
Chapter 4
Internal Organization and
Implementation

This section heavily relies on other subdisciplines of Practical Computer Science:

• System Structures, down to the physical level

• Operating Systems Aspects: Caching

• Algorithms (mainly: for joins) and Data Structures (tree indexes, hashing)

160

PHYSICAL DATA ORGANIZATION

• the conceptual schema defines which data is described and its semantics.

• the logical schema defines the actual relation names with their attributes (and
datatypes), keys, and integrity constraints.

• the physical schema defines the physical database where the data is actually stored.

⇒ efficiency

• system: the data is actually stored in files: data that semantically belongs together
(a relation, a part of a relation (hashing), some relations (cluster)).

• additionally, there are files that contain auxiliary information (indexes).

• data is accessed pagewise or blockwise (typically, 4KB – 8KB).

• each page contains some records (tuples). Records consist of fields that are of an
elementary type, e.g., bit, integer, real, string, or pointer.

161

DB SERVER ARCHITECTURE: SECONDARY STORAGE AND CACHING

runtime server system: accessed by user queries/updates

• parser: translates into algebra, determines the required relations + indexes

• file manager: determines the file/page where the requested data is stored

• buffer/cache manager: provides relevant data in the cache

• query/update processing: uses only the cache

Cache (main memory): pagewise organized
• Accessed pages are fetched into the cache

• pages are also changed in the cache

• and written to the database later ...

Secondary Storage (Harddisk): pagewise organized
• data pages with tuples

• index pages with tree indexes
(see later)

• database log etc. (see later)

x

x

x

162

DATABASE ACCESS MECHANISM

Records must be loaded from (and written to) the secondary memory for processing:

• the file manager determines the page where the record is stored.

• the buffer/cache manager is responsible to provide the page in the buffer (buffer
management):

– maintains a pool of pages (organized as frames).
for every page, it is stored if the page has been changed, how often/frequently it has
been used, and if it is currently used by transactions

– if the required page is not in the cache, some stored page is replaced (if it has been
changed, it must be written to the secondary memory)

• complex prefetching strategies, based on knowledge about transactions.
[see lecture on Operating Systems]

• for now, it is sufficient to note that pagewise access has to be dealt with.

163

Storage of Files, Pages, and Records

• Inside a file, every tuple/record has a tuple identifier of the form (p, n) where p is the
page number and n is its index inside the page.

Each page then contains a directory that assigns a physical address to each n.

• memory management for deleted records

• different strategies for fixed-length and variable-length records

Simplified storage of a page of the Country table:

• • • • · · ·
1 I 5 I t a l y int: 301230 bigint: 57460274 4 R

o m e 5 L a z i o 2 C H 11 S w i t z e r l a

n d int: 41290 bigint: 7207060 4 B e r n 2 B E

1 B 7 B e l g i u m int: 30510 bigint: 10170241

8 B r u s s e l s 7 B r a b a n t · · ·
...

... so far to the physical facts ...

164

4.1 Efficient Data Access

• efficiency depends on the detailed organization and additional algorithms and data
structures

• support generic operations:

– Scan: all pages that contain records are read.

– Equality Search: all records that satisfy some equality predicate are read.
SELECT * FROM City WHERE Country = ’D’;

– Range Search: all records that satisfy some comparison predicate are read.
SELECT * FROM City WHERE Population > 100.000;

– Modify, Delete: analogously

– Insert: analogously: search for an appropriate place where to put the record.

• linear search (scan) ??

• Need for efficient searching (equality and/or range)

165

INDEXING

Indexes (for a file) are auxiliary structures that support special (non-linear) access paths

• Based on search keys

• not necessarily the relational “keys”, but any combination of attributes

• a relation may have several search keys

• an index is a set of data entries on some pages together with efficient access
mechanisms for locating an entry according to its search key value.

• different types of indexes, depending on the operations to be supported:

– equality search

– range search (ordered values)

– search on small domains

• in general, joins by key/foreign-key references are supported by indexes.

166

TREE INDEXES

This topic brings data structures and databases (= applications of data structures) together.

• introductory lecture “Computer Science I”: store numbers in trees.

• databases: tree index over the values of a column of a relation

– search tree based on the values (numbers, strings)

– the tuples themselves are not stored in the tree

– entries (or leaf entries only) hold the values and point to the respective tuples in the
database

• special trees with higher degrees:

– each node (of the size of a storage page) has multiple entries and multiple children.

