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Abstract

This thesis is about matching similar SQL [SQL] databases and transforming SPARQL [Apab] queries
in the ontology of the one database into equivalent queries onto the other. To do so previous works
[TH, RSa, RSb, Run] are used to further develop the storage of RDF [RDF] data in an SQL databases
to an schema matching tool. As a result we got transformed ontological metadata which allows the
QueryConverter to create SQL queries from the ontology of the other database. This approach delivers
a new method of automated database matching with relative good results, but nevertheless automated
database matching remains a great challenge for computer science.
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Chapter 1

Introduction

On of the biggest problems in data processing is no longer the existence nor the accessibility
of data but that such data is stored in many formats, medias and locations. This leads to the
predicament, that on the one hand, the sources are too distributed and too many for human users
and on the other hand the sources are often not interpretable for machines to efficiently combine
those. Therefore an attempt was made by introducing meta languages like Resource Description
Framework (RDF) [W3Cc] and query languages like the SPARQL Protocol And RDF Query
Language (SPARQL) to help machines to interpret that data, but in real world cases this is rarely
used and many databases are just plain Structured Query Language (SQL) [SQL], Extensible
Markup Language (XML), or another simpler database language, sometimes even insufficiently
detailed RDF - based. To solve this problem, another even older problem with still no real
sufficient automated solution must be solved; the matching of two similar databases. If this can
be done, an ontology with sufficient meta information can be matched with a database which
does not have this meta information. By matching these two the database, one can automatically
get the necessary metadata from the ontology for the database.

In “RODI: Benchmarking Relational-to-Ontology Mapping Generation Quality” [PBJR+15] such
tools were evaluated. “Overall, systems demonstrate that they can cope well with relatively
simple mapping challenges. However, all tested tools perform poorly on most of the more
advanced challenges that come close to actual real-world problems. Thus, further research is
needed to address these challenges” [PBJR+15]. Since most of these tools were already finished
and further development and improvements were rather unlikely, the topic for [Run] and this
thesis is to develop a similar tool by adding the necessary changes to the previously develop
RDF2SQL [TH,RSa], looking into the problems and evaluate the solution on the Mondial scenario
of the RODI Benchmark. With the advantage of already having this data sets and benchmark
queries even essential improvements could be made on the Mondial [May99] benchmark part.

The matchers mentioned in [PBJR+15] do all more or less the same task with slightly different
methods. Since most of these papers do not reveal too much information about the inner methods
of each tool, it is quite hard to compare the structures. As far as it could be seen from the outside,
those tools are based on pattern matching and graph theoretic methods as one would expect. The
technique to use the ontological metadata structure developed for RDF2SQL is not too different
from those other methods, but provides additional opportunities and is a new structural format
to work with, which makes this approach very adaptable to different databases. Further, it fits

1



2 CHAPTER 1. INTRODUCTION

into the other tools developed in previous works. The RDF2SQL consists of four parts which
perform the following task:

Name Abbrev. Function Reference

Relational Model Builder RMB Create ontological metadata from a arbitrary SQL database [Run]

DatabaseConverter DC Create ontological metadata and an SQL database from an RDF ontology [RSa]

SchemaMatcher SM Generate a mapping from on MappingDictionary (MD) to another MD (this thesis)

QueryConverter QC Convert SPARQL queries into fitting SQL queries [RSa]

This thesis is specifically about creating a matching from an ontology to a relational database
and then transforming the ontological metadata in a way that SPARQL [Apab] queries based on
one ontology can be used on the other database. This is based on mainly three components, the
theoretical foundations of [TH], the RDF2SQL - Converter [RSa] and RelationalModelBuilder
(RMB) [Run]. With this foundation, a matrix can be created of the two ontologies.With various
methods the similarity of the different classes of both ontologies calculated and used for comput-
ing a matching those class pairs. This matching can then be used to transform the MD in a way
that SPARQL queries against the one ontology can be transformed into equivalent SQL queries
for the other database.

In this thesis, an adaptation of the QueryConverter was done and the development of the
SchemaMatcher were made. The adaptation of the QC is mainly about its ability to use multi-
column key values which was not possible before. Therefore additional meta information tables
were introduced . The SchemaMatcher was a completely new developed program and uses the
information of the DC or the RMB [Run] to match and translate databases.
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1.1 SchemaMatcher overview - ontology mapping concept

The basic idea of this alignment tool is, that two ontologies with nearly the same content should
have similarities in their structures. Therefore the SchemaMatcher uses so called MatchingStep
(MS) to find those similarities. Each MatchingStep focus on one kind of hints which these
ontologies provide and tries to find out which classes and attributes can be matched. The results
are stored in similarity matrices and all calculations are done in two layers. The class layer,
consisting of the classes from both ontology and the attribute layer which is specific for each class
combination, consisting of the attributes of those two classes. For most steps, every single cell of
the matrix in the class layer is influenced by its own matrix in the attribute layer (see Figure 1.1) .

Figure 1.1: Layering of matrices - Every cell in the class layer is computed of a whole matrix in
the attribute layer

The general execution order of those steps is determined by their phase they belong to (see
Figure 1.2). After the class matching is done, the attributes were computed again, because with
the class matching additional information are available.
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After every step is done with its calculations, the result is automatically evaluated and depending
on its significance it gets a weighting. The contribution of each MatchingStep for the finale
results depends on those weights. This strict separation of the MatchingSteps come in handy,
if a MatchingStep does not work due to the nature of one ontology, then it does not destroy
everything, but gets just a low weight and does not have much impact anymore. When all steps
are done, there is a finale decision matrix which gives the alignment of those ontologies.

Figure 1.2: Execution order of the calculation phases

1.2 Mondial overview

The programs of this thesis were tested and developed using the Mondial database. Mondial is a
geographical database which is available in several formats. Mondial stores different information
on cities, countries, organizations, continents and geographical landmarks like rivers, lakes,
seas, islands and mountains (see Figure 1.3). Its ER model uses many different ways to design
the relationships, therefore it is a good test approach for database related problems. It was
created form different web sources in 1998. The major parts are from the CIA Factbook [Age], a
part of the Karlsruher TERRA Database and the international atlas of Kümmerly & Frey, Rand
McNally and Westermann. Originally Mondial was developed for testing the F-Logic system
FLORID [FLO].
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6 CHAPTER 1. INTRODUCTION

1.3 Related Work

On one hand, as an ontology to ontology mapper, the SchemaMatcher (SM) can be compared
to LogMap [CGJR11](see Sub Section 1.3.1) which is a mapper for detailed ontologies and
provides high scalability. In opposite to the SM, LogMap was not created for derived but for well
designed, hand made and detailed ontologies. Never the less BootOx uses this program for the
class matching.

On the other hand, as an OBDA tool, the whole program RDF2SQL must be compared to other
OBDA tools, like BootOX [JRKZ+15], Karma [ea12], COMA++ [ea05], MIRROR [dMPC15],
IncMap [PBKH13] and OnTop [ea14] (see sub Section 1.3.2 & 1.3.3). These tools split into two
scopes of application: the semi-automated supportive tools and the fully automated stand alone
tools. Like the other tools, the SchemaMatcher is able to be modified by various settings and its
performance might be improved by that, but it can be considered a fully automated approach,
since it does not require the evaluation nor the decision making of a human.

1.3.1 LogMap [CGJR11]

Figure 1.4: LogMap in a Nutshell [CGJR11]

LogMap is made for calculating a matching between two well designed ontologies. The results
of LogMap should be much better than the results of the SM, as long as one deals with hand
made ontologies. When it comes to ontologies, derived from relational databases, tables turn.
“LogMap uses an interval labeling schema to represent the extended class hierarchy of each
input ontology” [CGJR11] where it can unfold the power of reasoning (see Fig.1.4). While SM
is based on similarities and method evaluation and do not need any hierarchies (but can use
them as well). The following five points describe the work flow of LogMap and have been taken
from [CGJR11]:
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1. Lexical indexation. The first step after parsing the input ontologies is their lexical indexation.
LogMap indexes the labels of the classes in each ontology as well as their lexical variations,
and allows for the possibility of enriching the indexes by using an external lexicon (e.g.,
WordNet or UMLS-lexicon).

2. Structural indexation. LogMap uses an interval labeling schema to represent the extended
class hierarchy of each input ontology. Each extended hierarchy can be computed using
either simple structural heuristics, or an in-the-shelf DL reasoner.

3. Computation of initial ‘anchor mappings’. LogMap computes an initial set of equivalence an-
chor mappings by intersecting the lexical indexes of each input ontology. These mappings
can be considered ‘exact’ and will later serve as starting point for the further discovery of
additional mappings.

4. Mapping repair and discovery. The core of LogMap is an iterative process that alternates
repair and discovery steps.

(a) In the repair step , LogMap uses a sound and highly scalable (but possibly incomplete)
reasoning algorithm to detect classes that are unsatisfiable w.r.t. (the merge of) both
input ontologies and the mappings computed thus far. Then, each of these undesirable
logical consequences is automatically repaired using a ’greedy’ diagnosis algorithm.

(b) To discover new mappings , LogMap maintains two contexts (sets of ’semantically
related’ classes) for each anchor. Contexts for the same anchor are expanded in parallel
using the class hierarchies of the input ontologies. New mappings are then computed
by matching the classes in the relevant contexts using ISUB [SSK05] a flexible tool
that computes a similarity score for any pair of input strings. This mapping discovery
strategy is based on a principle of locality : if classes C1 and C2 are Inverted correctly
mapped, then the classes semantically related to C1 in O1 are likely to be mapped to
those semantically related to C2 in O2 .

LogMap continues the iteration of repair and discovery steps until no context is expanded
in the discovery step. The output of this process is a set of mappings that are likely to be
‘clean’ that is, it will not lead to logical errors when merged with the input ontologies.

5. Ontology overlapping estimation. In addition to the final set of mappings, LogMap computes
a fragment of each input ontology, which intuitively represent the ’overlapping’ between
both ontologies. When manually looking for additional mappings that LogMap might
have missed, curators can restrict themselves to these fragments since ’correct’ mappings
between classes not mentioned in these fragments are likely to be rare.

The Lexical indexation and Name rating s.(3.2.3.1), and the Structural indexation and inheritance
rating (see Section 3.2.3.2) are very similar to each other.

During step 1, as well as during the name rating, first the synonyms were added to each name,
like it is done in 3.2.3.1, then the distance or the similarity of the words is calculated. Major
difference in the name mapping is that LogMap vector based approach should be much faster,
but relies on the usually very large and precise ontology names, while SM distinguishes between
exact matches and similar words. If the ontology is derived from a relational database, it is very
likely that the names are shorter than from well designed ontologies and even slight differences
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can matter (e.g. Mondial_RDF2SQL_Standard.mountain 6=Mondial_RDF2SQL_Standard.moun-
tains).

In the Structural indexation “LogMap exploits the information in the (extended) class hierarchy of
the input ontologies in different steps of the matching process.“ [CGJR11] which is comparable
with the inheritance rating (see Section 3.2.5.2) of the SM, but much more sophisticated. In
context of ontology to ontology mapping, which LogMap originally was made for, this is a
powerful method. However in context of ontologies derived from relational database there
will be no hierarchy of classes, since a common ER model just does not have a class hierarchy.
Without such a proper class structure the whole reasoning aspect of LogMap, which made it
so powerful, will be eliminated. If the reasoning does not work, all further steps degenerate
from very sophisticated and effective to very basic steps, since the anchor points are only trivial
matches now and the repair and discover phases have no base to work with.

1.3.2 Automated Approaches

Those approaches are very similar to RDF2SQL, but the internal matching methods and the meta
data storage vary from RDF2SQL. The following characterizations are taken from [PBJR+15].

BootOX [JRKZ+15] is based on the approach called direct mapping by the W3C every table in
the database (except for those representing n:m relationships) is mapped to one class in the
ontology; every data attribute is mapped to one data property; and every foreign key to
one object property. Explicit and implicit database constraints from the schema are also
used to enrich the bootstrapped ontology with axioms about the classes and properties
from these direct mappings. Afterwards, BootOX performs an alignment with the target
ontology using the LogMap system.

MIRROR [dMPC15] is a tool for generating an ontology and R2RML direct mappings automat-
ically from an RDB schema. MIRROR has been implemented as a module of the RDB2RDF
engine morph-RDB.

IncMap [PBKH13] maps an available ontology directly to the relational schema. IncMap repre-
sents both the ontology and schema uniformly, using a structure-preserving meta-graph
for both. It runs in two phases, using lexical and structural matching.

