Systematical Representation of
RDF-to-Relational Mappings for
Ontology-Based Data Access

Lars Runge, Sebastian Schrage and Wolfgang May

Georg-August University of Gottingen, Institute of Computer Science

Abstract. Ontology-Based Data Access (OBDA) systems establish a
connection between RDF/OWL application ontologies and relational
databases. For this, they use mappings between the two data models.
Several systems that aim to generate such mappings automatically have
been evaluated in a recent benchmark, that showed that the coverage
of the generated mappings is still rather low, and that there is much
potential left. The mappings are mostly stored internally in the systems
and are not accessible to the user.

As a step towards better handling, this paper presents a framework that
stores the OBDA mapping information in an easily understandable for-
mat in dedicated metadata tables in the relational database. This makes
the metadata accessible for the user, and it can also be used for other
programs.

1 Introduction

Ontology-based Data Access (OBDA) systems aim to allow users to state queries
based on the vocabulary of an ontology against data stored in a relational
database, which combines the advantages of both approaches: ontologies are
based on the intuitive, user-friendly conceptual model of classes with a class hi-
erarchy, and properties, which include literal-valued attributes and relationships
(the technical formulation of this in OWL is less user-friendly, but has only to
be done once by the ontology engineer). On the other hand, relational data-
bases allow for efficient storage and query evaluation, and they are still the most
common type of databases.

There are three main settings for OBDA: (1) the “traditional” setting for
OBDA is to have an already running application with an existing database, and
to design an ontology for it and to connect them. (2) the other direction is to start
with an ontology and to design a relational schema for it. (3) in the third setting,
both an ontology and an independent, thematically related existing relational
database are given, and both must be connected. In either case, the core of the
OBDA tool is a mapping between both formats. These mappings are used to
translate queries from one data model to the other, and also e.g. to insert or
update data.

While (1) can usually be done rather straightforwardly, the outcome is not
yet a “good” ontology, but rather a re-engineering-style ontologization of several
design decisions (and necessities, like reification) when designing a relational

schema. For a good, user-friendly ontology, further changes (or systematically
spoken, transformations) must be appplied. For (2) the same applies in the
opposite direction: the straighforward database design might be revised — again
this means to apply transformations to the mappings. For (3), the appropriate
mappings must be created. This can be done manually, or by (semi)automatic
alignment tools. In all cases, the way how to express, store, and transform the
mappings is crucial.

When evaluating such (semi)automatic database alignment approaches for
(3) through the evaluation of query translation, it was found that the generated
alignments are often incomplete or partially incorrect for real-world applica-
tion complexity [PBJRT15,PBJR*17] (see below for more details). Furthermore,
most systems do not allow the user to check the mapping and to adjust it accord-
ingly, because it is only stored internally in the system. Making the mappings
available to the user by storing them in a well-defined and accessible format in
metadata tables inside the relational database can help to overcome this lim-
itation. Such metadata tables can also be used as a starting point for other
programs providing different functionalities that are based on those mappings.

This paper introduces the “RDF2SQL” approach, which defines a framework
for storing RDF-to-relational mappings in a Semantical Data Dictionary (SDD)
consisting of generic metadata tables.

Related Work and Background. The automatical generation of mappings be-
tween ontologies and relational databases to grant OBDA to the stored data has
been investigated and implemented in several approaches. Some prominent tools
that create such mappings include BoorOX [JRKZT15], MIRROR [dMPC15],
oNTOP [CCK™15] (fully automatic) and INcMaP [PBKH13], COMA ++ [ADMRO5],
KARMA [KSAT12] (semi-automatic). These six tools were recently evaluated by
the RODI benchmark [PBJR*15,PBJR'17]. The tools were tasked to generate
mappings for provided relational databases and target ontologies. For evaluation,
for each such scenario a series of SPARQL queries was given. The tools had to
translate the queries into SQL based on the generated mappings, and the results
were compared to the provided reference solutions. The tests were conducted
on data sets from three different application domains such as conferences (taken
from the OAI case studies [EMST11]), geodata (MONDIAL [Mondial]) and oil &
gas exploration. The difficulty of the tests increased from the easier queries of
the conference data sets asking only for atomic properties to the more difficult
queries of the geodata and oil & gas domains that also select combinations of
properties and additional constraints mimicking more realistic queries. Regard-
less of the approach of the tools, the general results of the benchmark were quite
disappointing. While the tests for the atomic queries resulted in nearly acceptable
outcomes, the authors concluded however that “all tested tools perform poorly
on most of the more advanced challenges that come close to actual real-world
problems” [PBJRT15]. Especially for the MONDIAL and oil & gas ontologies this
is due to more advanced mapping challenges, for instance the introduction of a
class hierarchy.

In the following, we use the MONDIAL [Mondial] database which contains data
about various geographical objects like countries, cities, international organiza-
tions, and several geographical features. MONDIAL contains examples for many
modeling and design issues as realistic test cases for the mappings.

Structure of the paper. Section 2 explains, what metadata information about
an OBDA mapping to a relational database is needed. The section is illustrated
by a “well-designed” relational schema obtained from a canonical mapping of
an OWL ontology. Next, the intermediate Section 3 illustrates how the map-
ping metadata is used to translate SPARQL queries into SQL queries. Section 4
illustrates how the SDD structure seamlessly also covers mappings to other,
non-canonical schemata. Section 5 describes the current prototype and gives an
outlook to future perspectives. Section 6 concludes the paper.