167

ASIDE, APPLICATION AND REVIEW: BINARY SEARCH TREES

• Binary Search Trees are a typical topic in “Computer Science I”: store numbers.

• Often used for implementation of other concepts, e.g., sets (cf. also topic “Abstract
Datatypes” in some CS I lectures)

– set: add(x), contains(x)?, list-all()
how to implement efficiently?
Java: classes TreeSet, HashSet

168

Example: BSB-based TreeSet in SQL Query Answering

[Exercise/Demonstrate on whiteboard]

(1) SELECT country FROM City WHERE population > 1000000; contains duplicates.

(2) SELECT distinct country FROM City WHERE population > 1000000;

– initialize an empty TreeSet rs,

– evaluate (1),

– during computation, for each result r:

– if r /∈ rs, then add it, and output r;

– requires n · log n steps.

• sketch Java class: treenode(left: node, right: node, value: String)

• sketch representation of BSB in storage page/array (cf. CS I)
[node at position n → left child at position 2n, right child at position 2n+ 1]

(3) SELECT country, count(*) FROM City WHERE population > 1000000
GROUP BY country;

– same strategy as above, additional data (count) stored in the tree,

– if r /∈ rs, then add (r, count : 1) it, and output r,

– if r ∈ rs, then increment count of r.

169

B- AND B∗-TREES

A B-tree (R. Bayer & E.McCreight, 1970) of order (m, ℓ), m ≥ 3, ℓ ≥ 1, is a search tree [see
lecture on Algorithms and Data Structures]:

• the root is either a leaf or it has at least 2 children

• every inner node has at least ⌈m/2⌉ and at most m children

• all leaves are on the same level (balanced tree), and hold at most ℓ entries

• inner nodes have the form (p0, k1, p1, k2, p2, . . . , kn, pn) where ⌈m/2⌉ − 1 ≤ n ≤ m− 1 and

– ki are search key values, ordered by ki < kj for i < j

– pi points to the i+ 1th child

– all search key values in the left (i.e., pi−1) subtree are less than the value of ki (and all
values in the right subtree are greater or equal)

B-trees are used for “simply” organizing items of an ordered set (e.g. for sorting) as an
extension of binary search trees.

170

B∗-TREES

(sometimes also called B+-Trees)

A B∗-tree of order (m, ℓ), m ≥ 3, ℓ ≥ 1, is closely related, except:

• they are intended to associate data with search key values:

• the inner nodes do not hold additional data, but are still intended to guide the search.
(organized internally e.g. as binary search trees)

• The leaves are of the form ([k1, s1], [k2, s2], . . . , [kg, sg]) where g ≤ ℓ, ki is a search key
value, and si is a data record or (in databases) a pointer to the corresponding record.

171

E
xam

ple
B
∗-Tree

overC
ity.nam

e

H
ann

R
om

a
...

B
ern

...
G

ren
...

M
uni

• Aachen

:
• Berlin

• Bern

:

...

:
• Göttingen

• Grenoble

:
• Hamburg

• Hannover

:
...

• Munich

:

......

Relation “City”

: : :

Munich D 1244676

: : :

Grenoble F 150758

: : :

Aachen D 247113

: : :

Bern CH 134393

: : :

Göttingen D 127519

: : :

Hannover D 525763

: : :

Berlin D 3472009

: : :

Hamburg D 1705872

: : :

172

Properties

• Let N the number of entries. Then, for the height h of the tree,
h ≤ ⌈logm/2(2N/ℓ)⌉ (ℓ/2 entries per leaf, inner nodes half filled) and
h ≥ ⌈logm(N/ℓ)⌉ (ℓ entries/leaf, inner nodes completely filled)

• equality search needs h steps
inside each of the inner nodes, search is also in O(n)

• if the leaves are connected by pointers, ordered sequential access (range search) is also
supported

• insertions and modifications may be expensive (tree reorganization)

Use of B∗-Trees as Access Paths in Databases

• databases: cities stored in data files, index trees hold pointers to city records in their tree
entries.

• separation between index files/pages and data files/pages.

• multiple search trees for each relation possible.