COMA++ [ea05] has been a contender in the field of schema matching for several years already;
it is still widely considered state of the art. In contrast to other systems from the same era,
COMA++ is built explicitly also for inter-model matching.

OnTop [ea14] the Ontop Protege Plugin is a mapping generator developed for OnTop. OnTop
is a full-fledged query rewriting system with limited ontology and mapping bootstrapping
capabilities.

1.3.3 Semi-automated approach

Karma [ea12] does need a human supervisor and OnTop [ea14] as well as BootOX [DHEM,
JRKZ+15] have modes which requires human [DHEM] help with decisions or evaluating results.
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Even though this leads to better results, this always means that the program relies on a human
to make critical decisions. It is not fair to compare these approaches to the automated ones, since
they skip the most critical and error prone parts and can be considered rather as supportive
tools than as replacement by their nature. However, those tools might be the most useful ones
and since “all tested tools perform poorly on most of the more advanced challenges that come
close to actual real-world problems” [PBJR+15] none of these tools can be used without being
controlled by a human. [PBJR+15] states that:

Karma [ea12] ”is one of the most prominent modern relational-to-ontology mapping generation
systems. It is strictly semi-automatic, i.e., there is no fully automatic baseline that we could
use for non-interactive evaluation. In addition, Karma’s mode of iterations is designed to
take advantage mostly from integrating a series of data sources to the same target ontology.
Karma is therefore not well suited for single-scenario evaluations.” [PBJR+15]

1.4 Contributions

Can handle weak ontologies This thesis is about strategies to match sparse detailed ontologies.
It does not rely on class hierarchies nor class constraints which could not be expected
from derived ontologies. Normally a ontology to ontology mapper would assume to have
rich super and sub class trees for every class, like LogMap [CGJR11] did. However, with
derived ontologies there will be no to very little class hierarchies or constrains therefore
this work offers alternatives to this inheritance dependency.

Fully automated ontology to ontology mapping SM does not rely on completing the resulting
ontologies and mappings manually other than COMA++ [ea05], IncMap [PBKH13], Karma
[ea12] or OnTop [ea14].

Improvement performance on Mondial While working towards [PBJR+15] Mondial was also
evaluated as an benchmark scenario. However, since nearly none of the queries could be
answered by any tool, it did not made it into the published version. This result was the
motivation to try an own approach and find out what the reason is and if there is a solution
for at least some of those problems. The performance of the SchemaMatcher was found to
be better than that of the other tools (see chapter 6.1). It is able to handle about 40% of the
queries of the RODI - Mondial - Benchmark [PBJR+15] (see chapter 6.1). This tool is only
tested on the Mondial queries, since they are considered very well designed and nearly
cover all common database problems. However, the RDF2SQL tool was developed on this
database, so one can assume some kind of an advantage for the SM.

Analyzing the problems Some of the biggest problems with the RODI benchmark for matching
tools (see Section 6.2) are pointed out. The Graphical User Interface (GUI) (see Section
4.3) and the MD make an analysis of these problems very comfortable, shows where
improvements can be made and problems exist, to support further development.
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Chapter 2

Basics

2.1 Tools and Test data sets

2.1.1 Tools

• All coding was done with Java 7

• For programming the IDE Eclipse Kepler Service Release 2 [Fou] was used.

• All database operations where performed on a postgres [Grob,Groa] database with pgAd-
min III [pDT].

2.1.2 Test data set - Mondial and RODI

The Mondial database has the great advantage of having a reasonable size, using many different
design techniques in Structured Query Language (SQL) and a data set with real data, which
makes it much easier to realize if something is wrong and what might be the problem, in compar-
ison with generic data. Further it is available in F-Logic, SQL , XML, Resource Description Frame-
work (RDF) /OWL and Datalog at [May99] [RSa]. Due to the different language, the different
Mondials do not have the same structure in every approach. With the DatabaseConverter (DC) it
is possible to transform the OWL-Mondial into a SQL version named Mondial_RDF2SQL. This
version differs from the original SQL version of Mondial, named Mondial_rel, in many ways.
The Mondial_RDF2SQL does always have a Unique Resource Identifier (URI) column for every
class and it is the only primary key, while the Mondial_rel has many multi-column key values.
This also leads to weak entities in Mondial_rel like City or Source. Additional Mondial_rel has
no class hierarchy at all, due to its relational model nature. This means the relations between
class can be much more complicate, for example, the loactedAt relation is on Mondial_RDF2SQL
a reference to Water while in Mondial_rel there is a single relation to each subclass of water,
means to sea, lake and river. Further some attributes might not exists in both ontologies, have
different names (especially the inverses from Mondial_rel do not have own names, while the
ones form Mondial_RDF2SQL do) and some of them have a complete different relation to their

11
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classes. For example, the population of a city is just a literal in Mondial_RDF2SQL, while it is a
weak entity with a 1:n connection in Mondial_rel, since it stores the population of a specific date
and not just only the current population. Other classes like Estuary and Source are normal classes
in Mondial_RDF2SQL, but in Mondial_rel these are only attributes of the River class. All these
smaller differences in the ontologies, which have a big impact on the database structure, result
in two different ontology, modeling the same situation, with the same data and the same query
results, which makes them perfect for an close-to real world use case for ontology alignment.

Additional the RODI - Mondial - benchmark - scenario - queries [PBJR+15] make testing of
prototypes much easier. To evaluate the results of database converter the RODI test [PBJR+15]
queries where developed. These queries aim to test a broad variety of complications, which
might appear on databases and have always an equivalent query in SQL to compare the results
with the correct SQL result. These benchmark queries were tested on the QueryConverter and
the SchemaMatcher in different stages of the development. The great advantage of such a broad
variety of queries is, that not just the special case which was under development can be tested,
but the whole program with minimal efforts to get easily ride of side effects.
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Figure 2.1: Mondial_rel referential dependencies - Diagram [May]
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2.2 Metadata structures

When designing a database there is always a so called metadata structure involved. This structure
is made of the conceptional ideas behind the attempt to model a real world problem in a database
structure. A metadata structure is not about the actual data set, which should be stored or
accessed, but about the way how that data is represented. Therefore a classification of the
environment happens. This classification can be expressed by creating ontology classes or tables.

2.2.1 Relational Databases

Relational databases are the most common type of databases and are used in business application
as well as in scientific context. They are based on a relational model which was introduced by
Codd [Cod70]. This model consists of tuples to represent data and group these tuples into relations.
Those relations are usually entities of the context, which should be represented in the model, for
example a country, a city, or a person. Those relations consists of tuples, which are a combination
of labels, data types and context, e.g. name, size, or a reference to another relation like isCityIn
or isMarriedWith. Tuples of a single relation always have to have the same structure or in other
words relations are fully structured, which means, they take a fixed amount of memory each,
therefore iterations through the tuples of one relations can be done efficiently.

The model can be realized in a relational database management system, where the relations are
the tables, every attribute of the relation is a column and each tuple is a row in those tables. With
the help of such a relational database management system, like postgres [Grob] or Oracle for
the database language SQL [SQL], it is possible to ask queries against those tables and perform
algebraic operations on them.

2.2.2 Entity - relationship model - ER model

Entity–relationship modeling is an abstract data model that graphically represents the data
structure of a relational database by using different shapes and lines to represent the relations
and the connection between them (e.g. see Fig.1.3). Slightly different variants and ideas existed
previously, but Peter Chen [Che76] is considered as the creator of the ER model, in 1967. His
model which is still the basis of nowadays used ER models. The ER model gives the possibility
to create classes, literals, different types of class connection with cardinality for those relations.

It was created to support database designer during the development and to give users an easier
introduction into a new database. Therefore an ER model is mainly for humans to understand
the data structure, but in contrast to ontologies, hardly readable information for machines.
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2.2.3 Ontology

Figure 2.2: Example from the classes of mondial in RDF

An Ontology is a formal way to describe classifications and taxonomies. Ontologies uses class
hierarchies but in contrast to programming languages, the inheritance is made for constantly
changing and other than most programming languages multi - inheritance is actually wanted
and used to classify an entity into multiple groups. For example, a lake could be a subclass of
Location, Water, and Area, while Mountains have the subclasses GeographicalNonPoliticalThing,
Location and Area (see Figure 2.2). Through this the ontology states, that those two entities
describe different thing, but have a lot in common, while other entities with different superclasses
are not related to them. This superclasses usually have superclasses themselves up to a very
high level of abstraction. These inheritance structure give those information a semantic meaning,
while the entities of an ER model are just the class and the attributes of this class. In a ER model
there is no hint, if a lake is more similar to a sea or an organization, since the ER model do not
have a semantic context at all. Beside the inheritance an ontology can also define constraints and
cardinalities for relations.
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2.2.4 RDF & SPARQL

Figure 2.3: RDF Icon

The Resource Description Framework (RDF) was developed by
the W3C [W3Cc] as standard to describe meta data. Like the ER
Model it is a model to describe the conceptional structure of a
data storage. The main difference is that it is not a graphical but
a textual representation. Mostly the languages XML [W3Cd]
and n3 [W3Ca] are used for textual representation. It is slightly
harder to understand for human, at least to get a first overview,
but RDF is much easier to understand for machines. Therefore
it functions as a human / machine interface.

Nowadays RDF is one of the most essential parts of semantic
web. The goal of the semantic web is to give information a
semantic meaning. The machine and human readability of
RDF provides the standard way to do so. A RDF Model itself
consists of a directed graph. The nodes and edges of the graph
are described by triples. Those triples consists of a subject, a predicate and an object in this order.
The subject is always an entity, or in another words a node in the graph, while the object could
be a literal, like Germany; population; 81600000; or an entity, like Germany; borders; France as well.
The predicates between two entities creates the edges in the graph.

Figure 2.4: Equivalent query in SQL and SPARQL. The queries ask for the name of all countries
and their capitals where at least 1/4 oft the population lives in the capital.

To access those graphs and ask queries against a RDF based databases SPARQL Protocol And
RDF Query Language (SPARQL) [WC3] is the recommend language. SPARQL queries can be
asked with tools like Apache Jena [Apaa]. The basic of SPARQL are very similar to those of SQL,
both use the SFW - block (Select; From; Where). However in a graph based database, there are no
tables which could be joined, therefore SPARQL selections and conditions are based on variables
and properties. All conditions are formulated in triples (see Figure 2.4).
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2.2.5 Web Ontology Language - OWL

Figure 2.5: OWL Icon [OWL]

The Web Ontology Language (OWL) is a specification from the
W3C [W3Cb], based on the W3C XML standard [W3Cd], to
create ontologies in formal description languages. The first
version of OWL was published in 2004 and later on 27 October
2009 OWL2 was published. OWL expands the RDF ontolo-
gies with operations like intersection and union of classes but
also makes constraints in order to archive decidability. De-
cidable ontologies can be used for reasoning, which is one
of the most important features of the semantic web and the
biggest difference to the traditional relational model. OWL2
is used in semantic editors like Protegé [KFNM04] and seman-
tic reasoners like Pellet [SPG+07], FaCT++ [TH06] or Racer-
Pro [HHMW12]. Reasoners like Pellet can be used from query
languages like SPARQL to gain additional knowledge about
entities in an ontology or ask first order logic based queries
against an ontology.

The W3C OWL specification define three variants of OWL:
OWL Lite, OWL DL and OWL Full. Each variant has different
level of expressiveness.

OWL Lite OWL Lite was created with the intention to give an easy to implement subset of this
languages. It is mainly used for simpler taxonomies and constraints. OWL Lite is equally
expressive as the description logic SHIF(D) [GHM+08]

OWL DL OWL Description Logic has the expressiveness of the description logic SHOIN (D)

while being computational completed and decidable. [GHM+08]

OWL FULL OWL Full was created to be fully compatible with RDF Schema, unlike the other
OWL variances. Therefore OWL Full has different semantics, than the others. As a down
side, OWL Full ontologies are not always decidable nor computational completely, i.g.
reasoners can not perform complete reasoning for those ontologies.



18 CHAPTER 2. BASICS

2.2.6 Symmetric reification

A rather uncommon but expressive relational model strategy are so called symmetric reified
tables. Those tables have two major characteristics:

• Reified: Those relations represent NM relationships, but those relationships also have own
attributes, like the Membership in an Organization can have a additional attribute, the type of
this Membership.

• Symmetric: Those relations are symmetric means the tuple (x,y) also implies that the tuple
(y,x) exits but this tuple is not stored in the database, like the mergesWith attribute of sea.

Figure 2.6: Asking the symmetric reified relation border for all bordering countries of Albania
and the length of those borders.

