
Semantic Web Reasoning using a
Blackboard System

Craig McKenzie, Alun Preece, Peter Gray
University of Aberdeen

4th Workshop on Principles and Practice of Semantic Web Reasoning Budva, Montenegro, June 10-11, 2006

Overview

• Introduction
• Building Workgroups
• Blackboard Architecture

– Traditional vs. Semantic Web approaches
– Knowledge Sources
– Controller

• Conclusions
• Questions and Answers

Introduction
• Logic layer of Semantic Web architecture means not only

use of logic to enrich data, but also being able to do
something with it.

• Reasoning is time consuming and processor intensive.
• We question the “one size fits all” approach to reasoning,

and believe that a combination of reasoning techniques is
the way forward.

• Our research interest:
– Explore the suitability of a Blackboard System to coordinate multiple

reasoning mechanisms.
• Therefore, we wish to use SW data to construct and solve

a Constraint Satisfaction Problem (CSP).

Building Workgroups

• AKTive Workgroup Builder + Blackboard (AWB+B)
attempts to assemble one or more workgroups from a pool
of known people.
– Workgroup is a set of people, composed such that all membership

restrictions (or constraints) imposed upon it have been satisfied.
• User specifies constraints, i.e. min/max size; “ it must contain a

professor”
• The problem domain is based on CS AKTive Space (also

part of the AKT project)
– Dataset describing Computing Science Staff and Researchers in UK.
– Assumption is quality (and completeness) is not guaranteed.

• Workgroup is built by performing reasoning against the data,
coordinated using a Blackboard.
– Uses Ontology and Instance data (RDF(S), OWL); Derivation Rules

(SWRL); and Constraints (CIF/SWRL).

Blackboard Systems

• Based on a metaphor whereby a group of people are all
standing around a blackboard trying to solve a problem.
– Each person has their own “expertise” and individual knowledge.
– No individual capable of solving it on their own.
– Solution assembled opportunistically and in incremental steps.

• Key aspects are of contributions:
– Coordination: Can everyone see when a new piece of information

is added to or removed from the blackboard?
– Control: One piece of chalk – who gets it? Box of chalk – how stop

people getting in each others way?
– Focus: Is the added information relevant? Or “best-fit”?

Blackboard Components

Traditional Blackboard Systems

• In computing terms, the architecture of the Blackboard is a
shared, highly structured Knowledge Base (KB).
– Hierarchical structure (Abstraction Levels).
– Multiple distinct hierarchies (Panels).

• People from the metaphor are Knowledge Sources (KS).
– e.g. reasoners, CSP solvers, databases, Web Services, etc.

• KSs can access the Blackboard and continually check if they
can make some contribution.

• Overseen by a control mechanism that monitors changes to
the Blackboard and delegates actions accordingly.
– Controller can range from being lightweight (simple transaction

scheduler) to more intelligent (goal oriented).
– Blackboard is fundamentally backward chaining.

Semantic Web Approach

• Maintains all the principles of the Traditional
approach, but incorporates concepts from the
Semantic Web.
– Use of RDF means all information uses a similar syntax.
– Communication protocols well known.
– Abstraction Levels aligned with hierarchal structure of an

Ontology (OWL Lite).
• Blackboard KB is an RDF graph allowing:

– Easy serialisation (RDF, N3) for debugging or propagation.
– Can be reasoned over…

The Blackboard’s Reasoner...
• Blackboard generally passive, but we have added an

element of intelligence to it.
– Removes the need to make call outs to KSs that would

perform the same function.
• Unfortunately, allowing the blackboard to make inferences

about itself became a bottleneck…
• Simple rule based, hierarchical (class/sub-class/property

only) based entailment
– using 4 forward chaining rules.

• Custom rules perform simple class and property
subsumption on both ontological definitions and instances.
– This is based on RDFS classification but without the use of

property range and domain values to improve result accuracy.

The Rules…

(?a rdfs:subClassOf ?b), (?b rdfs:subClassOf ?c)
-> (?a rdfs:subClassOf ?c)

(?x rdfs:subClassOf ?y), (?a rdf:type ?x)
-> (?a rdf:type ?y)

(?a rdfs:subPropertyOf ?b), (?b rdfs:subPropertyOf ?c)
-> (?a rdfs:subPropertyOf ?c)

(?a ?p ?b), (?p rdfs:subPropertyOf ?q) -> (?a ?q ?b)

Knowledge Sources (KSs)

• KS Behaviours
• The differing types of KS:

– Human (User Interface)
– Instance Based
– Schema Based
– Rule Engine
– CSP Solver

• Controller

KS Behaviours
• KSs represent the problem solving knowledge of the

system – regarded as black boxes.
– Can be Semantic Web Service, a RDF Datastore, DB, a

CSP solver.
– In the AWB+B we access them via Java API.

• KSs access the blackboard continually and check if
they can make a contribution.
– A pre-condition (or event trigger) indicating that they can

respond to a goal already on the blackboard.
• Response is either a solution to a goal;
• Or division of an existing goal into sub-goals, indicating more

knowledge is required.
– An action – what they can add to the blackboard.

• Facts are only ever added to the blackboard, never retracted.

Human (User Interface) KS
• This represents human knowledge, entered via a

web interface (html form).
• Specification of problem parameters:

– Number of workgroups to be built
– Size of each workgroup
– Various compositional constraints (written in CIF/SWRL

and available via a URI)
• Specification of dataset URIs:

– Ontology, RDF Data and SWRL Derivation rules
• KS transforms these into system starting goals and

posts them onto the blackboard.

Example: system starting goals…

• Workgroup Properties:
– The constraints on the group are:

• Must contain between 3 and 5 members, of type Person.
• Must contain at least 1 Professor.
• Must contain an expertOn “Semantic Web”.