173

Example

Example 4.1
Consider the MONDIAL database with 3000 cities, with an index over the name. Assume the
following sizes:

• every leaf (tuple) page contains 10 cities,

• every inner node contains 20 pointers

Then

• every inner node on the lowest level covers 200 cities

• every inner node on the second lowest level covers 4000 cities

• minimal: only one level of inner nodes

• maximal: two levels of inner nodes (nodes about only 2/3 filled)

• access every city with WHERE Name =“...” in 3 or 4 steps

• index on population, e.g., for WHERE Population > 1,000,000 ORDER BY Population

• realistic numbers: block size 4K: lowest level (keys+pointers to DB): 100 cities; inner
nodes: 100 references. ✷

174

HASH-INDEX (DICTIONARY)

Hash index over the value of one or more columns (“hask key” – is not necessarily a key of
the relation):

The values are distributed over k tiles.

• A hash function h is a function that maps each value to a tile number.
operation: lookup(value)

• each tile holds pairs (key,pointer) to all tuples whose hash-key value is mapped to this tile;

• each tile consists of one or more pages.

• common technique: convert value to an integer i. i mod k gives the tile number.

175

E
xam

ple:H
ash

index
overC

ity.nam
egiven:a

city
nam

e
n

com
pute

value
ofhash

function
h
(n

)
=

sum
(ascii(n

[i]))m
od

13

h
(n

)
=

1
h
(n

)
=

4
h
(n

)
=

6
h
(n

)
=

8
h
(n

)
=

1
1

...

• Munich
:

• Bern
:

• Hannover

...

• Aachen
:

• Lisbon
:

• Göttingen
:

...

• Berlin

:

...
• Hamburg

:
• Grenoble

:

...

• Vienna

:

...

Relation “City”

: : :

Munich D 1244676

: : :

Vienna A 1583000

: : :

Grenoble F 150758

: : :

Aachen D 247113

: : :

Bern CH 134393

: : :

Göttingen D 127519

: : :

Hannover D 525763

: : :

Berlin D 3472009

: : :

Hamburg D 1705872

: : :

Lisbon P 2063800

: : :

176

Hash-Index

Example 4.2
Multi-attribute hash keys:
Consider a hash index on City.(name, province, country). h computes the sum of the ASCII
numbers of the letters and takes the remainder modulo 111. ✷

Properties:

• equality search and insert in constant time (+ time for searching in the tile)

• does not support range queries or ordered output

Comments:

• maintenance of overflow pages: see Info III

• lookup inside each tile can be organized by a B-tree (kept on a single page)

177

TREE AND HASH INDEXES: OBSERVATIONS

• structure of tree leaf nodes and hash tiles is the same:

– pairs: (search key value, reference to a tuple in storage page)

• tree leaf nodes and hash tiles are actually projections of a table R on the search key
attribute/attributes

– π[name](City) can be answered by just using the above tree/hash indexes.

⇒ indexes not only be as access paths, but also to support frequently used projections.

DUPLICATES IN TREE OR HASH INDEXES

What if π[search-key-attrs](relation) contains duplicates,
e.g., index on City.country?

• straightforward: multiple subsequent (value, ref) entries for the same value in the leaf/tile
pages,

• saves some space: pairs (value, set-of-references).

• any index that is not over a superset of a candidate key potentially contains duplicates.

178

BIT LISTS

If the number of possible values of a search key value is small wrt. the number of tuples, bit
lists are useful as indexes

Let a an attribute of the records stored in a file f , where k values of a exist. Then, a bit list
index to f consists of k bit vectors B(vi), i ≤ 1 ≤ k.

• B(vi)(j) = 1 if the jth record in f has the value vi for the attribute a.

Properties:

• access all tuples with a given value:
without bit list: linear search over all pages
with bit list: access bit list, and access those pages where a “1”-tuple is located.

• modifications: no problem

• deletions: depends (if gaps are allowed on the pages)

179

Example 4.3
Consider the relation isMember(organization, country, type) where type has only the values
“member”, “applicant”, and “observer”:

isMember

Org. Country Type

EU D member

UN D member

UN CH observer

UN R member

EU PL applicant

EU CZ applicant

: : :

Bit list for type=member: 1 1 0 1 0 0 . . .

Bit list for type=observer: 0 0 1 0 0 0 . . .

