6th Intl. Conference on Extending Database Technology
(EDBT’98), March 23-27, 1998, Valencia, Spain.
Springer LNCS 1377, pp. 404-418.

Referential Actions: From Logical Semantics to
Implementation

Bertram Ludéascher Wolfgang May

Institut fiir Informatik, Universitit Freiburg, Germany
{ludaesch,may}@informatik.uni-freiburg.de

Abstract. Referential actions (rac’s) are specialized triggers used to au-
tomatically maintain referential integrity. While their local effects can be
grasped easily, it is far from obvious what the global semantics of a set
RA of interacting rac’s should be. To capture the intended meaning of
RA, we first present an abstract non-constructive semantics. By formal-
izing RA as a logic program Pra, a constructive semantics is obtained.
The equivalence of the logic programming semantics and the abstract
semantics is proven using a game-theoretic characterization, which pro-
vides additional insight into the meaning of rac’s. As shown in previous
work, for general rac’s, it may be infeasible to compute all mazimal ad-
missible solutions. Therefore, we focus on a tractable subset, i.e., rac’s
without modifications. We show that in this case a unique maximal ad-
missible solution exists, and derive a PTIME algorithm for computing this
solution. In case a set Uy of user requests is not admissible, a maximal
admissible subset of U}, is suggested.

1 Introduction

We study the following problem: Given a relational database D, a set of user-
defined update requests Uy, and a set of referential actions RA, find those sets
of updates A which (i) preserve referential integrity in the new database D',
(ii) are maximal wrt. Uy, and (iii) reflect the intended meaning of RA. This
notion of intended “optimal” updates will be formalized using so-called mazimal
admissible sets of updates.

The problem is important both from a practical and theoretical point of
view: Referential integrity constraints (ric’s) are a central concept of the rela-
tional database model and frequently used in real world applications. Referential
actions (rac’s) are specialized triggers used to automatically enforce integrity,
thereby relieving the user from the burden of enumerating all induced updates
which arise from an initial user request Up.

Due to their practical importance, rac’s have been included in the SQL2
standard and SQL3 proposal [ISO92, ISO95]. In [DD94] and [Dat90], the problem
of unpredictable behavior, i.e., ambiguities in determining the above A and D',
in certain situations is addressed. In [Hor92, CPM96], a solution is presented,
based on a rather ad-hoc run-time execution model. In a different approach,
[Mar94] presents safeness conditions which aim at avoiding ambiguities at the
schema level. However, as shown in [Rei96], it is in general undecidable whether
a database schema with rac’s is ambiguous. Summarizing, from a theoretical
point of view, the problem has not been solved in a satisfactory way.

In this paper, we continue our work on declarative semantics for referential
actions. First results have been reported in [LMR96]. In [LML97a], it is shown
that for rac’s with modifications, it may be infeasible to compute all maximal
admissible solutions (intuitively, there are several equally justified ways how to
propagate the combined effect of modifications, leading to an exponential blow
up, both in the number of rules for integrity maintenance and in the number
of solutions). Here, we therefore restrict to the tractable class of rac’s without
modifications. This guarantees the existence of a unique optimal solution which
can be efficiently computed.

In Section 2, we introduce the basics of referential integrity and illustrate
the problem of ambiguity. In Section 3.1, we identify and formalize desirable
abstract properties of updates which lead to a non-constructive global semantics
of rac’s. A constructive definition providing a global semantics is obtained by
formalizing a set of referential actions RA as a logic program Pgr4 (Section
3.2). The correctness of this characterization is proven via an equivalent game-
theoretic characterization (Section 3.3) which allows intelligible proofs on a less
technical level (Section 4). From the logic programming characterization, an
algorithm for computing the maximal admissible solution is derived (Section 5).

2 Referential Integrity

Notation and Preliminaries. A relation schema consists of a relation name
R and a vector of attributes (Ay,...,A,). We identify attribute names A; of
R with the integers 1,...,n. By A = (i1,...,ir) we denote a vector of k < n
distinct attributes (usually A will be some key).