2 Generic Metadata Information

This section introduces the structure and design of the above-mentioned Seman-
tical Data Dictionary (SDD) metadata tables. Roughly, these tables store the
same information about classes and relationships in an application domain, as
it is used when deriving a relational schema from an ER model. In the OBDA
case, this information is extracted from the OWL ontology. The analysis of the
ontology is done by a series of SPARQL queries and definition of auxiliary class
definitions against the OWL-DL ontology as described in [HM13].

2.1 Basic Ontology to Relational Model Mapping

For mapping the classes and properties of the OWL ontology to a relational
model, the standard ER-to-Relational transformation [EN04, Ch. 7] is applied:

For each class, a ClassTable is created, where all functional properties are
contained as columns. The identifier of an individual is generally its URI, thus
each ClassTable has a column uri acting as the primary key. Relationships that
are not functional in any direction, called n:m-properties, are basically mapped
to binary n:m tables that refer to ClassTables via two foreign keys (here, the
URIs). Analogously, literal-valued multivalued attributes are also mapped to
binary tables with a single foreign key. Further aspects of the ER model include
n-ary (n > 2) relationships and relationships with attributes; both are commonly
dealt with by reification. Note that in an RDF setting, the RDF modeling and
the corresponding OWL ontology must already represent the modeling after
reification. Additionally, ontologies often use class hierarchies, which are possible,
but rarely used in the Extended ER model.

In the following, the mapping and the SDD contents are illustrated by the
fragment of the MONDIAL database shown in Figure 1. The fragment has been
chosen to contain examples for typical patterns in conceptual modeling:

Countries have functional literal-valued properties name, code, population,
and area, and an 1:n relationship hasCity to one or more cities, and a 1:1-reference

relationship capital to a city. Cities also have a name and a population. Organi-
zations have a name, an abbreviation, and an optional n:1 relationship hasHq to
the city where the organization’s headquarter is located.

Some classes represent geographical features: rivers, lakes and seas, which
are different kinds (subclasses) of waters; mountains, and islands.

There is a simple n:m relationship locatedAt between cities and waters. The
locatedOn relationship is polymorphic: between cities and islands it is also n:m,
while between mountains and islands, it is n:1. Note that this polymorphism
does not effect the ER model (where it just occurs as two relationship types
of the same name) and the canonical relational model, but leads to a complex
description in the OWL ontology.

Another specialty is the attributed isMember relationship between countries
and organizations that includes a type attribute. This leads to reification, which
in the relational model means an n:m table with an aditional type column. In
RDF (or UML) modeling, there is an artificial reified Membership class with
reference properties of Country and inOrganization as shown in Figure 2 as UML
diagram (indicating also the names of the inverse relationships).

abbrev
> QD o>
Country <0,*> w <0,*> Organization

<1, 1> <1 *s <0,1>

| i i I /4 ' River
<0 1> <1 1> <0,*>
Clty : <0, *> - <0,*> — Water | Lake
T

<0,*>

Sea
-
<0,*> (pop.
L
Island |- <0,*> — — <0,1> - Mountain

Fig. 1. Excerpt from the Mondial ER model

In an OBDA setting, the OWL ontology of the application contains the same
information; the (full) MONDIAL ontology can be found at [Mondial]. The poly-
morphic locatedOn property and the attributed isMember relationship (with reifi-
cation, according to Fig. 2) are modeled as follows:

Country

code inMembership— 0. *[Membership|0..* <-hasMembership Organization
name 1 fC type 0 — 1 abbrev
population <—ofCountry yP inOrganization— name

area

Fig. 2. Reified Modeling of attributed “isMember” relationship as “Memberships” class (in
UML)
:locatedOn a owl:ObjectProperty;
rdfs:domain [owl:unionOf (:City :Mountain) |; rdfs:range :Island.
:Mountain rdfs:subClassOf [a owl:Restriction;
owl:onProperty :locatedOn; owl:maxCardinality 1].

:Membership a owl:Class.
:ofMember a owl:ObjectProperty; a owl:FunctionalProperty;
rdfs:domain :Membership; owl:inverseOf :inMembership; rdfs:range :Country.
:inOrganization a owl:ObjectProperty; a owl:FunctionalProperty;
rdfs:domain :Membership; owl:inverseOf :hasMembership; rdfs:range :Organization.
The corresponding relational schema looks as follows:
Country(uri, name, code, population, area, capital).
Organization(uri, abbrev, name, hasHq).
Membership(uri, ofCountry, inOrganization, type).
City(uri, name, population, hasCity_inv).
River(uri, name, length).
Lake(uri, name, area).
Sea(uri, name, depth).
locatedAt(city, water).
Mountain(uri, name, locatedOn).
Island(uri, name, area).
locatedOn(city, island).