If a relationship fulfills both conditions, it is a symmetric reified table. An example in the
Mondial_rel database for those relations is the borders table. The border class has the attributes
country1 and country2 which are exchangeable, but also has the length of each border stored
and is a NM relation between two countries. Those relations do need special treatment from the
user respectively the QueryConverter (QC) (see Figure 2.6). A Union over both combination is
necessary to get all tuples. Also a conjunction, so that either the one or the other value of both
symmetric attributes is the fixes value, would be possible, but in this case the fixed value could
be in both of those attributes.

Symmetric reification is not part of the W3C RDF standard [W3Cc], but it is possible to modulate
that kind of relationship in RDF as well.
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2.3 RDF2SQL

The RDF2SQL converter [RSa] has been developed in earlier works. It basically creates an
equivalent SQL Database from an RDF database and an ontology mapping metadata description
with the necessary information to convert a SPARQL query into an equivalent SQL query. The
program itself consists of two subprograms, the DC [RS13] and the QC [RSa]. These two can be
executed independently from each other but the QC needs always an MappingDictionary (MD)
in the database. The original version of the OC! (OC!) also needed the exact database structure
created by the DC.

RDF2SQL was originally developed to improve the performance of queries against these data
sets since SPARQL queries tend to take much more time than equivalent SQL ones [RSa]. Aside
from this advantage, the MD structure provides further possibilities. One of this possibilities
is the transformation from one MD to another MD by just changing the classes and properties
respectively to the tables and columns to transform one MD into the other.

2.3.1 DC - DatabaseConverter

The DatabaseConvter (DC) [RSa, TH, RS13] was created in [RS13] based on [TH].

The DC converts a RDF [W3Cc] OWL based ontology into an equivalent SQL [SQL] database.
The DC uses a SPARQL [Apab] query chain [TH] to gather the necessary information about the
database.

After creating the table structure and the MD the next step is to read in the triple. Therefore
the information of the triple are stored until enough information is gathered to decide where it
belongs, in so called TOP tables [TH]. With enough knowledge about the triples, the information
is distributed across the tables. If the ontology is correct, these TOP Tables are empty in the end
and can be removed.
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2.3.2 QC - QueryConverter

Figure 2.7: Conversion steps of the QC [RSa]

The QueryConverter (QC) [RSa, TH] was created in [RSa] based on [TH].

Its purpose is to convert a SPARQL [Apab] query into a SQL [SQL] query. To do so, the QC
uses first Jena [Apaa] to create a syntax tree, from this tree it creates an own tree. The nodes of
both trees represent algebraic operation like joins, filters, and selections in form of a spanning
tree. The SPARQL variables are transformed into so called ClassVariable (CV), which stores
all information about this certain variable, including its possible classes. With this tree the QC
gather information about the CV of the tree. The information about the CV is only in the leafs of
those trees. These leafs are the individual triples, while the higher nodes represent operations of
the query. This means every node which is not a leaf, depends on the information of its children
to actually get knowledge about the CV , therefore, every node is checking its information and
propagates them to the higher node. This node combines the information and propagates them
further up, until it reaches the root. At this point the root contains every available information of
all CV, which means it knows all properties which can be assumed to be secure (further details
of secure CV s. [RSa] Left Outer Join) and if the CV is defined as a specific class. With this
information, it is possible to compute the class of a CV (in some cases this can be even stricter
than the class defined in the query) or to notice that it is a literal if it does not have any properties.
Then all gathered information of the root will be propagated down to every node, so every node
has all information. After the CVs are created the tree computes the needed tables, selection
and conditions. This is always done in a backward recursive way, which means it starts at the
root and the root requests the CV it needs from its children. The nodes below add their own
requests to this and ask their children. This is done for every node until it reaches a leaf where it
will decide if the information is available at the node or not. If so it returns a result set with the
requested information or otherwise a null value. During the backtracking, the nodes fuse the
information of multiple children and add the requested information and the ones request from
higher tiers to their SQLNodeInfo which contains the selection, the tables and the condition of a
node. Because of this, the nodes can rely on the children to provide the needed information and
just selected CV by their names as long as it is not a leaf, since the leaf have to take care about
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the renaming. For example in the case a CV ?CN, which is a city name, only the leaf triple would
need to know that city names can be found at the table city and the column name because it
will select this CV as Select city.name as ’?CN’. Every other node will just refer it as ?CN. After
the nodes have calculated which information are needed to translate the query, this information
will be transformed into a SQL Query. Due to its nature, the node tree structure creates a very
nested SQL query because every node selects its children in the from part. To reduce this nesting,
an optimization will happen for the nodes with just one child, since they can easily be fused by
keeping the from part of the lower node(s) and the select part of the higher node and conjunct the
conditions. After this step, the equivalent SQL is ready to be send to the database.

2.3.3 MD - Mapping Dictionary

The MappingDictionary (MD) is a method to store ontological metadata and the major difference
between an ordinary SQL database and a database created by the DC from an ontology, since it
makes it possible to access the knowledge base of the underlying RDF knowledge base [RSa].
With the MD, it is possible to look up the properties, where they are stored and which references
the properties have. These references are always toward the URI column of a class which is
always the primary key. Since the data have their origin in RDF every class an URI and therefore
every home table has a URI column which is the primary key. The details of the ontological
metadata description are described next. It consists of seven tables and three additional tables
(see Sections 3.1.1, 3.1.3, and 3.1.4) as part of this work.

2.3.3.1 md - The main MD Table

Figure 2.8: Example of the md Table

The md (table - lower case) is the heart of the ontological metadata description. This table contains
the class name, the property, the table name, the range, the domain and if it is a view and if its
inverse. For a literal or a class itself, the information in the md is sufficient since it just needs the
table name and the lookUpAttr for the selection of this property. If the property has references
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to other tables or is not in the home table (see Section 2.3.3.6) the md table is still the central
information source. Based on it the other tables can be queried.

2.3.3.2 nmj & nmname - NM join table & NM names table

1.) 2.)

Figure 2.9: Examples of the NMJ (1) and the NMNames (2) tables

NM join table is used when an nm join between two classes is needed. If so the table names differs
from the home table of the classes and the table names have an entries in the nm names table. Then
the entry in nmj is searched where class name, table name and lookUpAttr are the same as in the md
table. To create a join another entry is search where the table name is the same and the fkjoinattr
value is the equal to the lookUpAttr of the first entry and the lookUpAttr equal to the fkJoinAttr
(see Fig. 2.10).
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Figure 2.10: Concept how to create an NM connection - →means pointed entry has to have the
same value as the origin entry

As the last information, the home table for the other class is needed since up to this point only
the nm entries are used which refer in table name to the nm table, not to their home tables. In the
original version, the constraint that every home table is named after the class it is made of, makes
this one easy, since the class name is also the home table name. In the current version, there is a table
which stores the class to home table mapping (see Section 3.1.4). With these entries, a join between
the home table of the CV, the nm table and the other home table can be made by using the conditions
hometable1.URI = nmtable.LookUpAttr and hometable2.URI = nmtable.FkJoinAttr.

2.3.3.3 RCTab - Range class table

Figure 2.11: Concept of non nm connections construction

The RCTab stores the range classes of object valued properties. The table consists of the columns
tablename, columnname and rangetable. The columnname is also the name of the property, the
tablename is also the name of the class itself and the rangetable is also the name of the range class.
A column rangeColumn is not needed, since every home table has a URI column which is the
primary key, there is no need to define the referenced column and table explicitly. The RCTab
is used for cases where the relations is a 1:1 or a 1:n. These relations do have, other than n:m
relations, inverse directions and for the query construction always the non-inverse direction
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is used (see Section 2.3.3.4). To create the query, the join condition rangeHomeTable.URI =

tableName.columnName is needed.

1.) 2.)

Figure 2.12: 1.) Example RcTab Tabelle 2.) Example for the inv table

2.3.3.4 inv - Inverse table

Non-nm relations usually do have two directions. Often relations are defined with proper names
in RDF but if not, [propertyName]_Inv is chosen. The inverse table is an 1:1 mapping of the
property and the inverse and the other way around. It is used if a relation is defined in the query,
for which only the other direction is implemented in the underlying database structure, but also
to find the md property entry for the other side of nm relations (see Fig.2.10).
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2.3.3.5 subcl - Subclass Table and allcl - All class Table

Figure 2.13: Concept of finding concrete classes

The concept of inheritance is common in RDF and a major part of a well-designed RDF knowl-
edge base but it is not implemented in standard SQL . Therefore the ontolo has the tables subcl
and allcl. The subcl table contains all concrete classes and the corresponding super classes and
the allcl table contains all classes, concrete and abstract and all superclasses of every class. So the
subcl table is used to find out if a class is abstract which automatically means, there is no home
table to this class, since only concrete classes do have them. Therefore it must look up in the allcl
table which sub and superclasses are there and in the subcl table if this subclass is concrete and if
not if a superclass is concrete. If neither a sub- nor a superclass is concrete there is something
wrong and the QC will throw an exception. Often an abstract superclass is used to select multiple
classes for example water to get all lakes, seas and rivers (see Section 2.13).

2.3.3.6 Home tables

The term home table describes the tables which would contain the primary key(s) or the ID of an
entity. Usually, these tables have the same name as the class they contain. The DC will always
name the home table like the class it is made for and the other way around the RMC [Run] will
name the classes like the table which holds the primary key. So the only case the tables and the
class name are not the same is when one of them was renamed. This could be the case if a MD is
transformed for another database. In this case, the ontology changed but not the database in the
background, so a mismatch between the names could happen (see Section 3.1.4 ). Therefore the
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ClassName table is a mapping to find the home table of a class. If no translation was performed on
the MD this table holds just two times the class name respectively the table name.

2.3.3.7 Class - extension - tables [Run]

The term class extension table describes a table which has a 1:1 relation to its class, but is not part
of the home table, even if this would be easily possible by just joining the columns onto the home
table. In terms of the database normalization this table should not exist, but in practices there are
cases where such tables exist and sometimes it makes things for human users actually easier, for
example the economics table in Mondial. This table stores all economics related information of a
country. It has only a 1:1 connection to the table Country, which means it could be simply joined
onto this table without losing any information. However, since it is about a certain self-contained
aspect of country the designer of the ER Model decides to outsource this information into an
own table.
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2.4 String similarity metrics

Similarity metrics calculate the distance/ the similarity of a word to another. In a valid metric
precise rankings can be made and similarities can be put in relation to each other. Such metrics
have a broad scope of application from search engines, over speech recognition to automatic
spellchecking. In this Thesis the similarity metrics are used to calculate the similarity of class and
attributes names of different ontologies. The easiest similarity metric is to check if the symbol
chains match exactly, but this would not be enough to determine if there might be a connection
or just a slight grammatical altering in names. Therefore more sophisticated methods are needed.

2.4.1 Jaccard similarity coefficient

The Jaccard similarity coefficient is originally coined “coefficient de communauté” by the botanist
Paul Jaccard. It is used to measure the similarity / diversity of set samples. The closer a Jaccard
similarity coefficient is to 1, the more similar two set are. It is computed by just dividing the
number of shared elements of the two sets by the total amount of different elements (see Eq.
2.1). [TSK]

J(A,B) =
|A ∩B|
|A ∪B|

(2.1)

2.4.2 Levenshtein similarity

Algorithm 2.1 Levenshtein Distance algorithm

m = |u|
n = |v|

D0,0 = 0

Di,0 = i, 1 ≤ i ≤ m

D0,j = j, 1 ≤ j ≤ n

Di,j = min


Di−1,j−1 +0 if ui = vj

Di−1,j−1 +1 (replace)

Di,j−1 +1 (Insertion)

Di−1,j +1 (Deletion)

1 ≤ i ≤ m, 1 ≤ j ≤ n

The Levenshtein similarity is a measurement of similarity like the Jaccard similarity. However,
the Levenshtein similarity is not based on set operations, but on symbol changing. It computes
how many deletions, replacements, and insertions are needed to convert one symbol chain into
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another. It was developed by Wladimir Iossifowitsch Lewenstein in 1965. He himself never
published an algorithm for computing this, but the computation can be done by an algorithm
like Alg. 2.1. This algorithm returns a matrix which can be read to get the lowest cost value and
then calculate a distance with it. Since there are some limitations to the Levenshtein distance
one can calculate the minimal (see 3rd on fig.2.14) and maximal possible distance (see 2nd on
fig.2.14) and convert this into a value between 0 and 1.