Bit list for type=applicant: 0 0 0 0 1 1 . . .

Bit list for org=EU: 1 0 0 0 1 1 . . .

Bit list for org=UN: 0 1 1 1 0 0 . . .

• Search for members of the UN:
without bit list: linear search over all pages
with bit list: access bit list, and access those pages where a 1-tuple is located.

• 2nd bit list on organization column: “members of UN” by logical “and” of bit lists. ✷

180

ORDERED STORAGE

Tuples of a relation can be stored grouped/ordered wrt. one search key

• Example: table City grouped by country (or even by (country, province))

R
el

at
io

n
“C

ity
”

V
ie

nn
a

A
15

83
00

0

In
ns

br
uc

k
A

11
80

00

:
:

:

B
er

n
C

H
13

43
93

:
:

:

B
er

lin
D

34
72

00
9

H
am

bu
rg

D
17

05
87

2

M
un

ic
h

D
12

44
67

6

H
an

no
ve

r
D

52
57

63

G
öt

tin
ge

n
D

12
75

19

A
ac

he
n

D
24

71
13

:
:

:

P
ar

is
F

21
52

42
3

G
re

no
bl

e
F

15
07

58

:
:

:

Li
sb

on
P

20
63

80
0

:
:

:

• things that are frequently needed together can be fetched within the same page,

• Index on City.country needs only a reference to the first tuple in each country
(note that the index is still useful to have access in O(log n) or O(1)).

- insertions and modifications more costly
(strategies to allow and keep free space between blocks)

181

CLUSTERING

• keep data that semantically belongs together on the same pages

• obviously done for relations, by ordered storage even inside a relation

• data of several relations R1(X̄1), . . . , Rn(X̄n) can also be grouped to clusters:

– choose a set Ȳ ⊆ X̄1 ∩ . . . ∩ X̄n as cluster key.

– combine relations by their Ȳ -values.

– provides obvious advantages when evaluating joins over the cluster key.

182

Example 4.4
Consider the relation schemata

organization(name,abbrev,established,. . .)
and

isMember(organization, country, type).
The foreign key

isMember.organization → organiza-
tion.abbreviation
is used as cluster key.

Organization

Abbrev

EU Name established

European Union 07.02.1992

Country Type

D member

A member

: :

UN Name established

United Nations 26.06.1945

Country Type

D member

CH observer

: :

183

4.1.1 Algorithms and Data Structures: Basic Techniques

Iteration: all tuples in the input relations are processed iteratively. If possible, instead of the
tuples themselves, an index can be used.

Indexes: selections and joins can be based on processing of an index for determining the
tuples that satisfy the selection condition (a join condition is also a selection condition).

Indexes on single attributes: obvious.

Indexes on multiple attributes:

• a hash index to a conjunction of equality predicates of the form field = value can be
used if every field of the search key occurs exactly in one predicate together with a
constant,

• a tree index to a conjunction of comparison predicates of the form field θ value can
be used if a prefix of the search key exists such that each field of the prefix occurs in
exactly one predicate together with a constant.
Example: if (Country,Province,CityName) is the search key of an index, it can also be
used as an index for the key’s prefix (Country,Province).

184

4.1.2 Implementation of Algebra Operations

SELECTION

Selection: σ[R.field θ value]R.

• no index, unordered tuples: linear scan of the file

• no index, tuples ordered wrt. field: find the tuple(s) that satisfy “field θ value” (binary
search) and process these tuples.

• tree index: find the tuple(s) that satisfy “field θ value” using the tree index and process
these tuples.

• hash: suitable only if θ is equality.

185

Selection: boolean combination of predicates

Boolean combinations of predicates can be evaluated by set operations on references (from
the tree leaves and hash tiles):

Consider π[name](σ[country=“D” ∧ population > 500.000](City))

• hash index on City.country,

• tree index on City.population (supports range search for > 500.000)

Leaf entries and entries on hash tiles are of the form

(search-key-value, reference-to-tuple)

(i) hash lookup on City.country=“D” results in a set of references,

(ii) index search on City.population>500.000 results in a set of references.

• compute intersection:

• put (i) into a TreeSet or HashSet s (fits in main memory)

• for each reference in (ii): if it is contained in s, access actual tuple and output its name.