The mapping of most of the functional properties is obvious. The 1:n-property
hasCity is stored in its functional direction from City to Country, here called
hasCity-inv (note that the corresponding OWL ontology could assign a name via
:inCountry owl:inverseOf :hasCity). The mapping of the reified Membership type
is canonical since ofCountry and inOrganization are functional. Note that in our
setting, there is no Water table (i.e., the Water class is abstract; other modeling
alternatives can be configured for RDF2SQL), but the waters are stored in the
River, Lake, and Sea tables. LocatedAt is a plain n:m table whose columns are
usually named after the ranges of the references keys; since Water is abstract, the
locatedAt.water column is not a true foreign key, but references to River, Lake,
and Sea. Note that for the locatedOn property, it is stored for mountains in the
Mountain table (on this part of its domain it is functional), and for cities it is
stored in the n:m locatedOn table.

2.2 The Semantical Data Dictionary

In the following, the metadata tables of the SDD are described. Their use will
immediately be illustrated by showing how SPARQL queries are mapped to the

relational schema. For the SPARQL queries, only the WHERE pattern is shown;
the projection (usually to everything except the URIs) is implicit. The renaming
of the SQL output to the variable names is also omitted. When translating a
query, in a first step, the set of potential classes of its variables is determined
using domain and range information.

Inverses. The first, rather minor metadata table is the one for storing the in-
verses. This is important insofar as ontologies can explicitly name both direc-
tions, and 1:n properties are stored in the functional direction, like the hasCity
relationship between countries and cities, which is stored as City.hasCity_inv. Ta-
ble 1 shows the Inverses (INV) table for the above example.

| INV | |

S ; INV |
| roperty| nverse | |Pr0perty |Inverse |
hasCity |hasCity_inv U hastq hasHq inv
capital capital_inv

of Country inMembership

locatedAt |located Atinv inOrganization|hasMembership

locatedOn |locatedOn_inv

Table 1. Sample Inverses Table contents

The central table: The Mapping Dictionary. The Mapping Dictionary
(MD) represents where a property p of a class ¢ is stored, i.e., in which ta-
ble, and in which column of it. To be able to connect queries along references,
also the range class of every property is stored (which looks redundant in the
simple cases, but will be motivated in Examples 2 and 5). The MD is thus a
mapping of the form MD : (Class x Property) — (Class x Table x Column).

For functional properties, the entries refer to the ClassTables where a prop-
erty is stored; obviously, for functional properties of non-abstract classes, the
tablename equals the classname. For n:m properties, the entries refer to the n:m
tables, and there to the column that points to the target object.

Ezample 1. Consider the following query that uses the abstract class Water:

{ "W a :Water; :name ?N }
Wiater is also mentioned in the MD, which tells that the names of waters can be
found in the River, Lake, and Sea tables. Multiple entries are translated into a

union:
(SELECT uri, name FROM River) union (SELECT uri, name FROM Lake)
union (SELECT uri, name FROM Sea)

The MD contains also the inverses, e.g., hasCity_inv of City. On the other hand,
for the property hasCity of Countries, there is no direct entry, which denotes that
its inverse direction (which is functional) is stored explicitly, and must serve for
lookup.

For the n:m tables, here locatedAt as a plain example, the entries tell that the
(URISs of the) waters where a city is located can be found in the Water column

MappingDict

|Class |Property |RangeClass|Tab1e |L00kupAttr comment |
Country code xsd:string Country code

Country name xsd:string Country name

Country population xsd:int Country population

Country area xsd:decimal |Country area

Country capital City Country capital

Country hasCity City —null- —null- (see inv)
Country inMembership |Membership |-null- —null- (see inv)
City name xsd:string City name

City population xsd:int City population

City hasCity_inv Country City hasCity_inv (inv)
City located At Water locatedAt |Water (n:m)
City locatedOn Island locatedOn |Island (n:m)
City capital_inv Country —null- —null- (see inv)
Organization|abbrev xsd:string Organization|abbrev

Organization hasHq City Organization hasHq

Organization |hasMembership|Membership |-null- —null- (see inv)
Membership |inOrganization |Organization [Membership [inOrganization
Membership |ofCountry Country Membership |ofCountry

Membership [type xsd:string Membership [type

Water name xsd:string |River name (abstract)
Water name xsd:string Lake name (abstract)
Water name xsdistring |Sea name (abstract)
Water locatedAt_inv |City locatedAt |city (abstract)
River name xsd:string River name

River length xsd:decimal |River length

River locatedAt_inv |City located At city

Lake name xsd:string Lake name

Lake area xsd:decimal |Lake area

Lake locatedAt_inv |City located At city

Sea name xsd:string Sea name

Sea depth xsd:int Sea depth

Sea locatedAt_inv |City located At city

Mountain name xsd:string Mountain name

Mountain elevation xsd:decimal |Mountain elevation

Mountain locatedOn Island Mountain locatedOn

Island name xsd:string Island name

Island area xsd:decimal |Island area

Island population xsd:decimal |Island population

Island locatedOn_inv |City locatedOn [city

Island locatedOn_inv |Mountain —null- —null- (see inv)

Table 2. Sample Mapping Dictionary contents

of the locatedAt table. Note the different handling of locatedOn for Cities (n:m)
and mountains (functional). Analogously the inverse of locatedOn can be found
via the n:m table locatedOn (cities) or by using the locatedOn column of the
Mountain table in the inverse direction.

So far, the basic lookup information is covered. In case of relationships, the
lookup yields the URI of an object, which then must be joined appropriately; in
case of n:m tables, also the “backwards” join to the domain side is needed.