1. The distance is at least the difference of the sizes of the char sequence.
2. The distance is at maximum the length of the longer char sequence.
3. The distance is only 0 if the char sequences are exactly equal. (Metric condition)
4. The distance is not greater than the Hamming-Distance added up the length difference of

the sequences.

Figure 2.14: Important bounds of the Levenshtein algorithm
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Analysis

3.1 Adaptation of the QueryConverter (QC)

The QueryConverter (QC) was originally developed to work exclusively with databases created
by the DatabaseConverter (DC). The DC itself only works with n3 - files and therefore some
special cases of the database design could be assumed as given. For example that a single
key column named Unique Resource Identifier (URI) exists, that an abstract subclass always is
marked in the superclass table in the column RDFTYPE with its name or that the home tables
(see Section 2.3.3.6) are always named as the class itself. In order to widen the range of the
QueryConverter (QC) these constraints can no longer be assumed as given. Therefore some
additional information must be stored in the MappingDictionary (MD) and the QC has to do
some extra steps since some conversions got more complicated without these assumptions.

3.1.1 Multi column keys

The easiest way for maintaining primary keys are IDs, which only contain a unique value but
no properties of the class. Aside from that, it is also possible to use one or several attributes of
the class which can be assumed as unique. Many databases do not use this concept with good
reasons, since one can often not be sure, if there is really no case were two different entities
do have the same key values ( for example first and last name of a person are generally not
unique but the collision rate is low) but it is common enough to have to deal with this possibility.
The relational Mondial version, for example, has some multi-column key classes like City. The
primary key of City is compounded of the columns Name, Country,and Province. Beside being
keys, those columns contain also information about the class itself, therefore properties exist,
which refer to those columns. With such a key there arise two major problems:

1. Knowing which attributes are keys

2. Knowing which column has to be joined with which column in the other table

Before in DC generated databases every concrete class had a table with the same name which
contains a single column key in the column URI. Because of this condition there was no need to

29
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store the information where a foreign key should refer to. With non-URI-primary keys it became
necessary to store the name and the table of the key. Further, it became necessary to store which
foreign key referred to which primary key. For example, City has the primary keys Country,
Province, and Name. In the other tables, the column name is usually used for the own name
attribute of the class described by that table and the column where the name of the city is stored
is called City. In such cases, the matching of the key columns is no longer trivial.

Figure 3.1: Example for the keys table. Row 72 is an example of a connection of properties via
the other table. Row 77 is an example for an entry which represents a primary key and row 85 an
example for an nm table - home table connection

Therefore the keys table is created. This table corresponds largely to the RCTable (see Section2.3.3.3)
with some necessary extensions and some extensions to make the usage more comfortable and
the tables more readable. The table consists of the columns classname, propertyname, tablename,
columnname, refclassname, reftablename, refcolunname (see Section3.1). The keys table contains
basically three types of information:

• First of all, there are the primary keys of each class. For primary keys only the columns
classname, propertyname, tablename and columnname are used. Classname contains the name
of the class, the propertyname is always URI, the tablename is the home table of this class,
and in columnname the column which contains this key is stored. For multi-column primary
keys a single class has multiple primary key entries in the keys tables.

• The 1:N relations use all columns of the table. They are important for multi-column keys
since the columns columnname and refcolumnname are used to match the different key values
to which they refer. The columns classname and refclassname describe the class and the
class to which this property refers. The column propertyname contains the name of the
property. This will only differ from columnname after translation and is primarily intended
for humans to make checking and debugging easier. Columnname stores the name of the
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column, which contains the foreign key to the table from classname. The column tablename
contains the table in which the class from classname stores the property from propertyname
in the column from columnname. A column reftablename is necessary in nm - relations.
Other than the md table, the keys table has the actual column to column matching and not
the abstract relation stored. This means that the Structured Query Language (SQL) join
conditions can be directly be generated without matching other tables. The refcolumnname
is needed to know with which part of the primary key this column should be matched,
since the naming can differ between foreign key and primary key like in the previous
example.

• The nm connection are stored in a way that the values classname and propertyname are
empty, since an nm table does not belong to a single class and the values in the columns
in columnnames and refcolumnnames are the foreign and primary keys of the class which
refers to this nm table and no valid property of the ontology, therefore they do not even
have a qualified name. If the key consists of information holding columns ( for example the
Country, Province and Name columns of City, which also contains the information of the
same named properties) it still is not a part of the ontology to refer this information in the
way that it is part of a key structure since the ontology does not care about the information
storing structures. The class to which can be refer is stored in refclassname.

3.1.2 URI generation

In SPARQL Protocol And RDF Query Language (SPARQL) queries it is rather common to match
entities with their URIs. Nevertheless URIs are not part of the ontology and therefore can not
be part of a result set of a query over this ontology. They will still be used in join conditions.
In relational databases without a single ID column like the URI column but with potential
multi-column keys, this matching becomes more complex. To handle this problem two solutions
become apparent.

On the one hand, this single variable can be split into several variables, each corresponding to
one part of the multi-column key. The problem with this approach is primarily the implemen-
tation effort, since the QC was not implemented with this problem in mind and it violates the
encapsulation of every node, since this would needed a reparsing of the whole tree to add these
variables.

On the other hand, a single value could be generated out of the primary keys and make sure
that this will be a unique and reproducible ID. The advantage of this approach is clearly that
this is invisible to all but the root nodes of the query tree. The disadvantage of this approach
is that databases are not good at string operations and it slows down the performance of the
QC significantly. For an industrial version of this program the slowing might be the argument
against the single value approach, but with the limited work time in mind, the approach with
multiple columns fused in one variable was chosen.

To make sure that the combination of values does not result in an equal string by chance, the
property names were always put in front of the property value and in alphabetical order of the
home table columnnames. For example, the single value keys of key1 = a and key2 = bc would
be the same as key1 = ab and key2 = c. With the property names, the multi-column key differs.
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3.1.3 Abstract Subclasses table

In case of abstract subclasses the most detailed entity type tend to hold a column where in
some way it is stored that this entity is actually a abstract subclass. A common approach is
having a column named something like type, which contains the subclass name, if the entity is
of a subclass. This approach is also used by DC generated databases. In this cases, the most
detailed entity type holds a column named RDFType, which contains the name of the subclass or
is otherwise null, if it is not a subclass. Another way to deal with abstract subclasses is to have a
column for each abstract subclass in the most detailed entity type and use the different columns
as boolean values to distinguish, if this entity is of a subclass or not.

Figure 3.3: Example AbstractColumnTable of the relational Mondial database.

The original QC automatically chooses the way of the DC and takes a look at the RDFType column
of the home table to determine if it is a subclass. With arbitrary databases, a model is needed
which is as flexible as possible to handle the different possibilities to store this information. The
abstractSubClCols table is created to do this. It has the columns classname, property, localclassname,
columnname and isclassvalue. The classname contains the name of the abstract subclass and the
localclassname contains the name of the class to find out which home table holds the column
were the subclass information is stored. The column columnname holds the information of the
column which is the decisive factor, if this entity is a subclass and if so, which one. Therefore the
isclassvalue column stores, which value the column, must have to mark that this entity is of a the
mention in classname subclass. For example, these values can be “active volcano” or “inactive
volcano” if the class names of several classes are stored in one column or it could be “true” if the
subclasses marked in a boolean style and the “false” value actually means that this one does not
describe a subclass.

Thus, with the abstractSubclcol table, the QC now looks up which property is deciding for the
classes then make sure that the value of the column columnname in the home table of the class
localclassname is equal to the value of the isclassvalue to determine, if the entries are of an abstract
subclass or not.

3.1.4 Class name tables

The class name table is redundant until the MD is translated. In this case, the name of the classes
can change while the database below will be left as it is, so the table name will still be the original
class name. So the table just consists of the two column classname and tablename and the QC uses
it as a simple name mapping, if the class name or the table name is necessary for the current
context.
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3.2 SM - SchemaMatcher

The task of the SchemaMatcher (SM) is to find for as many classes as possible from the one
ontology corresponding to the classes of the other ontology or database using only the T-Box.
Therefore it uses different methods, evaluates the impact of each and combines them to a
similarity matrix and then tries to find a matching for each row and column. From an abstract
point of view the SM handles a similarity problem and a weighted bipartite graph matching
problem.

These problems are solved in six phases, consisting of one or multiple steps (see Table 3.1)

1. Initialization: creates the different classes and their attributes, puts them into matrices and
establishes the references and inverses.

2. Independent rating: calculates the similarity of the names and the structure. Those do not
need any previous results to be calculated. Each step produces its own matrix.

3. Matrix Combination: combines all the matrices from the previous step into a single matrix.

4. Dependent rating: modifies the combined matrix according to the class trees, sub classes
and/or remove. Results in a modified matrix.

5. Matching: Calculates an alignment out of the similarity matrix.

6. Translation and Transformation: Use the class alignment to repeat phase 1 - 5 for the attributes
of each aligned class. Then uses the alignment to transform the Focus Data Base (FDB) MD
into an MD with the ontology of Ontology Data Base (ODB) and the database structure of
the FDB.
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3.2.1 Notations

In this section the following notations were used, if not explicitly written otherwise :

Ontologie DataBase (ODB) is the database which provides the ontology.

Focus DataBase (FDB) is the database which has to be translated to the ontology of ODB.

R is a set of classes or attributes of the ODB, depending on whether the formula is used in the
class or the attribute level. In matrices R is always the rows.

C is a set of classes or attributes of the FDB, depending on whether the formula is used in the
class or the attribute level. In matrices C is always the columns.

x is an element of R. Depending on the context of R, x is either a class or an attribute.

y is an element of C. Depending on the context of C, y is either a class or an attribute.

Likelihood Object is the similarity of two classes or attributes, with references to those.

M is a SchemaMatchingMatrix consisting of likelihood objects with references to x and y. Every
row is for one class or attribute out of R and every column is for one class or attribute of C.

Mx.y is the reference to the likelihood object for the classes or attributes x and y.

likelihood(Mx,y) the similarity of the likelihood object of the classes or attributes x and y.

SM is the set of all M.

aref is a class, which has a relationship with the class a and is referenced by a foreign key of a
(including inverse direction)

R → C is a matching from the space/ontology R to the space/ontology C.

x 7→ y means x matched with y, this relation is bidirectional.

3.2.2 Initialization

The initialization creates prefab matrices for all instances of the problem. This means one matrix
for all classes of ODB against all classes of FDB and one matrix for each combination of classes
from the ODB and FDB. All these matrices have the size |R| × |C|. The size of R and C is
respectively to the current context either the amount of classes from the one or the other ontology
or to the amount of attributes the current class has. Additional to the matrix initialization also the
classes and attributes themselves were initialized, means they got their names, ranges, references,
inverses, and their inheritance tree. All those information are extracted from the MD of the
ODB respectively the FDB. Those prefab matrices are copied in each step and filled with values,
this results in far less effort than creating a new matrix, new attributes and new classes from
the database every single time. Technically the prefab matrices would be enough to store the
results and compute the values for each following step, if the step overrides the results of their
predecessor. However, creating copies gives the user the opportunity to understand what has
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happened in each step and how every value is computed, which is under normal circumstances
much more valuable.

3.2.3 Independent rating

The independent ratings are steps which can be executed without any further steps except
initialization and do not influence each other. This also means that there is no real meaning to
the execution order of steps from this class. These steps, however, can be considered the most
important ones for the rating, since the other steps depends on the results of them and errors
will be carried on to other steps.

3.2.3.1 Name Rating and Synonyms

Comparing the names of classes and attributes is the most naive but also the usually most
successful way to match databases. Like most steps, the Name rating distinguishes between the
matching of a class or an attribute.