Tuples of R are denoted by first-order atoms R(X) with n-ary relation sym-
bol R, and vector X of variables or constants from the underlying domain. To
emphasize that such a vector is ground, i.e., comprises only constants, we write
instead of X. The projection of tuples X to an attribute vector A is denoted by
X[A]: e.g., if Z = (a,b,¢), A = (1,3), then F[A] = (a,c). Deletions are denoted
by del:R(Z).

For a relation schema R with attributes A, a minimal subset K of A whose
values uniquely identify each tuple in R is a candidate key. In general, the data-
base schema specifies which attribute vectors are keys. A candidate key R.K has
to satisfy the first-order sentence ¢y, for every database instance D:

VXl,XQ (R(Xl) A R(X2) N Xl[K] = X2[K] — Xl = Xg) . (‘pkey)

Referential Integrity Constraints. A referential integrity constraint (ric) is
an expression of the form

Rc.FSRpK,

where F is a foreign key of the child relation R, referencing a candidate key K
of the parent relation Rp. A ric Ro.F—Rp.K is satisfied by a given database D,
if for every child tuple R (%) with foreign key values Z[F], there exists a tuple
Rp(y) with matching key value, i.e., Z[F] = §[K]. Thus, for a database instance
D, a ric is satisfied if D |E @pic:

VX (Ro(X) = 3Y (Rp(Y)ANX[F]=Y[K])) . (ric)

A ric is violated by D if it is not satisfied by D.

Referential Actions. Rule-based approaches to referential integrity mainte-
nance are attractive since they describe how ric’s should be enforced using “lo-
cal repairs”: Given a ric Ro.F—Rp.K and an update operation insert, delete,
or modify on Rp or R¢, a referential action (rac) defines some local operation
on R or Rp, respectively. It is easy to see from the logical implication in ()
that insert into Rp and delete from R¢ cannot introduce a violation of a ric,
whereas the other updates can. For these, there are two strategies to maintain
referential integrity by local actions:

e CASCADE: propagate the update from the parent to the child,
e REJECT: reject an update on the parent if there exists a referencing tuple.

The Problem of Ambiguity. With this local specification of behavior, there
may be ambiguities wrt. the global semantics, leading to different final states.
A relational database schema S with rac’s RA is ambiguous, if there is some
database instance D and some set of user requests Uy s.t. there are different
final states D' depending on the execution order of referential actions. As shown
in [Rei96], it is in general undecidable whether a schema with rac’s is ambiguous
(given D and Uy, the problem becomes decidable). The following example from
[Rei96] illustrates the problem:

Example 1 Consider the database with rac’s depicted in Fig. 1. Solid arcs rep-
resent ric’s and point from Re to Rp, rac’s are denoted by dashed (CASCADE)
or dotted (REJECT) arcs. Let U, = {del:R;(a)} be a user request to delete the
tuple R;(a). Depending on the order of execution of rac’s, one of two different
final states may be reached:

1. If execution follows the path Ri—R3—R4, the tuple R3(a,y) cannot be deleted:
Since R4(a,z,y) references Rs(a,y), the rac for R4 forbids the deletion of
Rs(a,y). This in turn forbids the deletion of R;(a). Thus, the user request
del:R; (a) is rejected, and the database remains unchanged, i.e., D' = D.

2. If execution follows the path Ri—R>—Ry4, the tuples Ra(a,z) and R4(a,z,y)
are requested for deletion. Hence, the rac for R4.(1,3)— R3.(1,2) can assume
that R4(a,z,y) is deleted, thus no referencing tuple exists in Ry. Therefore,
all deletions can be executed, resulting in a new database state D' # D.

We argue that (2) is preferable to (1), since it accomplishes the desired user
request without violating referential integrity. o

2.1 Disambiguating Strategies

The ambiguity in Example 1 can be eliminated by specifying that rac’s of type
REJECT are always evaluated wrt. the database state either before starting the
transaction or after the complete transaction, leading to the following strategies
to maintain referential integrity by referential actions:

e CASCADE: propagate the update from the parent to the child,

e RESTRICT: (i) reject an update on the parent if there exists a child referencing
it in the original database state, or (ii) reject an update on the child if there
is no tuple with the respective parent key in the original database state,

Ro.1—-Rq.1 R3.1—R1.1

ON DELETE CASCADE ON DELETE CASCADE
- 1] -
- a |--- ~ o
- ~
[B |-~ — T~ B |
112 |- 1 12 |-
a |

~TRPBI]-

R4.(1,2)—R2.(1,2) y || Ra-(1,3)>Ra.(1,2)
ON DELETE CASCADE ON DELETE REJECT

S]

Fig. 1. Database with referential actions

e NO AcTION: similar to RESTRICT, but look at the database state after (hy-
pothetically) applying all updates (in active database terminology, this cor-
responds to change immediate coupling of referential actions into deferred
coupling).