Further Tables. Theoretically, the MD is sufficient for translating SPARQL
queries to SQL, and for other applications, if the domains and ranges of prop-
erties are known from the ontology, and if the relational schema is canonically
derived from the ontology. The goal of the SDD is to make its information self-
contained, accessible by the (relational) user, and adaptable/updatable for non-
canonical relational schemata, e.g. in the general OBDA case, or even for denor-
malized storage schemata. The query translation algorithm uses only the infor-
mation stored in the SDD, without any time-consuming (DL and/or SPARQL)
queries against the original OWL ontology.

Thus, the SDD is required to contain enough information to also generate
the join conditions: join the uris obtained for variables in object position with
the class tables, and join ClassTables with NMtables.

Range Tables Table. The MD contains a column containing the range class of
object-valued properties. This class is often an abstract one, or even an unnamed
class specified by an owl:unionOf. In such cases, the concrete objects are stored
in one or more ClassTables.

The (basic) Range Tables Table (RTTab) gives for each pair (table, column)
the ClassTables where the referenced URIs can be found; the sample RTTab is
given in Table 3.

| RTTab (basic) |

|Table |LookupAttr |RangeTable|comment |
Country capital City

City hasCity_inv Country
Organization|hasHq City

Membership |inOrganization|Organization
Membership |ofCountry Country

locatedAt |City City

locatedAt |Water River (abstract)
locatedAt |Water Lake (abstract)
locatedAt |Water Sea (abstract)
locatedOn |City City

locatedOn |(Island Island

Mountain |locatedOn Island

Table 3. Sample Range Tables Table contents

The RTTab contains one or more entries for each object-valued property
stored in a ClassTable (i.e., the functional ones), and for each of the columns of
an n:m table. If it contains several entries for a (table, column) pair, they again
denote a union. This may be the case if an abstract class (like Water) is stored
in several subclass tables, or if the range of some property naturally includes
several concrete classes.

Ezxample 2. Consider a lookup along a functional relationship:

{ 7C a Country; :name ?CN; :capital [:name ?XN] }
The MD tells that the capital of a country can be looked up in Country.capital,
whose range class is City (whose names can be found in the City table) and its
range table. The RTTab indicates that the range table of Country.capital is also
the City table, which yields the join condition:

SELECT country.name, city.name

FROM country, city

WHERE country.capital = city.uri

Ezxample 3. Consider a query that uses an inverse-functional relationship:

{ 7C a Country; :name ?CN; :hasCity [:name ?XN | }
Here, the MD tells that the hasCity property of Country is not stored (directly).
Instead, its inverse, the hasCity_inv property of its range class, City, is listed to
be looked up in City.hasCity_inv whose range is Country and the range table is
country:

SELECT country.name, city.name

FROM country, city

WHERE country.uri = city.hasCity_inv

NM Join Table. The RTTab covers the generation of joins over the range of a
property. For n:m properties, the domain side of the property needs also to be
“back”-joined with one or more ClassTables (it is possible that the domain and
range for n:m properties consist of multiple concrete classes). The NM Join Table
(NMJ) table yields the column name to be used for the join. It is a mapping
NMJoinTab : (Class x Table x (LookUp)Attribute) — (FKJoin)Attribute

where an entry (c,t,1) — f indicates that, given an instance a class ¢, for which
the attribute I should be looked up in the (n:m-)table t, the attribute f of ¢ must
be matched with the URI column of the ClassTable of c. Note that a lookup in
the NMJ always follows a lookup for (¢, p) yielding (¢,1) in the MD. The NMJ
for the running example is given in Table 4. (As long, as only pure “typical” n:m
tables are considered, the NMJ is just “give me the other column name in ¢”).

| NMJoinTab |
|Class|Table |LookupAttr[FKJoinAttr]
City [locatedAt |Water City
Water|locatedAt |City Water

River |located At |City Water

Lake |locatedAt |City Water

Sea |locatedAt |City Water
Island|locatedOn|City Island

City |locatedOn|Island City

Table 4. Sample NM Join Table contents

Ezxample 4. Consider the following SPARQL query pattern:

{ 7C a :City; :name ?CN; :locatedAt ?L . 7L a :Lake; :name ?LN }
The MD tells to look up the locatedAt property of cities in locatedAt.Water whose
range tables (for ?L) are according to the RT'Tab River, Lake, and Sea. Since 7L
is restricted in the query to lakes whose names are looked up in Lake.name, the
union is not needed here. The NMJ tells to join City.URI with locatedAt.City:

SELECT city.name, lake.name
FROM country, locatedAt, lake
WHERE locatedAt.Water = lake.uri AND city.uri = locatedAt.city

Class Hierarchy. To be self-contained, the SDD also contains information about
the class hierarchy of the ontology. Straightforwardly, there are two tables:

— AlICI C (sub)class x (super)class: contains the whole class hierarchy (i.e., con-
crete and abstract classes).

— SubCl C (sub)class x (non-abstract-super)class: contains for each class its finest
non-abstract superclass.