In case of matching attributes the matching score will be calculated just on the name of the
attribute. First it is checked if the name strings of the objects are exactly the same (all comparisons
are made in lower case letters) this is the only way to make an 1.0 score. For every other
evaluations at most a score of 0.95 is possible, to make sure that exact matches are still slightly
better. Then it is checked if one name contains the other name. If so the score is at least 0.5 but
if the more advanced matching techniques got a higher score, the higher score will be the final
score. For comparison besides exactly the same and one is part of the other, the matching score
is the maximum of the Jaccard token matching (see Section2.4.1) , the Levenshtein similarity
(see Section 2.4.2) and the Inverse Levenshtein similarity in the matching score (see Equation
3.1). These three methods work best with different kinds of similarities and give a better overall
similarity score if all used. Clearly, these methods are rather computation intensive and slow
down the performance noticeable, especially if all three are executed. However, in this approach
precision is a much more critical factor than time.

match(a, b) = filter(max(JaccardTokenMatching(a, b),max(Levenshtein(a, b), InverseLevenshtein(a, b)))

(3.1)

For classes, the name of the two classes are compared in the same way as the names of attributes,
but as long as at least one class has attributes also the attributes of this two classes are taken in
account (see Equation3.2).
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scorex,y = filter(match(name(x), name(y)) ∗ w︸ ︷︷ ︸
class namematching

) (3.2)

+

|Attribute(x)|∑
i=0

habre(match(name(Attributes(x)i), name(Attributes(y)))

max(|Attributes(x)|, |Attributes(y)|)
∗ (1− w)︸ ︷︷ ︸

attribute name average matching

(3.3)

The class name matching part is the same as Equation 3.1 weighted by w. Then all attributes
of the ontology R are matched with all attributes of C and a matching will be created with the
variance matching by Habre (see Section 3.2.6.1). This matching technique is chosen even if it
tends to mix up some matchings but the actual matchings do not matter at that point only the
similarity score are important and since every class and attribute will be matched with each other
it has to be done in a efficient way. Therefore this score is rather a good estimation. The sum of
the matched similarity scores will now be divided by the greater amount of attributes of class x
or class y. This creates a score penalty if the number of attributes is not equal, otherwise a class
with just one attribute which fits perfectly to one of the other class would have a great score even
if all other attributes of the second class do not have a matching partner at all. This attribute
average matching score is now weighted by 1−w to get a valid probability between 0 and 1. The
value w is the weighting between the name of the class and the names of the attributes of a class.
w is by default set to 0.6, i.g. the class name is slightly more important than the attribute name
average. But this also means that two classes with the same name can still have a score of w if
none of the attributes are matching. Therefore w should be coordinated with the threshold of the
removing step (see Section 3.2.5.3). If tremove ≥ tname it can make sure that at least one attribute
has to match or that there a non at all, since the score can not be higher than w without attributes.

The name matching itself creates some additional problems to handle: Words consiting of about
26 characters (depending on the language of the ontologies) and especially longer words will very
likely have some shared sequences or characters. Therefore words without a real connection will
still have relatively high score sometimes. Because of this matching between words which are
not actually similar, scores which range from 0 up to 0.5 should not be taken into consideration
for further calculations. To remove this flat score decreasing, a high pass filter is implemented
for the string matching, which sets scores to 0 if they are lower than the threshold value. This
value is set to 0.6 which proofed to be a solid value by testing, but actually it is rather arbitrary.
For classes this filter is implemented as well, since there are often attributes which are nearly in
every class, like name, and low scores because of this attributes do not help in evaluating the
usefulness of the matching, so it also set to 0.0 if it is too low.

Another problem are synonyms. By only looking at the characters it is not possible to find out, if
a different word could actually mean the same. Therefore a thesaurus [The] is needed to add
to every class and attribute name also the synonyms and then the whole procedure is done for
every synonym (the name itself will be added as a synonym as well) from the one class/attribute
of R with every other class/attribute of C.
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Figure 3.4: Name matching time for mondial_rdf2sql_standard to rel_mondial. Average over 50
runs on an average home computer. X-axes max word length/Y - axes time in milliseconds

Especially with synonyms, the computation time rises exponentially with the number of syn-
onyms, but also with the length of the single words (see Section3.4). To keep the computation
time reasonable it is possible to set a maximum word length value maxL. If a word is longer
than maxL it must be shortened. No matter which part of the word is cut out, information will
always be lost. Since human reading of known words works primarily in reading the prefix and
suffix of the word to make the grammatical adjustments and then remember the middle part of
the word as a pattern the characteristic part of the word is rather the middle one, it shows better
results when cut the front and end. Especially in English the really long names consist out of
several words, so this technique should rather be used for trying and debugging than for actual
runs.

3.2.3.2 Structure rating

The structure rating calculates the similarity based on the data type of the attributes of a class.
Therefore it differentiates between seven structure classes

• Literals

– Text all kinds of character sequences which do not fit into anything else

– Numbers all kinds of numeric values

– Dates all columns which use the date type of the database language

• References/Objects

– 1:N & 1:1 all attributes which refer to home tables

– NM Connection all attributes which refer to an NM table
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– Inverse all attributes which are inverse functional

• Other special data structures (for example the geographical coordinates “GeoCoord” from
Mondial_Rel consisting of longitude and latitude pairs)

For each matching pair x, y the step calculates the score like Equation 3.6. Basically, all attributes
will be assigned to one of the structure classes and then for every subclass the lower amount will
be divided by the greater one. If the amount is equal the rating is 1, otherwise the rating is lower.
The sum of all subscores is divided by the cardinality of the set of structure classes.

Istype(X) = X ∩ T : ∀t : Type(t) = type → t ∈ T (3.4)

subScorex,y(at) =

{
min(|Isat(Attributes(x)),|Isat(Attributes(y)|
max(|Isat(Attributes(x)),|Isat(Attributes(y)| If : |Isat(Attributes(x))| 6= 0 ∨ |Isat(Attributes(y))| 6= 0

1 If : |Isat(Attributes(x))| = 0 ∧ |Isat(Attributes(y))| = 0

(3.5)

scorex,y =

∑
subscores(x, y)

7
(3.6)

3.2.4 Matrix combination

The independent steps are all based on the initial matrix with only -1 as values. If now all
independent steps were executed the dependent steps need matching matrices other than
the initial matrix, but with actual similarity values. Therefore a method to combine all the
SchemaMatchingMatrix (SMM) from the independent steps are needed. So this step has to be
done at the transition from the independent steps to the dependent ones.

3.2.4.1 Multiplicative combination

It is a rather standard approach to combine probabilities by just multiply every value (see
Equation 3.7). The first problem now is that the values will decrease or at best stay the same
with every additional step. This can be solved by using normalization techniques but two even
greater problems still exist. First, the influence of every matrix in this approach is always the
same, but in general not every method works as good as every other method. Because of this
there should be a weighting mechanism. But adding a weighting value would be exactly like
adding an additional similarity value, because of the commutative law. The second problem is
that as soon as only one similarity value of a single step is zero, there is no chance to recover
from this at all. For example, if a class name is used, which is a not known synonym of the other
class name, this will lead to a similarity value of zero which means, that these classes could not
be matched, even if the scores of the other steps are extremely good, since it will always stay
zero. So the multiplicative score of the classes x ∈ R and y ∈ C over a set of matching matrices
SM calculates:
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scorex,y =

|SM |∏
i=0

SM i
xy

|SM |
(3.7)

3.2.4.2 Weighted Additive combination

To overcome the problems of the multiplicative combination the weighted additive combination
is used. It has the clear advantage, that a single step failure does lower the similarity value, but
does not put it to zero without any chance of recovery. Further it gives the opportunity to weight
every single step, so it can have an influence depending on its effectiveness. So the weighted
additive score of the classes x ∈ R and y ∈ C over a set of matching matrices SM calculates:

scorex,y =

|SM |∑
i=0

(
SM i

x,y ∗ weight(SM i)
)

|SM |∑
i=0

weight(SM i)

The weight could be calculated in different ways. In this thesis, there are only the matrix sharpness
evaluation types (see Section3.2.4.3), but there might be some other methods to do so as well.

3.2.4.3 Matrix evaluation

To evaluate the quality of a similarity matrix in terms of their matching ability, the term matrix
sharpness was defined. Sharpness describes the difference between the highest value of a row or
column and the average value without the best value. This value is an important measurement,
since a matrix with one 1 in each row and each column and the rest 0 would be the perfect
matching base and also would have the highest possible sharpness, while a matrix with a
sharpness of 0 would be one with all values equal, which also does not help the matching at all.

sharpnessRowWise(M,x) =

max(likelyhood(Mx) −

|Mx|∑
i=0

likelyhood(Mx,i)

−max(likelyhood(Mx))

|Mx|−1
If |Mx| > 1

1 else

(3.8)

sharpnessColumnWise(M, y) =

max(likelyhood(M,y)) −

|M,y|∑
i=0

likelyhood(Mi,y)

−max(likelyhood(Mx))

|M,y|−1
If |M,y| > 1

1 else

(3.9)

sharpnessCellWise(M,x, y) =
sharpnessRowWise(M,x) + sharpnessColumnWise(M, y)

2
(3.10)
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sharpness(M) =


|M,y|∑
i=0

sharpnessRowWise(M, i)

|M,y|
+

|Mx|∑
i=0

sharpnessColumnWise(M, i)

|Mx|

 /2 (3.11)

With the functions (3.8)&(3.9) one has two opportunities to calculate the sharpness. Either using
Equation (3.10) for each single cell or using 3.11. The cell wise method (3.10) has the big problem,
that it can not differentiate between a medium value with bad other values or a good value with
medium other values. But in the case of the matching, a higher score is much more valuable,
since the medium score is still quite likely to be a wrong matching. The overall (3.11) method on
the other hand has problems to treat every object within the matrix the same. This might solve
the problem of 3.10 but in cases where some object can be identified very well by the method
and some not at all it flattens the influence to a medium score with giving the right ones not the
influence they would need and wrong ones the influence they do not deserve.

After testing both methods with some different database configuration it shows, that there was
no case where the results of (3.11) is not better or equal then the results of (3.10).

3.2.5 Dependent rating

Dependent ratings modify the similarity matrices according to the relational structure, the
nested class structure, or removes elements, if they do not reach a certain score. Other than the
independent rating, these methods are context sensitive, therefore they have to be performed
after the independent ones, so a context exists. These steps do not copy the prefab matrix but
the existing matrix of the combination instead. Before the first dependent step is executed all
matrices calculated by the independent steps were combined according to the chosen matrix
combination method (see Equation 3.7) and used as basis for further calculations of the first
dependent step. The other dependent steps use the matrix of the previous one. This means it is
not necessary to combine the matrices after this type of steps again and also, that in this case the
execution order actually makes a difference in results especially for the removing step.

3.2.5.1 Foreign key rating

The foreign key rating uses the foreign key references to influence the similarity scores. This
score calculates differently, depending if the step is called with classes from the SchemaMatcher
itself or with attributes from the translation step. Equation3.12 is used during the call of the step
itself and the other is used during matching attributes with all classes already matched in the
matching steps (see Section3.2.6). The main difference in these cases is, that if the classes x ∈ X

and y ∈ Y are not already matched but only have similarity scores in the similarity matrix M .
The foreign key matching does not know if a relationship from x to a class xref ∈ X is actually
the corresponding relationship from y to class yre ∈ Y therefore it can just use the existing
similarity score of equation3.12 to improve or lower the score of x → y.
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subScore(xi, yj) =


max(M(reference(xi), reference(yj),M(xi, yj)) If (reference(xi) 6= /O) ∧ ⊕(reference(yi) 6= /O)

1 If reference(xi) ∪ reference(yi) = /O

0 If (reference(xi) 6= /O)⊕ (reference(yi) 6= /O)

(3.12)

But if the matching x → y and xref → yref are known, the similarity score is no longer needed
and it can make a boolean decision if this matches or not (see Equation3.13).

subScore(xi, yj) =

{
1 reference(matched(xi)) = matched(reference(xi))

0 reference(matched(xi)) 6= matched(reference(xi))
(3.13)

In both case the overall score for a class computes like equation 3.14 but depending on the point
of calling equation3.13 is used if no matches are available and equation 3.13 is used if so.

scorex,y = M(x, y) ∗ w +

|Attributes(x)|∑
i=0

subscore(xi, y)

|Isnmconnection(x) ∪ IsfunctionalConnection(x)|
∗ (1− w) : 0 ≤ w ≤ 1

(3.14)

w is a variable to weight the influence on the overall score.

3.2.5.2 Inheritance rating

This step is only useful in cases where two ontologies are used with good Resource Description
Framework (RDF) abstract classes usage or another shared detailed inheritance structure. It
creates a set F for all classes with all super classes and sub classes, called family . Then it compares
the familiy of each class of R with all of C. Here again, the problem is that one does not really
know the mapping R → C : xR 7→ xC so it orientates on the matching scores of previous steps
and that is the reason why this method is dependent. Also it can only be used for classes, since
the attributes do not have any super or sub-attributes. The score is calculated by computing
the family sets of xR and yC then the mapping R → C : xR 7→ xC and then multiplying the
intersection of xCand yCby 2, since the sum of both families is at least two times higher even if
habre(FxR

, Fyc
) = FyC

and then divided by the sum of |Fx|+ |Fy|

FX = superclasses(x) ∪ subclasses(x) ∪ x

Fy = superclasses(y) ∪ subclasses(y) ∪ y

scorex,y =
|habre(FxR

, FyC
) ∩ FyC

| ∗ 2
|Fx|+ |Fy|

This step provides much more potential, for example reasoning like it is done in LogMap
[CGJR11]. But since derived ontologies only have none to very basic class structures this step
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can only provide little information and only for very specific classes, so there was not spend to
much effort into it.

