER (!BOUND(?C)) }

and its filter-safe variant is

nobigcities3.sparql

prefix mon: <http://www.semwebtech.org/mondial/10/meta#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT distinct 7N

FROM <file:mondial.n3>

WHERE {7X rdf:type mon:Country; mon:name 7N; mon:population 7XP .
OPTIONAL { ?X mon:hasCity ?C; mon:population 7XP .

7C mon:population ?CP . FILTER (?CP > 0.25 % 7?XP) } .

FILTER (!BOUND(7C)) }

¢) Yes: correlated subqueries. For instance: “all countries where more than 25% of the population
live in the capital”:
SELECT name FROM country
WHERE population < 4 *
(SELECT population FROM city
WHERE city.name= country.capital AND country.province=city.province
AND city.country= country.code)

In the relational algebra, subqueries (=subtrees) are not allowed inside a selection condition.
Here, the corresponding algebra expression combines the outer query and the subquery by using
a broad join:

7[country.name]
|
olcity.name= country.capital A country.province=city.province A city.country= country.code A
city.population > 0.25 country.population]

X
/ N\
Country City

The internal evaluation is done with iterators as a semijoin: iterate over all countries, look up
the capital and its population, and output if more than 1/4:

7 [name]
|
< [city.name= country.capital A country.province=city.province A city.country= country.code A
city.population > 0.25 country.population]

/ AN
Country City

The query from (b) is translated into an NOT EXISTS in SQL:

Semantic Web 9

SELECT name
FROM country
WHERE NOT EXISTS
(SELECT *
FROM city
WHERE city.country= country.code
AND city.population > 0.25 * country.population)

Internal evaluation is again iterator-based using an antijoin (the counterpart to a semijoin -
tuples survive if they do not match).
In the relational calculus ...