Inverse-Functional Properties. As illustrated in Example 3, for properties
like Country.hasCity that are inverse-functional, the MD contains null entries that
mean that a lookup in the inverse direction is required. For more easier use, the
MD is extended with an additional column “Inv’ which is false by default, and
true if the property is stored in the inverse direction, and then directly contains
the table/column where it is found. The extended MD is shown in Table 5:

| MappingDict |
|Class |Pr0perty |RangeClass|Table |LookupAttr |inv |

all entries where tablename is not null from Table 2 ... false
Country hasCity City City hasCity_inv true
Country inMembership |Membership |Membership|ofCountry true
City capital_inv Country Country capital true
Organization|hasMembership|Membership |[Membership|inOrganization|true
Island locatedOn_inv |Mountain Mountain |locatedOn true

Table 5. Sample extended Mapping Dictionary contents for inverse-functional prop-
erties

Primary Keys in Relational Databases. The above modeling and discus-
sion uses the URIs as primary keys and as targets of references. The relational
databases that should be made accessible by OBDA do not necessarily have this
feature. For that, additional SDD tables for keys and foreign keys (similar to
those of relational data dictionaries) are used to store the information about
keys; covering also n-ary keys. With this, the generation of joins consists of an
additional lookup for the actual names of the key/foreign key columns.

Redundancy vs Flexibility. When the relational schema is derived canonically
from the OWL ontology, the RTTab is (so far) mostly redundant because the
information can be obtained from the RangeClass column of the MD and another

10

lookup in the MD for that/these class/classes. The NMJ is in such cases also
redundant (i.e., can be defined as a view that just yields the other column
name of the n:m table). If an OBDA mapping to another relational schema
that deviates from the canonical translation in its structure or in the naming is
required, these tables and entries deviate. In Section 4.3 it will be shown how
the NMJ can be used to define the “original” binary relationship underlying
an attributed reified property. In Section 4.4 it will be shown that actually the
inherent “NMJoin” semantics is actually a more general “back-join” that links
tables with a ClassTable, e.g., for representing vertical partitioning.

3 Usage for Transformation of Queries

The transformation of a SPARQL queries to SQL queries has already been used
above for illustrating the contents of the SDD tables.

— functional properties in the MD; for object-valued properties lookup the range
table(s) in the RTTab;

— n:m relationships also in the MD, get name/column in an n:m-table, lookup
the range table for this column (RTTAB), and lookup the column name of
the column which has to be joined with the ClassTable of the subject (NM.J);

— multivalued literal-valued properties: analogously.

Non-Typed Variables in Queries. If the class of one or more variables is not
explicitly specified in the query (e.g. {?X :name ?N; :area 7A}), the MD allows
to generate the query as an SQL union based on all classes that provide the
required properties (here, countries and lakes):

(SELECT name, area FROM country) UNION (SELECT name, area FROM lake)

Variables in Property Position. If a variable in the SPARQL query occurs
in property position, all properties must be considered.

Ezample 5. Consider the query

{ ?X :name ?N; :area ?A; 7P ?Y . 7Y name ?Z }
that asks for all names of objects ?X that have an area and some relationship
7P to another object 7Y that has a name 7Z.

The query transformation can again restrict the set of bindings for ?X to
countries and lakes (only these have an area property). The transformation then
must consider all properties (e.g., country.area, country.population, country.capital,
..., lake.area, ...lake.locatedAt_inv) for binding ?P. For these, it must check the
range class information in the MD, and check whether this class provides a
name property. Only those contribute to the union, whose constituents are then
constructed by appropriate joining (note again that country.capital if functional,
while country.hasCity is inverse-functional, and lake.locatedAt.inv is n:m):

11

(SELECT x.name, x.area, 'capital’, y.name FROM country x, city y

WHERE x.capital = y.uri) UNION

(SELECT x.name, x.area, 'hasCity’, y.name FROM country x, city y

WHERE x.uri = y.hasCity_inv) UNION

(SELECT x.name, x.area, 'locatedAt.inv', y.name FROM lake xI, locatedAt p, city y
WHERE x.uri = p.water AND p.city = y.uri)

Usage for inserting data. In an obvious way, the mapping information can
also be used for inserting new RDF triples into the database. By this, an initially
empty schema can be populated from an RDF data source, or e.g. dynamically
by harvesting data from the Web.

4 Extensions and Modeling Variants

The previous sections dealt with the canonical transformation. In this section,
some more insight is given for handling special situations. The section also illus-
trates the flexibility of the chosen structure for the SDD.

4.1 Abstract Subclasses

The above example already showed how abstract superclasses (like Water for
River, Lake, and Sea) are dealt with in the canonical transformation. Often, a
subclass is discriminated against its superclass only by some special, extending
properties; e.g., Volcano as a special subclass of Mountain, with an additional
attribute lastEruption. In such cases, the schema designer may choose to keep the
subclass abstract: there is no separate table, and the instances are completely
stored in the table of the superclass. Such a schema is e.g. advantageous, when
most queries use also attributes of the superclass.

In this case, the functional attributes are canonically added to ClassTable

that contains the functional properties of the superclass, and there are two pos-
sibilities to distinguish the elements of the subclass:

— a boolean column with the name of the subclass (especially, if there are
multiple, maybe non-disjoint subclasses of the superclass), or

— a column, e.g. called “type” (chosen by the schema /transformation designer),
that contains a marker value (e.g., the name of the subclass). This variant is
only possible if the subclasses are disjoint.