186

PROJECTION

Projection: π[field1, field2, ..., fieldm]R.

Main problem: remove duplicates (relational algebra does not allow duplicates, SQL does).

• if an index over field1, field2, ..., fieldm or a superset of it exists: scan only the index leaf
nodes and apply a projection to them.

• by sorting:
scan the file, create a new file with projected tuples.
sort the new file (over all fields, n logn).
scan the result, remove duplicates.

• by hash: scan the file, put the projected tuples into a hash.
duplicates all end up in the same tile (still in files).
remove duplicates separately for each tile (iterating the hashing process with different
functions until tile fits in main memory)
collect the tiles in the output file.

⇒ hashing not only as an index for search structures, but also as an algorithm for
partitioning.

187

JOIN

Consider an Equijoin: R ⊲⊳R.A=S.B S.

Nested-loop-join

foreach tuple r ∈ R do

foreach tuple s ∈ S do

if rA = sB then add [r, s] to result

Very inefficient:

• assumption: only one page of each relation fits into main memory

• m tuples of R per page, n tuples of S per page:
|R|/m+ |R| · |S|/n filesystem accesses (for each tuple of R, loop over all pages of S).

• |R| · |S| comparisons.

obvious: if possible, process the smaller relation in inner loop to keep it in main memory
(|R|/m+ |S|/n filesystem accesses).

188

Block-nested-loop-Join

Optimization by page-oriented strategy:

Divide S into blocks that fit in main memory and process each of the blocks separately.

• assumption: only one page of each relation fits into main memory

• m tuples of R per page, n tuples of S per page:

– take first page (R1) of R and first page (S1) of S;

– combine each tuple of R1 with each tuple with S1.

– continue with R1 and second page (S2) of S ... up to R1 with Slast

– continue with R2 and S1 etc.

• |R|/m+ |R|/m · |S|/n filesystem accesses (for each page of R, loop over all pages of S).

• still |R| · |S| comparisons.

• same for k > 1 available cache pages: read k − 1 pages from R for each block.

189

Straightforward optimizations for Block-Nested-Loop-Join

For each block, some optimizations can be applied:
(that motivate also the subsequent algorithms)

• idea: do not consider cartesian product + selection as the base for join, but look up
matching tuples in S.

Applied to the Block-Nested-Loop-Join base algorithm, these do not reduce the number of
page accesses, but the number of comparisons:

• generate a temporary index on S.B over the loaded fraction of S;

• in case of duplicates of R.A: generate a temporary index also over R.A. on the single
loaded page to process tuples groupwise;

• [do not discuss yet: generate temporary ordered indexes both on R.A and S.B, process
them merge-style]

next step: consider these optimizations on the global level of the algorithm

190

Index-Nested-Loop-Join

If for one of the input relations there is an index over the join attribute, choose it as the inner
relation.

• given index on S’s join attribute

• loop over R, for each value access matching tuple(s) in S.

• |R|/m+ |Result| filesystem accesses,

• up to |R|/m+ |R| · |S| filesystem accesses,

• usually less efficient than block-nested-loop!

Parallelization

• Divide R into partitions and process each of them on a separate processor (share the
index on S).

191

Sort-merge-join

Algorithm type: “Scan line”

First: simple case that illustrates the principle:

Assumption: relations are sorted wrt. R.A and S.B

• search for matches as follows:

– proceed through the ordered R and S stepwise, always doing a step in the index
where the “smaller” value is.

• if a match is found:

– generate a result tuple.

– check for tuples which have the same values of the join attributes (must immediately
follow this match in both relations).

• |R|/m+ |S|/n filesystem accesses.

General Case: relations are not sorted

... next slide

192

Sort-merge-join (cont’d)

• Sort relations first:

– sort R according to R.A:

– copy first k pages in cache, sort them in place (Quicksort), store them,

– do this for pages 2k...3k − 1 etc.

– requires 2 · |R|/m page accesses (read and write)

– mergesort the sorted packets (linear; traverse all packets in parallel and write out in
different place)

– requires again 2 · |R|/m page accesses (read and write)

– do the same for S

Sort+merge: 4 · |R|/m+ 4 · |S|/n+ |R|/m+ |S|/n page accesses

• [note: the step “mergesort the sorted packets” can be omitted by running merge join
directly on all of them; then 2 · |R|/m+ 2 · |S|/n+ |R|/m+ |S|/n .]