3.2.5.3 Removing step

Figure 3.5: Influence of the threshold - on RDF2SQLMondial without abstract classes to rel_Mon-
dial

If there is an object for which no mapping could be found, it is necessary to remove this obsolete
classes and attributes. This usually happens often, since matching two identical databases does
not make much sense and the mapping algorithm does not produce perfect results. Sometimes
this can improve the results of the matching steps slightly (see Figure 3.5) and always improves
the performance, since with fewer objects, there are less wrong matching possibilities and less
computation to be done. The removing step removes every object in a matching matrix which
does not have a similarity value with any partner over the threshold t with 0 ≤ t ≤ 1. Without
respecting any matching which means if ∃y ∈ C : ∃x1, x2 ∈ R : x1 6= x2∧ likelihood(M(x1, y)) >

t∧ likelihood(M(x2, y)) > t none of the x would be removed even if it obvious that only a single
x could be matched to the y . But deciding which matching is the correct one is not part of this
step. The t could stay the same, but the similarity values for attributes are usually weaker, since
class similarity values are based on more components, therefore the score is more averaged and
even bad scores tend to reach higher values. Therefore t is divided by two by default when the
step is used for attributes.

remove(M, t) : M → Mr Mx,y 7→

{
Mx,y If ∃y : likelihood(Mx.y) ≥ t ∨ ∃x : likelihood(Mx.y) ≥ t

Else likelihood(Mx,y) < t

For the final results, the influence of this step is rather low (see Fig. 3.5) as long as the threshold
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is not too high. This mainly depends on the matching algorithms. These are always greedy
algorithms which prefer the high score values and this behavior results pretty much in the same
then the RemoveStep does it itself, the main difference is that the matching steps will match those
classes with any leftovers and this will pretty likely be completely wrong, while the RemoveStep
will just delete those classes. In the end, this does not make a correct matching but it makes the
other matched classes more reliable which is also important since you do not have to double
check every working matching this much anymore.

3.2.5.4 Nested class Step

Figure 3.6: Schema of finding nested UDT classes in the Focus DataBase (FDB) out of deleted
ones from the Ontology DataBase (ODB)

Sometimes a class on its own exists only in one of the ontologies and is a User Defined Type (UDT)
nested in a column of another class (host class) in the other ontology. For example, the classes
estuary and source only exists in Mondial_RDF2SQL but not in Mondial_rel. In Mondial_rel
these classes are nested in the UDT geocoord in the columns source and estuary of the river table.
During the similarity values calculations, those classes should have a quite weak score and were
removed at the RemoveStep (see Section3.2.5.3). Removed SchemaObjects are not totally lost;
they are rather stored in a list and no longer in the SMM. The nested class step uses this list to
check all classes (removed and not removed) of the other ontology for an attribute with the same
name as the removed class. If there are no or several such attributes the step will drop this class
otherwise the single attribute will be investigated. If it is a number or a text, it is considered to
be an abstract subclass and gets an entry in the MD as such. If it is a UDT, a new SchemaClass
is created with the attributes of the UDT and the keys of the table which holds the UDT . This
class will be added to the SMM and already matched with the one of the other ontology. The
new Class gets a likehoodScore of 1 for the matched class and 0 for all other (see Figure 3.6).
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ClassName PropertyName TableName Range

HC.ColumnName UDT.AttributeName HC.Table UDT.Attribute.Range

Domain LookUpAttr Inverse

UDT.Attribute.Domain HC.ColumnName + “.” + UDT.Attribute.Name false

Table 3.2: MD Entry - HC = host class, NC = Nested Class

As the last step, the MD of the FDB has to be updated with the new classes created by this step.
Therefore every attribute creates an MD entry with the table value of the host class, but the class
name is the one of the nested class and the property is actually the column name of the host class
where the nested class is stored connected with the attributes name of the UDT (see Table3.2).

This step has to be executed after the RemoveStep, otherwise the removed classes lists are empty.

3.2.6 Matching

The previous steps do not calculate a matching for the class matrix (some do for underlying
matrices), but at this point there are only several similarity matrices. These matrices can now
support the decision which x ∈ R matches to which y ∈ C. So the matching step performs the
mapping function and gives a matrix only consisting of 0 and at most a single 1 per row and
column back. This matrix format is the only one the next step can use (see Section 3.2.7).

The matching is a bipartite weighted graph matching. There exists some algorithms to solve this
problem but many common algorithms are not usable, since they often have the condition that
there must be a perfect matching or at least the matrix must be a squared one. Both is in general
not the case. Another condition different from the general problem of graph matching is that
there is only one right matching or none. Therefore this problem can not be seen as a common
knapsack problem (further readings [SM90]), since it is not directly about the maximization of
the score but getting as much high value matching as possible. So for this case greedy algorithms
are the method of choice, since that is exactly what they do.

3.2.6.1 Greedy variance based matching - Habre matching

This method is designed after [Hab61] and is only slightly altered. The idea behind it is to find
anomalies in the variance of the matrix to then greedily chose matching pairs. To do so, the score
of a single cell is added with an overall average of the matrix and then subtracted by the average
of this row and this column. This is done for every cell of the matrix. Next, the cell with the
highest score which row and column are not already used will be chosen. This step repeats until
there are no unused row or columns left (see Section 3.1). (As a reminder: µdenotes the variance)

habreScorex,y = likelihood(Mx,y)−µ(likelihood(Mx))−µ(likelihood(M,y))+µ(likelihood(M))

(3.15)
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Algorithm 3.1 Habre Variance based Matching
V = M;
i = 0;
foreach(cell c in V){

V[c.x,c.y] = M.habreScore(c.x,c.y);
}
while(i < V.height & i < V.width){

max = getMaxUnblockedCell(V);
V.blockColumn(max.y)
V.blockRow(max.x);
M.setRowToZero(max.x);
M.setColumnToZero(max.y);
M[max.x,max.y] = 1.0;
i++

}

This algorithm is extremely fast compared to the Priority permutation matching (see Section 3.2.6.2)
algorithm, but the matching quality is worse, since it tends to mix up some rather obvious
matchings. Therefore the Habre algorithm is not used for final matchings but to speed up
attribute matchings for the class matching, since this has to be done for each attribute of x ∈ R

with each attribute of each y ∈ C. The class matching itself and the matching of the attribute of
already matched classes is then done by a more reliable algorithm.

3.2.6.2 Priority permutation matching

The priority permutation matching is based on the idea to check every possible permutation of
matching combination. This does of course not really work in terms of computational complexity
(For Mondial_rdf2sql with abstract classes are 80! ≈ 2, 6 ∗ 10118permutations possible ), further
not every permutation is a valid combination since an object can only be matched once. Therefore
a greedy attempt is necessary to reduce the computational effort. To do so every x ∈ R is checked
for it highest similarity value to y1 ∈ C and maximum of n next highest other object y2...n ∈ C

with yk ≥ y1 ∗ w : 0 ≤ w ≤ 1 or less if there are no close competitors. Next, every permutation
is checked for their overall score. Therefore a |C| digit long number in an n digit system is
generated and then counted from zero to its maximal value. Every digit represents a y ∈ C and
the value of this digit is the position in the score ranking which is used for the try. I.g. every
possibility is tried out. For example if there were |C| = 4 and n = 2 the first number would be
0000, i.g. that for all classes a matching is tried with only the highest similarity scores. The next
try would be 0001, i.g. for y1, y2, y3 it would still be the matching with the highest score but for
y4the second best one is chosen. From this set of chosen matching the one with the highest score
is matched first and marked in which row and column this matching happens. If one of the
following matches wants to use either the row or the column, this one would not be used in this
attempt and the score matching will be calculated with 0 for this object.
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Algorithm 3.2 Priority Permutation Matching - Pseudocode
List listOfBestLists = new List();
For(i = 0; i < |R|;i++){

listOfBestLists.add(getBest(n));
}
counter[] = IteratorOnNDigitSystem();
List BestPathList = new List();
double BestPathScore = 0;
while(counter.next()){

List PathList = new List();
double PathScore = 0;
usedX = new boolean [|R|];
usedY = new boolean [|C|];
for(c = 0; c < listOfBestLists;c++){

PathList.add(ListOfBestLists.getObject(c).getScore(counter[c]);
}
PathList.sort();
foreach(Cell c in PathList){

if(!usedX[c.x] && !usedY[c.y]){
usedX[c.x] = true;
usedY[c.y] = true;
PathScore = c.score;

}
}
if(PathScore > BestPathScore){

BestPathScore = PathScore;
BestPathList = PathList;

}
}
return BestPathList;

3.2.7 Translating

When this step is reached, all other steps were at least performed once and the class matching
can be considered to be done, but not the attribute matching inside the class pairs. To save
resources the attribute matching is only be done after the class matching, otherwise it had to
be done for each possible combination of classes. As mention earlier matching class pairs or
matching attribute pairs is not much of a difference, at least outside the individual step. So the
translating step takes the list of previous steps and executes every step on the class pair matrix
as well. The steps themselves decide, if they have a different way to handle attributes or not. In
the end, the translation step has one matrix with all the class pairs and a matrix for each class
pair attribute matching.

Beside the normal entry, every entry also tries to insert his inverse information as long as it
has an inverse. This does make sense if the inverse itself does not have a matching, since if the
one direction matches the other also have to match, otherwise the matching is inconsistent and
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definitely wrong. To decide if the normal matching or the matching of the inverse is the better
choice the similarity value acts as a confidence. The attribute with the higher confidence will be
used to generate the normal and the inverse entry of an attribute, therefore it can be guaranteed
that the entries are consistent and the chance of getting the right one is higher.

The translation itself is actually a very easy part, as soon as one knows which classes and
attributes are related to each other, it is not much more than renaming all classes and properties
in the md, nmj, nm, home table, abstracSubCl and key tables and copy the inverse, allcl and
subcl table from the ODB MD to the FDB MD. This is possible due to the nature of the MD, since
it already was a translation from an ontology to a database. Therefore, it always had the abstract
ontology part with class names and properties and the concrete implementation specific part of
the database with table and column names. So the translation to another ontology has only been
done in the abstract part, since the internal structure of the database stays the same. The tables
which only contain information of the ontology like allcl, subcl and inverse have to be copied from
the ODB, since it does not matter anymore how the FDB handles those.
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Chapter 4

Design

The whole system is divided into four parts: the DatabaseConverter (DatabaseConverter (DC))
[RS13], the QueryConverter (QueryConverter (QC)) [RSa], the RelationalModelBuilder [Run]
(RelationalModelBuilder (RMB)) and the SchemaMatcher (SchemaMatcher (SM)), the part which
is done is this thesis. To combine all these parts, a graphical user interface (Graphical User
Interface (GUI)) (see Section4.3) is implemented as an additional part of the thesis. The focus
of the GUI is to improve the usability of the large size and amount of matrices of the SM , but
it also gives the other three steps the opportunity to make the settings and argument transfer
easier. To make it more flexible the matching step structure (see Section 4.2) was chosen. This
structure takes care of the parallelization of computations, the execution order, and the transfer
of arguments independent from the underlying processes. Further it integrates new steps
automatically into the GUI.

For the SM the SchemaObjects are introduced as superclass of SchemaClass and SchemaAttribute,
which are relevant for the similarity calculation. During the calculations, it must often be differen-
tiated between classes and attributes but the steps are very similar for all classes of an ontology or
all attributes of a class. Therefore this classes can use both use the SchemaMatchingMatrix (SMM).

In this work some adaptations to the QC and the whole new creation of the SM and the GUI
were done. The QC adaptations and the SM creation follow different desig styles: The QC
tries to be as transparent as possible and is a classical black box since if the query and the
MappingDictionary (MD) are correct, there are no uncertainties. In contrast, the SM works with
probabilities, threshold, and uncertainties, which means that there some adjustments can always
be made to the actual case and the results could be different by just slight threshold shifting.
Therefore the SM has to give the opportunity to make these adjustments.

4.1 SchemaObjects

The SchemaObject is the super class of the SchemaClass and SchemaAttribute. Further, there are
the SchemaMatchingMatrices (SMM), the SchemaSummary and the SchemaStepResult. Together
with several subclasses, these classes are the elements for the SM similarity calculations. They

51
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were designed in a way that makes it possible to have as little work as possible to introduce a
new matching method or a new visual representation.