The relevant metadata information is a mapping of the form SubClass — (Tablex
Column x Value). This extends the “SubCl” table which contains for each class
its most specific concrete superclass.

Ezample 6. Consider that Mountain has (disjoint) abstract subclasses Volcano
with an additional attribute lastEruption, and Monolith; and Island has abstract
subclasses Volcaniclsland and Atoll, which are modeled according to the first
variant.

Sample entries of the “SubCl” table are shown in Table 6. Additionally, MD

entries for the subclasses have to be added, including (Volcano, lastEruption,
xsd:string, Mountain, lastEruption, false). By this, queries like

12

{ X a :Volcano; :name ?N; :lastEruption 7D }
can be easily translated into
SELECT name, lastEruption FROM Mountain WHERE type='Volcano’;

In the canonical modeling, the entries in the “Superclass” column are always
the same as in the “Table” column — this might be different when the relational
schema (structure and naming) differs from the canonical one.

| Subcl |

| Subclass |Superclass| Table |C01umnName|MarkerValue|

Volcano Mountain |Mountain type Volcano

Monolith Mountain |Mountain type Monolith
Volcaniclsland| Island Island volcanic true
Atoll Island Island atoll true

Table 6. Sample entries of the SubClasses table

4.2 Multiple Inheritance

If multiple inheritance (i.e., a subclass might have multiple finest superclasses)
should be supported, appropriate entries have to be added to the SubCl table,
and the MD entries for the inherited properties of the subclass indicate in which
“parent class” table each property has to be looked up.

4.3 Making Reified Properties Accessible as Properties

Attributed binary relationships, like the isMember relationship between countries
and organizations have to be modeled by artificial (reified) entity types; here
Membership (cf. Figures 1 and 2). The respective table, here Membership(uri,
ofCountry, inOrganization, type), has two foreign keys that reference the involved
instances of the entity types, and additional columns for the attributes. By this,
such tables can be seen as generalizations of the binary n:m tables. The projection
to the foreign keys, here w[ofCountry, inOrganization](Membership), represents the
original binary relationship.

Thus, this relationship can be added to the OBDA mapping by appropriate
entries in the MD (to define it as a lookup-able property) and NMJ (to handle
the reified class table as an NM table) without having to be stored explicitly as
facts.

Example 7. Consider the above-mentioned isMember relationship. The additional
entries in the MD (to define it as a lookup-able property) and NMJ are shown
in Table 7. Then, queries using isMember can seamlessly be transformed:

{ 7C a :Country; :name ?CN; :isMember [:name ?Org]. }

SELECT c.name, o.name
FROM Country ¢, Membership m, Organization o
WHERE c.uri = m.country AND m.organization = o.uri;

Note that in this case, the (before seemingly redundant) NMJ information is
necessary to guide how to join “through” the 4-ary table.

13

MappingDict

Class

| Property |

Range

Table

|LookupAttr|

Country
Organization

isMember
hasMember

Organization
Country

Membership
Membership

Organization
Country

| NMJoinTab |
| Class | Table |LookupAttr|FKJoinAttr|

Country
Organization

Membership
Membership

Organization
Country

Country
Organization

Table 7. MD & NMJ entries that allow the usage of the original isMember property

4.4 Multi-Range (object-valued) Functional Properties

For functional relationships where the range consists of multiple classes (or an
abstract superclass of such), even for the “canonical” transformation from ER
to the relational model there are different variants. The SDD approach allows to
express the OBDA mapping in all these cases; mainly by having the appropriate
entries in the MD — the RTTab must just be completed accordingly, and the NM.J
is not effected. Below, an extended RTTab is introduced to be more efficient to
“choose” the range table depending on a specific range class.

Ezample 8. Consider that a river flows (finally) into at most one water, which
is either another river, a lake or a sea. As a functional property, it is canonically
stored in the River table. There are two alternatives for this:
a) The property is stored as a single column River.flowsInto whose values refer
to the IDs of rivers, lakes and seas. The MD entries (including the inverse)
and the RTTab entries are shown in Table 8.
For a SPARQL query of the form

{ 7R a :River; :name 7RN; :flowsInto ?L . 7L a :Lake; :name ?LN }
the query translation can exploit that for Lake as intended range class, the
extended RTTab tells that only a join with the Lake table must be done (and
the SQL inner join does the rest to list only rivers that flow into a lake):

SELECT r.name, l.name FROM River r, Lake | WHERE r.flowsInto = l.uri
The property is stored as multiple columns flowsInto_River, flowsInto_Lake and
flowsInto_Sea whose values refer to the IDs of their respective class. The MD
entries (including the inverse) are shown in Table 9.
The same query as above is now translated into

SELECT r.name, l.name FROM River r, Lake | WHERE r.flowsInto_Lake = Il.uri
Here, the MD information tells that for range Lake only one column of these
must be considered. Without the query restriction to lakes, in both cases, a
union would be generated.

Vertical Partitioning. Vertical partitioning of a database means that a table,
usually one that corresponds to a class, is partitioned into several tables with
fewer columns. Without loss of generality, one of these tables can be seen as
the main ClassTable for that class, while the others are “outsourced” tables.