193

Sort-merge-join (cont’d)

• Use only sorted indexes:

– compute sorted indexes of both relations on the join attributes
(fit into main memory, requires |R|/m+ |S|/n)
(if tree indexes on join attributes are available, simply use them)

– search for matches as above:

* proceed through the ordered indexes R and S stepwise, always doing a step in the
index where the “smaller” value is.

– if a match is found:

* access actual tuples and generate a result tuple.

* check for tuples which have the same values of the join attributes (must immediately
follow this match in both relations).

– at most |R|/m+ |S|/n+ |Result| filesystem accesses
(when processing duplicates with same R.A = S.B value, less than + |Result|)

• with sorted indexes: costs depend on number of results (“selectivity of the join”).

⇒ decide to sort relations or to use indexes based on selectivity/heuristics.

194

Sort-merge-join: basic Algorithm

if R not sorted on attribute A, sort it;
if S not sorted on attribute B, sort it;

Tr := first tuple in R;
Ts := first tuple in S;
Gs := first tuple in S;

while Tr 6= eof and Ts 6= eof do {
while Tr 6= eof and Tr.A < Ts.B do Tr = next tuple in R after Tr;

while Ts 6= eof and Tr.A > Ts.B do Ts = next tuple in S after Ts;

// now, Tr.A = Ts.B: match found
while Tr 6= eof and Tr.A = Ts.B do {

Gs := Ts;
while Gs 6= eof and Gs.B = Tr.A do {

add [Tr,Gs] to result;
Gs = next tuple in S after Gs;}

Tr = next tuple in R after Tr;
}

Ts := Gs;
}

195

Hash-join

Algorithm type: “Divide and Conquer”

Partitioning (building) phase:

• Partition the smaller relation R by a hash function h1 applied to R.A.

• Partition the larger relation S by the same hash function applied to S.B.
(into different hash tables)

Matching (probing) phase:

• potential(!) matches have been mapped to “face-to-face” partitions.

• thus, consider each pair of corresponding partitions:

• if partition of R does not fit into main memory, proceed recursively with another h.

• otherwise – i.e., R-partition fits in main memory:

– if corresponding S-partition also fits into main memory, compute the join.

– otherwise proceed recursively with another (finer) h2 inside main memory and process
S-partition pagewise.

196

EXERCISE

Exercise 4.1
Consider the join of two relations R and S wrt. the join condition R.A = S.B. R uses M pages
with pR tuples each, and S uses N pages with pS tuples each. Let M = 1000, pR = 100,
N = 500, pS = 80; the cache can keep 100 pages. Compute the number of required
I/O-operations for computing the join (without writing the result relation) for:

(a) simple nested-loop-join,

(b) pagewise nested-loop-join,

(c) index-nested-loop-join (Index on SB),

(d) sort-merge-join (sorted relation/sorted index),

(e) hash-join. ✷

197

Another Example

In the previous comparison, the index-nested-loop-join did not perform well:

• access to each individual matching tuple is fast, but every page of S has to be accessed
n times.

Example 4.5
Consider (σ[cond](R)) ⊲⊳R.A=S.B S where cond has a selectivity q, (e.g. q = 1/1000):

• loop over R, evaluate cond, for each tuple that satisfies the condition, access matching
tuple(s) in S using the index.

• |R|/m+ |Result| = |R|/m+ q · |R| · q′ filesystem accesses,

• where q′ is the selectivity of the join.

⇒ usage of index is efficient when only a small number of tuples of S has to be accessed
(the other algorithms had to process S completely). ✷

198

SEMIJOINS

• Natural Semijoins or Condition Semijoins as subqueries:
R ✄< [condition(Ri1 , ..., Ri1 , Si1 ..., Siℓ)]S

It is often sufficient to use an index over Si1 ...Siℓ instead of the whole relation.

• Semjoins as preparation for joins: R ⊲⊳ S = (R ✄< S) ⊲⊳ S (and symmetrically
= R ⊲⊳ (R >✁ S))

Is that simpler? – Sometimes Yes!

– cf. Join R ⊲⊳ S, with an existing index over the join attribute(s) in S: iterate over R and
access S via index. No access, if not found. If found, access tuple in S

This actually is (R ✄< S) ⊲⊳ S.