4.1.1 SchemaObject Classes

The SchemaObject is for every entity of an ontology like classes and attributes which can have a
similarity score. Itself contains not much more than the name of the object and the synonyms
and the matched object, because these are the shared properties of the subclasses and normally
the calculation methods differentiate between the sub classes, since the calculation can not be the
same for those, but the containing data structure and the step order can be.

SchemaClass is the representation of the classes of an ontology. It contains all the attributes and
the inheritance of this class and methods to extract this information out of the MD [RSa].

SchemaAttribute is the representation of the attributes of a class of an ontology. It contains the
data type, potential keys and connections, the domain, the table it is stored in, and methods
to extract this information out from the MD.

SchemaMatchingMatrix holds probability values for SchemaObjects, the reference to SchemaOb-
jectsi and further the matching and methods to get these values and get the matched y ∈ C

for a specific x ∈ R.

SchemaStepResult is a compact version of the SMM, which stores the intermediate results
where no further operations have to be done except presenting it to the user.

4.2 Matching Step

The matching step is designed to make use of parallelization on the one hand and to integrate the
steps automatically into the GUI and the Step Queue (see Section 4.3.1) on the other. A matching
step has an initialization, a matching, and an end phase. Actually, a step does not have to do
every phase and can skip any. The difference between these phases is that the initialization
and the end do not need any arguments and work as usual methods but the matching step
needs one SchemaObject (see Section.4.1) from each ontology and will be called for each possible
combination of x ∈ R and y ∈ C. Further, it will divide the task between several threads,
depending on the number of CPU cores. This increases the performance especially for steps like
NameMatchingStep and PriorityPermutationMatchingStep. In addition to the matching and
calculation methods functionality, the matching steps provide a progress bar. This is neccessary
since some steps, especially with high settings, can be very time consuming. The bar gives an
opportunity to see the progress and make sure the program did not crash. Further, every step
can design its own options panel or use the slider prefab to transfer arguments and settings.



4.3. USER INTERFACE 53

4.3 User Interface

The user interface has four major parts, the Step Queue, the Database Settings, the Step Selection,
and the Step Results. The Database Settings and the Step Queue are only available before starting
the matcher and the Step Result are iteratively generated for each step while the following steps
were executed.

4.3.1 Step Queue and Step selection

The step selection provides the opportunity to select only the wanted steps or a default execution
order. It is divided into several segments corresponding to the phases of the steps. The steps are
always executed in the same order as the phases are, but if two were from the same phase, the
selection order also decides upon the execution order.

Figure 4.1: The SchemaMatcher UI. Step Queue marked in green, Step Selection marked in
yellow

If a step is selected, its progress and options panel is displayed at the position it would be
executed in the Step Queue. This panel allows to change some settings directly or in a separate
window if there are several options.
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4.3.2 Database Settings

The database settings provide text fields for all necessary information to establish a connection
to a database and to use or create the MD on it. There are two databases settings panels for the
Ontology Data Base (ODB) and the Focus Data Base (FDB). The Ontology database provides
the ontology and the metadata, while the focus database provides the data sets. Besides the
connection properties also the names of the tables of the ontological metadata are available and
can be altered if needed, this does only make sense if the default names were already used or the
ontological metadata were created in a different way than using the DC or RMB .

Figure 4.2: SchemaMatcher User Interface. Ontology Database settings panel marked in blue,
focus database panel marked in red.
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4.3.3 Step Results

When a step is done, even if other steps still need to be computed, the SM shows a step result.
This is by default a matrix table with all entries colored from red to green (see Figure 4.3),
depending on their values. The Step Results in the SchemaMatcher window are always an
overview of all classes. If further details about the similarity score of x ∈ R and y ∈ C are
necessary, a click on this value opens the detailed view. This is a StepResult as well but this time
for the attribute of x ∈ R and the attribute of y ∈ C. (see Figure 4.4).

However, for some steps a default StepResult would not be informative or shows the information
in an unnecessary complicated way, if displayed as default StepResult. Those steps can use a
subclass of SchemaResult and can create their own panel to provide the user with information
he would rather be interested in. For example, for the initialization step the matrix table would
only contains -1. This is not only uninteresting, it also conceals the relevant information, how the
classes and attributes were initialized from the user. Therefore this step has a special StepResult
to provide the relevant data in a pleasing way (see Figure 4.5). Also the translation step does not
use the usual StepResult, but a special designed panel. Even if its possible to display the result in
a matrix, a list with the matching provides better overview and easier access to the details of the
result (see Figur 4.6).

Steps which do not belong to the SM, but representing the other parts of the RDF2SQL system,
the QueryConverter, the DatabaseConverter and RelationalModelBuilder do also have own
StepResults. The default StepResult would not make sense for those, since these programs do
not compute on matrices. Therefore each of them has an individual StepResult (see Figures 4.7 &
4.8).
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Chapter 5

Implementation

The implementation was done in Java 7 with the usage of this external packages: OJDBC7 [Ora],
Jena [Apaa], Pellet [SPG+07], postgressql [Grob], syntaxOsterMiller [Ost], saxon [Lim].

5.1 QC - QueryConverter

The QueryConverter itself was already implemented in a previous work. For details, see [RSa].
In this thesis only the adapted and new parts are mentioned (for UML diagrams of the important
parts see Appendix A).

5.1.1 Class name table

The Class names table is an additional part of the MappingDictionary (MD) (see Section 2.3.3.1).
The names are stored in a hash map to keep the access time as short as possible. The hash
map is filled during the normal update of the mapping dictionary, accesses the class name
table in the database and takes the class name as key and the table name as value. The class
names can be accessed by the static (if only one MD is used ) and non-static (dealing with
multiple MDs) methods getClassTable(classname). These methods replace every case in the
QueryConverter (QC) code where the class name was used, when the table name is meant.
Without the translations in mind this was absolutely legitimate, since the class name defines the
table name of the home table, but after a matching onto another ontology the class names can of
course differ.

5.1.2 multi-column keys

The multi-column keys are more complicated to implement than the class names. It must be
differentiated between the two different information which are stored in one table.

• getUriSelection(ClassVariable cv, String className, Node n) returns a SelectVarInfo which
contains the Unique Resource Identifier (URI) or the constructed URI in a single variable.
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Even though a ClassVariable (CV) can have multiple classes, this function neither can
handle this nor is it needed. Since multiple classes always cause a union and the selection
is done in the leaves which are UnionObjectParts and these only deal with a single class
each and become fused in the higher tiers to a multi-class. This is also the reason, why a
className is needed to make sure it deals with the right class in each UnionObjectPart.
The function itself calls a URI Generator instance, which takes care of the right selections
(see for further details Section 5.1.4)

• getNMUriSelection(ClassVariable cv, String className,Table nmTable, Node n, boolean sym =
false) this function is used to get the key connection from a home table to an nm table.
Therefore the CV, the node and the class name are needed for the same reasons as for the
normal URI selection, but it also needs the table it should be linked to, since the column
would not be enough for multi-column keys. For the case of a symmetric reified table, there
is an additional parameter which handles the problem of assigning multiple MD entries
to a single property. If this is true, it takes care of the the pref entry value which will be
assigned to 1 for the one and 0 for the other and select the first or the second entry (further
details see [RSa]).

5.1.3 Abstract Subclasses columns

Instead of just taking a look at the column “RDFType” in the home table, now every time the
method AbstractSubclColEntry(String classname) is called from the MD, when an additional con-
dition for an abstract subclass is generated. This function just needs the name of the abstract
subclass and gives back an AbstractSubclColEntry Object (see Figure A.3). This AbstractSubclCo-
lEntry object can be straightforwardly generated from the database AbstractSubColTable and is
stored in a list when the MD is loaded.

5.1.4 URI generation

The URI generation is done by the UriGenerator. This class contains user made or automatically
created UriGeneratorRule-Objects, a prefix, and a separator which decide how a URI will be
generated. The UriGenerator sorts and executes every rule of a certain class to create the URI.

A single UriGenerationRule will handle one key property and has a classname, a column-
name, a propertyname, and priority. The priority and if its equal the propertyName decide
in which order this rules will be executed. The UriGeneratorRule creates a ”PropertyName” +

seperator+HomeTable(Class).columnname and the UriGenerator creates prefix+ separator+

UriGeneratorRule1 + separator + UriGeneratorRule2 + separator...UriGeneratorRulen +

separator string, which uses a special case of SelectedVarInfo [RSa]. This special type of Select-
edVarInfo places just a string instead of TableName.ColumnName in the selection, otherwise
the URI would not be presented in a valid way.
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5.2 SM - SchemaMatcher

The SchemaMatcher (SM) is conceived around the SchemaMatchingMatrices and the Matching-
Steps. The matrices are created or altered in every MatchingStep, up to the point when a matrix
contains the result.

5.2.1 SchemaMatcher - Main Class

The main class of this program the SchemaMatcher. It starts the graphical user interface Graphical
User Interface (GUI), but its major part is after selection of the steps to be executed. This class
takes care of the MD creation from the database. Therefore the DatabaseSettings object from
the UI is used to set the connection to the database and then call the update Method of the
MD. After the MD creation its execute, every selected step in the StepQueue on the main
SchemaMatchingMatrix (SMM), which takes care of eventual further step calls on sub-matrix.
Further between the steps, the SchemaMatcher is also responsible for the combination of the
matrices.

5.2.2 MatchingSteps (MS)

There are 19 different MatchingStep (MS) subclasses (see FigureB.4) with different purpose and
areas of application. But they all share the basic concept of all MS, that the calculation is divided
into three phases and that the MS creates its own Option/Progress panel in the UI (see FigureB.3).

The three phases of the MS are the init(), match(SchemaObject x,SchemaObject y) and end()
phase. Those phases are abstract and have to be implemented in every concrete subclass.
Howerver, with the hasInit(), hasEnd() and hasMatching() methods every subclass can decide,
if it actually wants to use them or leave them empty. While init() and end() are just called
without any arguments and just execute the routines of the respective step, the match function
is called for every row-column-combination of the MS and has a calculation for SchemaClass
and SchemaAttributes. As long as the matrix does not use its own values, like it would do in
a dynamic programming application, parallelization of this matrix wide calculations is rather
unproblematic. After the init() - method theMS automatically creates a number of threads either
depending on the cores of the CPU or a fixed set value, since it turns out that it could not be that
easily be said which number of threads it the optimal one.
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Figure 5.1: Relative computation time of the NameMatchingStep with different numbers of
threads on a QuadCore CPU [Int] . Averaged over 50 runs

In a test run with different settings (see Figure5.1), it turns out that 9 threads seem to be the
best choice on this machine, but it seems very hardware-dependent. Depending on the number
of threads which are created, the MS divides the SMM cells into pieces with the same amount
of cells and tells every threat from which point it should start and up to which point it should
calculate. Therefore there are no race conditions or access complications, since every thread has
its own memory. The only critical point is actually the progress bar. Since it can take a while, the
progress bar is relatively important for the user to know that the program is still running, but if
multiple threads want to increase the progress bar at the same time the classical race conditions
problem occurs. Since that is a well-known problem, there is a java built-in semaphore which
can solve this problem. To avoid that the waiting time for the writing access to the progress bar
nullifies the gained speed by threading the task, the number of accesses to the progress bar -
progress value are limited to an amount where actually a progress is visible (it only displays full
percent values) Because of this the program only changes the value every x calculations and not
every time.

The MS joins all threads and only after every thread is done execute the end() - method. Actually
it would be more efficient, to split the calculations of the threads randomly or diagonal, so that
there are no bad luck threads which have to make computation heavy calculations all the time,
but since this approach is not focused on short runtimes but a proof of concept, it was decided to
use the easier and faster to implemented way of splitting the payload address wise.

5.2.3 SchemaMatchingMatrix (SMM)

The primary function of a SchemaMatchingMatrix (SMM) is to store on the one side two sets of
SchemaObjects and an array of likelihood objects and on the other side to provide access to all of
these elements in a regulated way so that the right likelihood is accessed for every combination
of the two SchemaObjects. Also, it gave the MatchThreads a structure to work on. The sets of
SchemaObjects are stored in lists and HashMaps as well to provide fast iteration and single
object access. The likelihood array has the size of each list and the list position represents the
array x or y coordinate.

The SMM is also the object which executes the MS and evaluate themselves.
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5.2.4 SchemaObjects Package

The SchemaObjects are the common representation of the classes and attributes of the ontologies.
Besides the SchemaObjects and its subclasses, there are several other classes in this package
(see FigureB.6), which are not related with the SchemaObject, but deal with it storage or visual
representation.