14

| MappingDict |

|Class| Property | RangeClass |Tab1e|LookupAttr|inv|
River| flowsInto [Water (still, abstract)| River | flowsInto |false
Sea |flowsInto_inv River River| flowslnto |true
Lake |flowsInto_inv River River| flowslnto |true
River [flowsInto_inv River River| flowsInto |[true
RTTab

Table|LookupAttr | RangeClass | RangeTable

River [flowsInto River River

River |flowsInto Lake Lake

River |flowsInto Sea Sea

Table 8. MD and (extended) RTTab entries for the “flowsInto” property as a single
column

| MappingDict |
|Class| Property |RangeClass|Table| LookupAttr |inv|
River| flowsInto River River |flowsInto_River|false
River| flowsInto Lake River |flowsInto_Lake |false
River| flowsInto Sea River | flowsInto_Sea |false
Sea |flowsInto_inv River River | flowsInto_Sea |true
Lake |flowsInto_inv River River |flowsInto_Lake |true
River [flowsInto_inv River River |flowsInto_River|true
RTTab

Table|LookupAttr | RangeClass | RangeTable

River [flowsInto River River

River [flowsInto Lake Lake

River |flowsInto Sea Sea

Table 9. MD and (extended) RTTab entries for the “flowsInto” property split into
multiple columns

Actually, the semantics of the back-join of these tables with the ClassTable is
analogous to that for n:m tables and is covered by the NMJ (which could thus
more generally be called “back-join-table”).

Ezxample 9. Consider economical attributes of countries like inflation, unemploy-
ment, and gross domestic product (gdp), that are stored in a separate table econ-
omy(country, inflation, unemployment, gdp) where the country column references
to the uri column of the Country table. The MD and NMJ entries are given in
Table 10.

For the SPARQL query

{ 7C a :Country; :name ?N; :inflation ?I ,}
the MD tells that name is looked up in the Country ClassTable, while inflation is
looked up in the economy table. The NMJ tells that for looking up the inflation
column in the economy table for an instance of class Country, the join must be
via economy.country:

15

SELECT Country.name, economy. inflation
FROM Country, economy
WHERE economy.Country = Country.uri

| MappingDict |
| Class | Property | Range | Table | LookupAttr | inv|
Country| inflation |economy|xsd:decimal inflation |false
Country|unemployment|economy |xsd:decimal junemployment |false
Country gdp economy |xsd:decimal gdp false
| NMJoinTab |
| Class | Table | LookupAttr |FKJOinAttr|
Country|economy| inflation Country
Country|economy [unemployment| Country
Country|economy gdp Country

Table 10. MD and NMJ entries for vertical partitioning

4.5 Symmetric Non-Functional Properties

Amongst recursive properties, symmetric ones (i.e. where p = p~ holds) play
a special role. Consider for example a mergesWith relationship between seas. It
is mapped to an n:m table mergesWith(seal,sea2). The instances can then be
stored in two alternative ways: Either storing only one direction of each instance
of the relationship explicitly (“antisymmetric”), or (redundantly) storing both
directions, which makes query formulation easier (no “union”) and slightly faster.
The SDD mapping described above can be configured for both cases:

— in the the symmetric/redundant case, there is just an MD entry (¢, p, ¢, tab(p),
coly, false) where tab(p) is the n:m table where p is stored, for each class ¢ in
the domain of p.

— in the the antisymmetric case, there are two MD entries (¢, p, ¢, tab(p), coly, false)
and (¢, p, ¢, tab(p), cols, false) for each such ¢ (again, multiple entries mean a
union).

Note that the handling of symmetric properties that are functional (like e.g.,

a “marriedWith” relationship between persons) is integrated within the class

tables where the storage is inherently symmetric and redundant. Here, an anti-
symmetric storage would be counterintuitive.

5 Current Functionality of RDF2SQL and Perspectives

The current prototype of RDF2SQL can be found at [RDF17]. The central func-
tionality is the transformation of an OWL ontology (optionally with additional
annotations about concrete and abstract classes, reification etc.) into a relational
schema and the generation of the SDD tables. RDF data can be inserted either
from a file, or triplewise (e.g. when harvesting data from Web sources). SPARQL
queries can be translated into SQL queries and can be evaluated.

16

Schema Transformation Operators. As described above, for an ontology, there are
usually different variants how to store it in a relational schema. These differences
between such variants can be broken down to a set of “atomic” transformations
of the schema, e.g. handling a property as functional or as n:m, partitioning
according to range or domain (for n:m tables), turning classes concrete or ab-
stract, vertical partitioning of columns, etc. Each such operation corresponds
to a transformation of the schema, and of the SDD data. With this, different
schema variants for the same ontology have been generated for the use in the
RODI experiments [PBJRT17].

“Inverse” Transformation. Obviously, a preliminary ontology can also be created
by re-engineering from the relational schema: deriving what can be classes, and
what should be properties. The quality of the obtained ontology depends on
identifying artifacts from reification and partitioning. The corresponding SDD
is also created. The testcase here is to take the traditional relational MONDIAL
schema, and to provide OBDA to it from the generated ontology.