Consider R ⊲⊳ S to be a hash join:

– First hash S, build an index over the join attribute(s), keep the index in main memory.

– iterate over R: for every tuple µ, if µ ∈ (R ✄< S) (can be checked against the main
memory index), then hash it.

199

“PURE” INDEX-BASED SELECTIONS, PROJECTIONS, AND JOINS

Consider that leaves of tree- and hash-indexes are of the form (value, pointer-to-tuple)

• SELECT code FROM country WHERE population > 10000000 AND area > 500000

• indexes on country.population, country.area (tree) and country.code (tree or hash)

1. search 10000000 in the population index (yields first leaf with > 10000000),

2. from there, iterate over all higher entries (pop,ptr1) in the leaves. ptr points to a tuple
representing a result. Collect ptr1s in a (Tree)Set S1.

3. search 500000 in area population index (yields first leaf with > 500000),

4. from there, iterate over all higher entries (pop,ptr2) in the leaves. ptr2 points to a tuple
representing a result. Collect ptr2s in a (Tree)Set S2.

5. intersect S1 ∪ S2 (intersection of index pointers)

6. For each result ptr, look in the index entries for code (code, ptr3) for the entry with
ptr3 = ptr. Output code.

• problem: the index on code is looked up “backwards”.

200

Inverted Indexes

Sometimes (as in the previous example) is would be useful to use an index backwards:

• Recall: leaves of tree- and hash-indexes are of the form (value, pointer-to-tuple)

• if the pointer-to-tuple is known from an index lookup, the value of an indexed attribute of
this tuple is stored in the index leaf node.

• instead of accessing the (large) tuple(s) from its storage, it might be cheaper to lookup
the values in the index.

⇒ an Inverted index on an attribute attr is a (tree or hash) index for search by the
tuple-pointers.

• Step (6) of the previous example profits from an inverted index on country.code.

201

Pure Index-based Equi-Joins

... via intersection of index values

Consider the equijoin: R ⊲⊳R.A=S.B S from before.

• Indexes on R.A and on S.B (both tree or both hash with same hash function).

• find matching index entries by “merge”-style processing of leaves or tiles, yields pointer
pairs (ptrA, ptrB) to matching tuples,

• access the tuples, or the required output attribute values per inverted index,
(if joining further an another attribute with another table T , the tuple pointers/ids may be
sufficient)

• with tuple access: O(2 · |Result|) page accesses, with inverted index none.

⇒ may be better or worse than the tuple-based algorithms.

⇒ if no index is present, on-the-fly temporal indexes (or inverted indexes) can be created by
the database.
(the DB may keep this indexes then, and maybe maintain them, or delete them when the
relation is updated)

202

GROUPING AND AGGREGATION

General Structure:

SELECT A1, . . . , An list of attributes
FROM R1, . . . , Rm list of relations
WHERE F condition(s)
GROUP BY B1, . . . , Bk list of grouping attributes
HAVING G condition on groups
ORDER BY H sort order

• SUM, AVG, COUNT: linear scan necessary (need to consider all tuples)

• MIN, MAX: index can be used

• support for grouping (SQL: GROUP BY) using an index or a hash table

UNION, DIFFERENCE, INTERSECTION ⇔ CARTESIAN PRODUCT

• intersection and cartesian product are special cases of join

• union and difference: analogous to sort-merge-join or hash-join

203

SITUATION-DEPENDENT OPTIMIZATION

Determining the optimal execution plan depends on cost models, heuristics, and the
actual physical schema and the actual database contents:

• index structures

• statistics on data (i.e., to some extent state dependent)

– cardinality of relations

– distribution of values

204

Notions

The selectivity sel of operations can be used for estimating the size of the result relation:

• Selection with condition p:

selp =
|σ[p](R)|

|R|
Proportion of tuples that satisfy the selection condition.

– for p an equality test R.A = c where A is a key of R, selp = 1/|R|.
– if R.A distributes evenly on i different values, selp = 1/i.

• Join of R and S:

selRS =
|R ⊲⊳ S|
|R× S| =

|R ⊲⊳ S|
|R| · |S|

is the proportion of result tuples wrt. the cartesian product.

for R ⊲⊳R.A=S.B S with A a key attribute, |R ⊲⊳R.A=S.B S| ≤ |S|, thus selRS ≤ 1/|R|.