– Make use of the following Derivation Rule:
• Person(?p) & authorOf(?p, ?b) & Book(?b) &

hasSubject(?b, ?s) ⇒ expertOn(?p, ?s).

Blackboard Contents (Initial Goals)
Note: this is a Simplified Graph

These Goals are
derived from
“membership of
type Person” and
the 2 “must contain”
constraints.

Instance Based KS
• Contains only instance data, not actual schema

itself, i.e. a single RDF data file or a larger triple
store.
– We cannot assume that all entailments have been

generated for RDF.
• KS contributes in the following ways:

– Offers to add a solution to a posted sub-goal by adding
instance data for classes and/or properties defined on the
blackboard.

– Offers to add a solution to classify any property’s subject
and/or object which the blackboard does not have a class
definition for.

Blackboard Contents (Instance KS)
• We have the 3 potential goals (1 property and 2 classes)
defined on the blackboard:

• This KS will offer a “solution” triple statement containing the
property expertOn, i.e.

…but this gives no information about the subject <ex:Tim>.

• Therefore, it will also offer a classification of this:

Note: this KS does not offer a class
definition for <ont:Lecturer>

Schema Based KS
• This represents a KS that only contains ontological

schema information.
– Facilitates construction of relevant ontological parts on the

blackboard.
• KS contributes in the following ways:

– Offers to add new sub-goals by looking for ontological
sub-classes/properties of those already defined on the
blackboard.

– Offers to add new sub-goals by adding
<rdfs:subClassOf> or <rdfs:subPropertyOf> statements
connecting those already defined on the blackboard.

– Offers to add new sub-goals for any subject/object on the
blackboard that does not have a class definition.

Blackboard Contents (Schema KS)
The KS would see <akt:Person> defined on the blackboard, and then offer to add
a sub-goal by defining a sub-class Academic:

Subsequently, it would offer the sub-class link between these 2 classes:

Finally, from the previous contributions by the Instance KS, it would see the
<rdf:type> <akt:Lecturer> belonging to <ex:Tim> and since it knows about this
class, explicitly add the class definition to the board:

Rule Based KS
• Examines the contents of the blackboard and

determines if any of the rules that it knows about are
required.
– A rule is required only if any of the consequents are

present on the blackboard.
• KS contributes in the following ways:

– Offers to add a solution by firing the rule against
instances already on the blackboard and asserting the
appropriate statements.

– Offers to add new sub-goals by offering class/property
definitions of rule antecedents not on the blackboard.

• Currently, a rule KS only contains one rule at a time.
– This is rewritten into a SPARQL query and run against the

blackboard.
– Uses a brute force, forward chaining approach…

Blackboard Contents (Rule KS)
• Remembering our derivation rule:

Person(?p) & authorOf(?p, ?b) & Book(?b) &
hasSubject(?b, ?s) ⇒ expertOn(?p, ?s).

• Blackboard contains Person class defn but not property defs
for authorOf & hasSubject – these have not been defined
– regardless of instance data, the rule is incapable of firing.

• This KS adds the sub-goals: authorOf and hasSubject.

• (Hopefully) Once other KSs have contributed instance data
for the antecedents, the rule can fire and generate a
solution instance for the expertOn property that has not
been explicitly stated in a KS.

The Controller (1)

• Role of the controller is to oversee the running of the system.
– Does not allow addition of <owl:Thing> and prevents the KSs

modifying the blackboard directly.
• The AWB+B blackboard actually contains 2 panels:

– Data Panel & TaskList Panel (both RDF Graphs).
• TaskList is used by the controller to store what information a

KS can contribute based on the blackboard (Data Panel)
contents.
– Unlike the Data Panel, KSs are allowed to add TaskListItems to the

TaskList panel directly.
• Once a TaskListItem has been actioned by the controller, it is

removed from the TaskList –
– this is the only time anything is ever deleted from the blackboard.

The Controller (2)
• All KS registered the system cycles over each one

asking it to populate the TaskList panel.
– Calls canContribute() method.

• Decision is made on which tasks to action
– Calls makeContribution() method.

• Simple implementation of the controller
– Action all items on the TaskList.
– Possible to introduce a more goal oriented decision

process.
• Process stops when nothing new is added after a

complete cycle or if a solution to the workgroup
appears on the blackboard (i.e. wg:hasMember
properties are added to the wg:Workgroup instance).

Conclusions…
• Main issue is the blackboard architecture is inefficient:

– 2 step canContribute and makeContribution process – inefficient
• Effort involved to determine if a contribution can be made is comparable

to actually making the contribution.
– Contradictions on the Blackboard.

• However, the paradigm allows for:
– Coordination of a mix of reasoning methods on data.
– (Hopefully!) Only small, relevant subset of all the available data

is ever placed on the blackboard
– Can add/remove KSs with the only impact on the final results.

• AWB+B is still in development, so still have scope to explore:
– Differing KS combinations; alternate Controller strategies; rule

chaining; concurrency; code optimisation; etc.

Thanks for your attention…

…any Questions?

the end..!

	Semantic Web Reasoning using a Blackboard System
	Overview
	Introduction
	Building Workgroups
	Blackboard Systems
	Blackboard Components
	Traditional Blackboard Systems
	Semantic Web Approach
	The Blackboard’s Reasoner...
	The Rules…
	Knowledge Sources (KSs)
	KS Behaviours
	Human (User Interface) KS
	Example: system starting goals…
	Blackboard Contents (Initial Goals)
	Instance Based KS
	Blackboard Contents (Instance KS)
	Schema Based KS
	Blackboard Contents (Schema KS)
	Rule Based KS
	Blackboard Contents (Rule KS)
	The Controller (1)
	The Controller (2)
	Conclusions…
	the end..!

