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Introduction
• Logic layer of Semantic Web architecture means not only 

use of logic to enrich data, but also being able to do 
something with it.

• Reasoning is time consuming and processor intensive.
• We question the “one size fits all” approach to reasoning, 

and believe that a combination of reasoning techniques is 
the way forward.

• Our research interest:
– Explore the suitability of a Blackboard System to coordinate multiple 

reasoning mechanisms.
• Therefore, we wish to use SW data to construct and solve 

a Constraint Satisfaction Problem (CSP).



Building Workgroups

• AKTive Workgroup Builder + Blackboard (AWB+B)
attempts to assemble one or more workgroups from a pool 
of known people.
– Workgroup is a set of people, composed such that all membership 

restrictions (or constraints) imposed upon it have been satisfied.
• User specifies constraints, i.e. min/max size; “ it must contain a 

professor”
• The problem domain is based on CS AKTive Space (also 

part of the AKT project)  
– Dataset describing Computing Science Staff and Researchers in UK.
– Assumption is quality (and completeness) is not guaranteed.

• Workgroup is built by performing reasoning against the data, 
coordinated using a Blackboard.
– Uses Ontology and Instance data (RDF(S), OWL); Derivation Rules 

(SWRL); and Constraints (CIF/SWRL).



Blackboard Systems

• Based on a metaphor whereby a group of people are all 
standing around a blackboard trying to solve a problem.
– Each person has their own “expertise” and individual knowledge.
– No individual capable of solving it on their own.
– Solution assembled opportunistically and in incremental steps.

• Key aspects are of contributions:
– Coordination: Can everyone see when a new piece of information 

is added to or removed from the blackboard?
– Control: One piece of chalk – who gets it? Box of chalk – how stop 

people getting in each others way?
– Focus: Is the added information relevant? Or “best-fit”?



Blackboard Components



Traditional Blackboard Systems

• In computing terms, the architecture of the Blackboard is a 
shared, highly structured Knowledge Base (KB).
– Hierarchical structure (Abstraction Levels).
– Multiple distinct hierarchies (Panels).

• People from the metaphor are Knowledge Sources (KS).
– e.g. reasoners, CSP solvers, databases, Web Services, etc.

• KSs can access the Blackboard and continually check if they 
can make some contribution.

• Overseen by a control mechanism that monitors changes to 
the Blackboard and delegates actions accordingly.
– Controller can range from being lightweight (simple transaction 

scheduler) to more intelligent (goal oriented).
– Blackboard is fundamentally backward chaining.



Semantic Web Approach

• Maintains all the principles of the Traditional 
approach, but incorporates concepts from the 
Semantic Web.
– Use of RDF means all information uses a similar syntax.
– Communication protocols well known.
– Abstraction Levels aligned with hierarchal structure of an 

Ontology (OWL Lite).
• Blackboard KB is an RDF graph allowing:

– Easy serialisation (RDF, N3) for debugging or propagation.
– Can be reasoned over…



The Blackboard’s Reasoner...
• Blackboard generally passive, but we have added an 

element of intelligence to it.
– Removes the need to make call outs to KSs that would 

perform the same function.
• Unfortunately, allowing the blackboard to make inferences 

about itself became a bottleneck…
• Simple rule based, hierarchical (class/sub-class/property 

only) based entailment 
– using 4 forward chaining rules.

• Custom rules perform simple class and property 
subsumption on both ontological definitions and instances.  
– This is based on RDFS classification but without the use of 

property range and domain values to improve result accuracy.



The Rules…

(?a rdfs:subClassOf ?b), (?b rdfs:subClassOf ?c) 
-> (?a rdfs:subClassOf ?c)

(?x rdfs:subClassOf ?y), (?a rdf:type ?x) 
-> (?a rdf:type ?y)

(?a rdfs:subPropertyOf ?b), (?b rdfs:subPropertyOf ?c)
-> (?a rdfs:subPropertyOf ?c)

(?a ?p ?b), (?p rdfs:subPropertyOf ?q) -> (?a ?q ?b)



Knowledge Sources (KSs)

• KS Behaviours
• The differing types of KS:

– Human (User Interface)
– Instance Based
– Schema Based
– Rule Engine 
– CSP Solver

• Controller



KS Behaviours
• KSs represent the problem solving knowledge of the 

system – regarded as black boxes.
– Can be Semantic Web Service, a RDF Datastore, DB, a 

CSP solver.
– In the AWB+B we access them via Java API.

• KSs access the blackboard continually and check if 
they can make a contribution. 
– A pre-condition (or event trigger) indicating that they can 

respond to a goal already on the blackboard.
• Response is either a solution to a goal;
• Or division of an existing goal into sub-goals, indicating more 

knowledge is required.
– An action – what they can add to the blackboard.

• Facts are only ever added to the blackboard, never retracted.



Human (User Interface) KS
• This represents human knowledge, entered via a 

web interface (html form).
• Specification of problem parameters:

– Number of workgroups to be built
– Size of each workgroup
– Various compositional constraints (written in CIF/SWRL 

and available via a URI)
• Specification of dataset URIs:

– Ontology, RDF Data and SWRL Derivation rules
• KS transforms these into system starting goals and 

posts them onto the blackboard.