• optimal order of applying joins

• optimal order of applying selections

205

APPLICATION-LEVEL ALGORITHMIC OPTIMIZATION

And never forget about using efficient algorithms for querying the database!

• analyze the problem from the algorithmic point of view

• before hacking

EXAMPLES

Use the MONDIAL database for the following examples.

Example 4.6
Compute all pairs of european countries that are adjacent to the same set of seas. ✷

Example 4.7
Compute all political organizations that have at least one member country on every continent
(this operation is called relational division). ✷

206

4.1.3 Exercises and Examples

Solution to Exercise 4.1

R: 1000 pages, each of them with 100 tuples
S: 500 pages, each of them with 80 tuples
Cache: 100 pages

a) simple nested loop join

– outer loop: R
Load each page of R. For all tuples, iterate over S’s pages.
1000 · (1 (load) + 100 (tuples per page) · 500 (pages of S)) = 50, 001, 000

– outer loop: S
Load each page of S. For all tuples, iterate over R’s pages.
500 · (1 (load) + 80 (tuples per page) · 1000 (pages of R)) = 40, 000, 500

207

Solution to Exercise 4.1 (cont’d)

R: 1000 pages, each of them with 100 tuples
S: 500 pages, each of them with 80 tuples
Cache: 100 pages

b) pagewise nested loop:

– outer loop: R. Load each page of R. Combine all tuples of that page with all tuples
from each page of S.
1000 · (1 + 500 (pages of S)) = 501, 000

– outer loop: S. 500 · (1 + 1000 (pages of R)) = 505, 000

b2) maximum-pages nested loop: load as many (first 99) pages of R as possible in the cache
and join with one page of S after the other. Then continue with 2nd 99 pages.

– 11 times, i.e., 10 · 99 R pages + 1 · 10 R pages through all S pages.
Overall: 1000 + 11 · 500 = 6500.

– symmetric with (5 · 99 + 1 · 5) pages of S:
Overall: 500 + 6 · 1000 = 6500.

– can be algorithmically optimized by on-the-fly indexes during the main-memory join

208

Solution to Exercise 4.1 (cont’d)

R: 1000 pages, each of them with 100 tuples
S: 500 pages, each of them with 80 tuples; Cache: 100 pages

c) Index-nested-loop (index on S.B): Assumptions:

– every R.A matches – average – 4 S-tuples.

– index over S.B already exists (if not: creating an index over S.B requires 500
accesses) and can be kept in main memory

Iterate over R, for each tuple search for the value of R.A in the index over S.B and access
the tuples
1000 · (1 (load) + 100 · 4 (access tuples)) = 401, 000.

Note: the number of page accesses depends on the number of results since for every
actual result there is one page access.

In case that S is ordered wrt. S.B: 1000 · (1 (load) + 100 · 1 (access tuples)) = 101, 000.

209

Solution to Exercise 4.1 (cont’d)

R: 1000 pages, each of them with 100 tuples
S: 500 pages, each of them with 80 tuples; Cache: 100 pages

d) sort-merge:
different settings

– if already ordered: linear scan:
1000 + 500 = 1500

– sort relations first:
2 · 1000 + 2 · 500 + 1000 + 500 = 4500

– using an index (assume: every R.A matches – average – 4 S-tuples):
1000 + 500 + 4 · 1000 · 100 = 401, 500

210

Solution to Exercise 4.1 (cont’d)

R: 1000 pages, each of them with 100 tuples
S: 500 pages, each of them with 80 tuples
Cache: 100 pages

e) Hash-Join:

– Hash R:
100 pages fit in memory - read one page of R after the other and distribute over 99
partitions (whenever a page of a partition is full, move it to the disk).
In the average, each partition them contains about 10.1 (→ 11) pages; last page of
each partition is not completely filled.
maximum 1000 (read) + 1089 (write) = 2099.

– Same for S. Get 99 partitions of average 5.1 (→ 6) pages
(maximum 500 + 594 = 1094 accesses).

– now there are 99 corresponding pairs of partitions (one from R, one from S).
Join each pair: read 11 + 6 pages per partition and process them.
(about 99 · (11 + 6) = 1683 accesses).

Overall: 4876 accesses.

211