5.2.4.1 SchemaObject and Subclasses

SchemaClass and SchemaAttribute do not have too much in common. In both cases a matrix and
similarity values are needed, therefore this classes have a shared superclass (see Figure B.5) and
the calculation always check if they have to do the calculation for a class or an attribute. This
is the reason why SchemaObject does not have much more than the name and synonyms and
some abstract methods like copy() or getMatchable(). Copy() is used to create an exact copy of
this SchemaObject, so the old one stays in its state while the new one can be changed without
losing the previous results in case of saving interim results.

The SchemaClass has an inheritance structure (which does not make any sense for an attribute),
a matched class, and the attributes list it contains. Further, it has a list with references to all
matrix results where the SchemaClass was involved as a class.

The SchemaAttribute has more detailed information about itself since it can be inverse, a
primary or foreign key, a nm or 1:n connection and has a table, a range, a domain, and a
reference to a SchemaClass as its class. Usually the computation of the SchemaAttribute is
also part of the SchemaClass, since the MS score of a class never only depends on the class
it self without considering the attributes, even if there are none, it influences the class score.

5.2.4.2 SchemaTable

SchemaTable is the central tool of representing the results of a SMM either of SchemaClasses or
SchemaAttributes (see Figure5.2). If the MS does not have a getDetails() method override, the
results of the MS will be represented in the SchemaTable. The SchemaTable is an extension of the
JTable, which means it represents an array of objects with a toString() method and an array with
header values. Further, the extension converts the first column into another header and adds a
MouseAdapter to the table, which opens another SchemaTable with the details of the selected
cell on click. Additional it has a TableCellRenderer, which primary function is to change the
background color of a cell depending on its value from zero as red gradually to one more green,
other values in black except -1. Further, the TableCellRenderer also makes the cell uneditable.
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5.2.4.3 SchemaHistory

Figure 5.2: SchemaHistory (blue frame) with a SchemaTable open

The SchemaHistory is majorly a holder for a JTabbedPane and a list of SchemaStepRecords.
Out of those it creates the result panel (see Figure5.2) during and after the SchemaMatcher is
computing.

5.2.4.4 SchemaStepResult

The SchemaStepResult is normally a SchemaTable, but if the MS has a special getDetails() method,
it also can be one of it subclasses. In the end, the SchemaHistory just expects to get a JPanel
and the content does not matter at all and the SchemaStepResults can appear in very different
ways. Those different appearances are subclasses of SchemaSummary. SchemaSummary itself is
used by the TranslationStep and looks like in figure4.6.SchemaSummaryInitialization creates
an overview over all classes, like the one in figure 4.5 and is used by the InitializationStep, the
SchemaSummaryQueryResult is used by the QueryStep and SchemaSummaryRODIResult is
used by the RODIStep.

5.2.5 Translator

The Translation Step needs a matching Step like the PriorityPermutations (see Section3.2.6.2) to
be executed before. This means it gets a decision matrix with already matched classes.
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In its initialization phase the translation step runs all other used steps, which comes after the
initialization phase and before the translation phase, to create an attribute matching for each
class pair. After this, the matching phase alters all classname according to the class matching and
then update and inserts the matched attributes into the MD. In the end phase all entries with
old class names will be removed as long as the name is not in the Ontology Data Base (ODB)
otherwise it will be check attribute wise.

The Translation Step consists of the translationStep class and the translator class. While the
step coordinates the execution order as well as performs the attribute and class matching the
translator is responsible for the communication with the database and the altering of the MD
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Chapter 6

Conclusion

The relational model of a database is the abstract view on a complex real world problem, which
means that certain aspects have to be ignored, groups of objects have to be constructed and some
abstract classifications have to be made to transform this problem into a database model or an
ontology. This step has many degrees of freedom and can result a large number of possibilities
which are more or less useful. Rules like normalization of databases could reduce this amount of
possible structures to a much easier to handle number but one cannot rely on these rules, since
too many databases do not follow these rules. Therefore this is a task which is too complex to
be completely solved in this thesis but a solid step in the in the right direction is done. With
the test databases a great amount of the matchable pairs were found and provide access for
the QueryConverter (QC) to the gained information. However, the test databases were quite
different in the end and the most things which could not be found are actually pretty hard
ones [PBJR+15] but never the less, cases you have to deal with in reality. In comparison with the
other matching tools, this one performs more than comparable.

6.1 Results

All test were performed on the RODI - Mondial - Benchmark - query set, which was used as a
scenario in the benchmark [PBJR+15], but the results were too disappointing so they did not
make it into the published version of the publication. To use the whole benchmark could have
given more significant results, but setting these tests up is a very complex task. It even took
the creators of the benchmark several weeks to set up the test for their own tools. This was not
possible to achieve for an outsider in the time frame of this thesis. Further the focus of this thesis
is to create a tool which performs better on this specific scenario and points out the major issues
of it. Therefore the decision was made to use the RODI query set to have comparable result on
one hand and on the other hand a test environment with an reasonable implementation effort.

Beside the query set the ontological metadata can also be used as a negative measurement for
the results. For every class-property combination existing in the ontological metadata of the
Ontology Data Base (ODB) but not in the one of the Focus Data Base (FDB) one knows that this
property or even the whole class was not matched. However this only works in the negative
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way, because of just being matched an existing matching/an entry do not have to be correct.

It shows, that the SchemaMatcher (SM) has answered 28 of 67 (≈ 42%) correct and has found
169 of the 275 (≈ 61%) of the MappingDictionary (MD) entries of the ODB.

6.1.1 Working examples

Figure 6.1: RODI 111 - Warm up query. Country is one of the harder classes since it differs a lot in
the ontologies
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Figure 6.2: RODI 112 - Multi-column keys and functional connection with a easily to mixed up
attribute. hasCity and capital are very similar especially since the names differ a lot in the FDB
and the foreign key reference is the same for both attributes)
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Figure 6.3: RODI 114a & 114b - Functional (bottom) and inverse functional (top) relationship
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Figure 6.4: RODI 116 - NM relation with multi class property. City.locatedAt ranges over Sea, Lake,
River and ANY.

Figure 6.5: RODI 192 - Query with NOT EXISTS
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6.1.2 Not working examples

Figure 6.7: RODI 193 - Missing the attribute locatedOnIsland.
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6.1.3 All Results

Query Number Status Notice
111 OK
112 OK

112b OK
113 OK
114a OK
114b OK
115a OK
115b OK
116 OK
117 Wrong Capital for Province
118 Wrong Capital for Province

121-126 Wrong The Attribute LocatedOnIsland is not found
128 OK
129 OK
132a Wrong LocatedIn
137a OK
141 OK
142 OK

151-153 Wrong The Attribute LocatedOnIsland is not found
161 OK
162 Wrong believeInReligion

171-173 Wrong Symmetric reified does not work at the moment
177 Wrong Symmetric reified does not work at the moment
181 OK
182 OK
183 OK
184 OK
191 OK
192 OK
193 Wrong locatedOnIsland
211 OK
212 OK
213 Wrong Can not find Mountains as class
214 Wrong Source.Elevation not found
215 OK
216 OK
217 OK
218 OK

Table 6.1: Results of the RODI Benchmark
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6.2 Problems

6.2.1 Parameters

The parameters decide which cases of matching can be done and if it works with the current
kind of structures. Different threshold values or execution orders bring very different results.
The default settings can deal with most situation and an automated setting choosing might help
but for the critical cases it is not so easily and when one case is found, another one is not found
anymore. Repeating everything with different settings and choosing the best results is also not
an option, as long as the program can not evaluate the results on its own.

6.2.2 RODI query structure

The RODI [PBJR+15] queries have the great weakness to rely very often on a specific attribute for
multiple queries. Around this attribute successively more complex queries and different cases
were built to test different scenarios. However, if this attribute is not found, all these queries can
not be answered, no matter if the actual case which should be tested with the query could be
handled if the basic attribute were found or not.

One of the major problems is the property LocatedOnIsland. Most oft the not working queries
use this attribute but it is actually one of the hardest in the whole ontology, since there is no
property with this name but several properties with similar names in both ontologies, Island itself
is a hard class which can easy be mixed up with Islands and in the mondial_rel LocatedOnIsland
splits into two different tables and in mondial_RDF2SQL_standard the city connection is nm and
the mountain connection inverse functional.

6.2.3 Competing Classes weighting

A big problem are classes which should be matched but are stored extremely differently, due to
other ways to design the ER-model. In Mondial the class Mountain from Mondial_RDF2SQL
and the class mountain from Mondial_rel are a good example for this case. Actually Mountain
should be matched to the class mountain, but the structure of them is quite different and there
is a second class which has nearly the same scores and no other class to match to (see Figure
6.10). Therefore the classes Mountain and Mountains from Mondial_RDF2SQL compete for
the same class in Mondial_rel. In those cases only the weighting of the punishment for not
matchable foreign keys or names decide. On the one hand Mountain has the exact matching,
while Mountains has only a 0.95 score due to the similarity. On the other hand the Mountain
Mondial_RDF2SQL class has two foreign keys, which the mountain of Mondial_rel does not
have as a foreign key but as a string value, since the class mountains itself does not exists in
Mondial_rel. The decision which of both is more important, heavily depends on the relational
model and can not be decided in general.



82 CHAPTER 6. CONCLUSION

Figure 6.10: The Mountian(s) Tables of Mondial_rdf2sql and Mondial_rel
Shared attributes of all three are marked in yellow; Foreign keys which do not match are marked
in red.

6.2.4 Attributes in other class

A problem which the SM can not solve at all is the case where attributes are in other classes. For
example the population of a city is in Mondial_RDF2SQL in an attribute of City and in Mondial_rel
this attribute is part of the class cityprops. Since the class cityprops is not just a class extension
table but a functional relation of city, because a city can have multiple ones for different dates,
this has to be considered a different class.

6.2.5 Indistinguishable Attributes

In some cases it is just a game of chances, if the attributes match right or wrong, since two or
more attributes of two classes are indistinguishable.
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6.2.6 Complex joining

This problem occur when the same property has to different complex structures in the ontology
like Mondial_RDF2SQL.locatedOnIsland has. In Mondial_RDF2SQL this property has two
ranges, City and Mountain, in Mondial_rel this property is split into locatedOnIsland for city and
mountainLocatedonIsland for mountain.

• While the relationship to mountain is inverse functional, the relationship to city is NM.

• LoactedOnIsland is also a relation to Water and subclasses,
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6.3 Further works

As already mentioned this problem is far from being solved and might never be solved entirely,
but this does not mean that one should not try. The major weak point is the lack of well designed
test databases with automated result checking for evaluating. The RODI [PBJR+15] benchmark
is a good attempt to do so, however it is too complicated to setup for not involved persons. This
means the full testing can only be done after publishing the converter, which is usually too late,
or with salvageable fragments of the benchmark, like it was done in this thesis. However, with
such a limited test sample, there is always the risk of overfitting or that some cases are not dealt
with.

Another major point is the automation of the parametrization and the extension of the evaluation.
By improving parametrization to an automatic progress the results could have boosted directly
and the versatility of the program could be improved. Also an automated internal overall
evaluations would give the opportunity for multiple runs or learning algorithms.

Further it seems to me that there is a lack of information exchange between the different OBDA
developers, which is rather ironic, since the idea behind this OBDA is combining knowledge.
For some tools it has proven very hard if not impossible to get any detailed information or run
this tools on ones own computer. Most publications are very superficial and are more about the
individual performances than about sharing details. During the development several problems
arose, where it was necessary to decide for one or the other way (e.g. Name matching algorithm
s.3.2.3.1, matrix combination s.3.7, and step evaluation 3.2.4.3). These must be problems in which
the other ODBA tool developer also had run into and an open discussion about those problems
would promised a much more well-founded and better performing solution than making the
same mistakes or missing the alternatives.
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QueryConverter

A.1 Main Classes

A.2 Added Classes

Figure A.3: UML Diagram of the different Entry classes of the Mapping Dictionary
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Figure A.4: UML Diagram of the URIGenerator and the URIGeneratorRule
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Uml Diagramms of the different SchemaMatcher packages
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Figure B.1: UML Diagram of the main class SchemaMatcher and the UI main class StepProgress-
Window
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Figure B.2: UML Diagram - SchemaMatcher
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Figure B.3: MatchingStep Class
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Figure B.5: UML Diagram of SchemaObject and Subclasses
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Figure B.6: UML Diagram of the schemaObject package
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Figure B.7: UML Diagram of the SchemaStepResults
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Figure B.8: UML Diagram - SchemaMatchingMatrix
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