Example: system starting goals…

• Workgroup Properties:
– The constraints on the group are:

• Must contain between 3 and 5 members, of type Person. 
• Must contain at least 1 Professor.
• Must contain an expertOn “Semantic Web”.

– Make use of the following Derivation Rule:
• Person(?p) & authorOf(?p, ?b) & Book(?b) & 

hasSubject(?b, ?s)   ⇒ expertOn(?p, ?s).



Blackboard Contents (Initial Goals)
Note: this is a Simplified Graph

These Goals are 
derived from 
“membership of 
type Person” and 
the 2 “must contain”
constraints.



Instance Based KS
• Contains only instance data, not actual schema 

itself, i.e. a single RDF data file or a larger triple 
store.
– We cannot assume that all entailments have been 

generated for RDF.
• KS contributes in the following ways:

– Offers to add a solution to a posted sub-goal by adding 
instance data for classes and/or properties defined on the 
blackboard.

– Offers to add a solution to classify any property’s subject 
and/or object which the blackboard does not have a class 
definition for.



Blackboard Contents (Instance KS)
• We have the 3 potential goals (1 property and 2 classes) 
defined on the blackboard:

• This KS will offer a “solution” triple statement containing the 
property expertOn, i.e.

…but this gives no information about the subject <ex:Tim>.

• Therefore, it will also offer a classification of this:

Note: this KS does not offer a class 
definition for <ont:Lecturer>



Schema Based KS
• This represents a KS that only contains ontological 

schema information.
– Facilitates construction of relevant ontological parts on the 

blackboard.
• KS contributes in the following ways:

– Offers to add new sub-goals by looking for ontological 
sub-classes/properties of those already defined on the 
blackboard.

– Offers to add new sub-goals by adding 
<rdfs:subClassOf> or <rdfs:subPropertyOf> statements 
connecting those already defined on the blackboard.

– Offers to add new sub-goals for any subject/object on the 
blackboard that does not have a class definition.



Blackboard Contents (Schema KS)
The KS would see <akt:Person> defined on the blackboard, and then offer to add 
a sub-goal by defining a sub-class Academic:

Subsequently, it would offer the sub-class link between these 2 classes:

Finally, from the previous contributions by the Instance KS, it would see the 
<rdf:type> <akt:Lecturer> belonging to <ex:Tim> and since it knows about this 
class, explicitly add the class definition to the board:



Rule Based KS
• Examines the contents of the blackboard and 

determines if any of the rules that it knows about are 
required.
– A rule is required only if any of the consequents are 

present on the blackboard.
• KS contributes in the following ways:

– Offers to add a solution by firing the rule against 
instances already on the blackboard and asserting the 
appropriate statements.

– Offers to add new sub-goals by offering class/property 
definitions of rule antecedents not on the blackboard.

• Currently, a rule KS only contains one rule at a time.
– This is rewritten into a SPARQL query and run against the 

blackboard.
– Uses a brute force, forward chaining approach…



Blackboard Contents (Rule KS)
• Remembering our derivation rule:

Person(?p) & authorOf(?p, ?b) & Book(?b) &
hasSubject(?b, ?s) ⇒ expertOn(?p, ?s).

• Blackboard contains Person class defn but not property defs
for authorOf & hasSubject – these have not been defined
– regardless of instance data, the rule is incapable of firing.

• This KS adds the sub-goals: authorOf and hasSubject.

• (Hopefully) Once other KSs have contributed instance data 
for the antecedents, the rule can fire and generate a 
solution instance for the expertOn property that has not 
been explicitly stated in a KS.



The Controller (1)

• Role of the controller is to oversee the running of the system.
– Does not allow addition of <owl:Thing> and prevents the KSs

modifying the blackboard directly.
• The AWB+B blackboard actually contains 2 panels:

– Data Panel & TaskList Panel (both RDF Graphs).
• TaskList is used by the controller to store what information a 

KS can contribute based on the blackboard (Data Panel) 
contents.
– Unlike the Data Panel, KSs are allowed to add TaskListItems to the 

TaskList panel directly.
• Once a TaskListItem has been actioned by the controller, it is 

removed from the TaskList –
– this is the only time anything is ever deleted from the blackboard.



The Controller (2)
• All KS registered the system cycles over each one 

asking it to populate the TaskList panel.
– Calls canContribute() method.

• Decision is made on which tasks to action
– Calls makeContribution() method.

• Simple implementation of the controller
– Action all items on the TaskList.
– Possible to introduce a more goal oriented decision 

process.
• Process stops when nothing new is added after a 

complete cycle or if a solution to the workgroup 
appears on the blackboard (i.e. wg:hasMember
properties are added to the wg:Workgroup instance).



Conclusions…
• Main issue is the blackboard architecture is inefficient:

– 2 step canContribute and makeContribution process – inefficient
• Effort involved to determine if a contribution can be made is comparable 

to actually making the contribution.
– Contradictions on the Blackboard.

• However, the paradigm allows for:
– Coordination of a mix of reasoning methods on data.
– (Hopefully!) Only small, relevant subset of all the available data 

is ever placed on the blackboard
– Can add/remove KSs with the only impact on the final results.

• AWB+B is still in development, so still have scope to explore:
– Differing KS combinations;  alternate Controller strategies; rule 

chaining; concurrency; code optimisation; etc.



Thanks for your attention…

…any Questions?

the end..!
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