Perspectives. One research direction is to use RDF2SQL and especially the SDD
for finding and describing a mapping between a given ontology and a given re-
lational database. A combination of ontology re-engineering and ontology align-
ment with direct generation of an SDD describing the mapping has been experi-
mented with in [Sch16] with already encouraging results. Based on this, classical
ontology alignment strategies can be applied in combination with atomic trans-
formations of the SDD which guarantee that with every step, full correctness of
the mapping is maintained.

6 Conclusion

The presented metadata structure, called Semantical Data Dictionary (SDD),
provides a flexible, extensible and efficient technique for storing ODBA mapping
metadata in SQL with a human readable representation which is comfortable and
intuitive to use. With the RDF2SQL implementation, the SDD is automatically
generated and populated from a given OWL ontology.

The approach has been implemented originally for the generation of a rela-
tional schema from an ontology (which has been used above as running example),
and for translating SPARQL queries into corresponding SQL queries. It already
proved useful for generating different modeling variants, either controlled via an-
notation properties in the ontology (about abstract and concrete classes), or by
transformations of the generated schema (e.g., turning properties from functional
into n:m and vice versa). Such variants were used in [PBJR*17].

Therefore the SDD can not only be used for query translation in case that
the relational schema was created from the ontology, but might also serve as
a base for automatically connecting an ontology to a different, given relational
database by generating the aligning mapping by transformations of the SDD.

The SDD structure can easily be extended by additional tables for further
needs since everything is stored transparently in the SQL database.

17

The SDD can also be used for mappings from other data models (e.g. XML
with elements, subelements, and attributes) to a relational database. Further-
more, it could be used as a virtual language to provide communication between
different database languages and sources.

References

[ADMRO5] D. Aumueller, H-H. Do, S. Massmann, and E. Rahm. Schema and Ontol-
ogy Matching with COMA++. In SIGMOD, pp. 906-908. ACM, 2005.

[CCK*15] D. Calvanese, B. Cogrel, E. G. Kalayci, S. Komla-Ebri, R. Kontchakov,
D. Lanti, M. Rezk, M. Rodriguez-Muro, and G. Xiao. OBDA with the On-
top Framework. In 23rd Italian Symposium on Advanced Database Systems,
SEBD, pp. 296-303, 2015.

[dMPC15] L. F. de Medeiros, F. Priyatna, and O. Corcho. MIRROR: Automatic
R2RML Mapping Generation from Relational Databases. In ICWE,
Springer LNCS 9114, pp. 326-343, 2015.

[EMST11] J. Euzenat, C. Meilicke, H. Stuckenschmidt, P. Shvaiko, and C. T. dos
Santos. Ontology Alignment Evaluation Initiative: Six Years of Experience.
J. Data Semantics, 15:158-192, 2011.

[EN04] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems, 4th
Edition. Addison-Wesley-Longman, 2004.

[HM13] T. Hornung and W. May. Experiences from a TBox Reasoning Application:
Deriving a Relational Model by OWL Schema Analysis. In OWLED 2013,
CEUR Workshop Proceedings 1080. CEUR-WS.org, 2013.

[JRKZ'15] E. Jiménez-Ruiz, E. Kharlamov, D. Zheleznyakov, I. Horrocks, C. Pinkel,
M. G. Skjeeveland, E. Thorstensen, and J. Mora. BootOX: Practical Map-
ping of RDBs to OWL 2. ISWC; Springer LNCS 9367, pp. 113-132, 2015.

[KSA*12] C. A. Knoblock, P. Szekely, J. L. Ambite, A. Goel, S. Gupta, K. Lerman,
M. Muslea, M. Taheriyan, and P. Mallick. Semi-automatically Mapping
Structured Sources into the Semantic Web. In ESWC, Springer LNCS
7295, pp. 375-390, 2012.

[Mondial] W. May. The MONDIAL Database. Available at http://dbis.informatik.uni-
goettingen.de/Mondial/.

[PBJR'15] C. Pinkel, C. Binnig, E. Jiménez-Ruiz, W. May, D. Ritze, M. G. Skjaeve-
land, A. Solimando, and E. Kharlamov. RODI: A Benchmark for Auto-
matic Mapping Generation in Relational-to-Ontology Data Integration. In
ESWC, Springer LNCS 9088, pp. 21-37, 2015.

[PBJR*17] C. Pinkel, C. Binnig, E. Jiménez-Ruiz, E. Kharlamov, W. May, A. Nikolov,
A. S. Bastinos, M. G. Skjeeveland, A. Solimando, M. Taheriyan, C. Heupel,
and I. Horrocks. RODI: Benchmarking Relational-to-Ontology Mapping
Generation Quality. Semantic Web Journal, page to appear, 2017.

[PBKH13] C. Pinkel, C. Binnig, E. Kharlamov, and P. Haase. IncMap: Pay As You
Go Matching of Relational Schemata to OWL Ontologies. In Workshop on
Ontology Matching, CEUR Workshop Proceedings 1111, 2013.

[RDF17] RDF2SQL - Relational Storage of RDF Data (Demo). Available at
http://www.semwebtech.org/rdf2sql/, 2017.

[Sch16] S. Schrage. Transformation-based Ontology Mapping. Master’s thesis,
Universitdt Gottingen, Institut fiir Informatik, 2016. Available at
https://www.dbis.informatik.uni-goettingen.de/Teaching/Theses/PDF /MSc-
Schrage-SchemaMatch-2016.pdf.

18