Since the final state depends on the updates to be executed, and these may in
turn depend on the final state via NO ACTION, there is a cyclic dependency. In
Section 3, we show how to solve this semantical problem using different (logical
and game-theoretic) characterizations of rac’s.

In SQL, referential actions for a given ric Rc.F—Rp.K are specified with
the definition of the child relation:

{CREATE | ALTER} TABLE Rc

FOREIGN KEY F REFERENCES Rp K
[ON UPDATE {NO ACTION |CASCADE |RESTRICT |SET NULL | SET DEFAULT}]
[ON DELETE {NO ACTION | CASCADE |RESTRICT |SET NULL | SET DEFAULT}]

(RESTRICT is not contained in SQL2, but in the SQL3 proposal.)

Due to lack of space, we do not consider insertions in the sequel. Note how-
ever, that insertions can be handled in a straightforward way by rejecting updates
which aim to insert a child tuple whose corresponding parent does not exist (this
is also the SQL strategy), and all results can be directly extended to incorporate
insertions (cf. [LML97a, LML97b]). Moreover, as mentioned above, we delib-
erately exclude modifications (i.e., ON UPDATE triggers and SET NULL/DEFAULT
actions, the latter being a special case of modifications), since this problem is
intractable in general [LML97a].

Thus, in this work, we investigate rics R¢.F— Rp.K with corresponding rac’s
of the form Rc.F—Rp.K ON DELETE {CASCADE|RESTRICT|NO ACTION}.

3 Semantics of Referential Actions

In order to avoid ambiguities and indeterminism like in Example 1, it is necessary
to specify the intended global semantics of rac’s. First, we define an abstract,

non-constructive semantics which serves as the basis for a notion of correctness.
Next, we show how to translate a set of rac’s into a logic program, whose declar-
ative semantics provides a constructive definition. An equivalent game-theoretic
characterization is developed which will be used to prove the correctness of the
logic programming semantics (Section 4).

3.1 Abstract Semantics

Let D be a database represented as a set of ground atoms, RA a set of rac’s,
and Uy = {del:Ry(%1),...,del:R, (%)} a set of (external) user delete requests
which are passed to the system. D and RA define three graphs DC (ON DELETE
CASCADE), DR (ON DELETE RESTRICT), and DA/ (ON DELETE NQ ACTION) cor-
responding to the different types of references:

DC = {(Rc(7),Rp(§)) € D x D |
Ro.F—Rp K ON DELETE CASCADE € RA and Z[F] = j[K]},

DR and DN are defined analogously. DC* denotes the reflexive transitive clo-
sure of DC. Note that the graphs describe potential interactions due to rac’s,
independent of the given user requests U. To capture the intended semantics,
Uy has to be considered:

Definition 1 Given RA, D, and Uy, a set A of delete requests is called
e founded, if del:R(Z) € A implies (R(Z), R'(z')) € DC* for some del:R'(z') € Uy,
o complete, if del:Rp(g) € A and (Rc(Z), Rp(§)) € DC implies del: R (%) € A,
o feasible, if

— (Rc(Z),Rp(g)) € DR implies del:Rp(y) ¢ A, and

— del:Rp(§) € A and (Rc(Z), Rp(j)) € DN implies del: R (Z) € A,
e admissible, if it is founded, complete, and feasible. o
Foundedness guarantees that all deletions are “justified” by some user request,

completeness guarantees that no cascading deletions are “forgotten”, and feasi-
bility ensures that RESTRICT/NO ACTION rac’s are “obeyed”.

Definition 2 (Maximal Admissible Sets, Intended Semantics)
Let RA, D, and Uy be given.

e The set of induced updates A(U) of a set of user requests U C Uy is the least
set A which contains U and is complete.

e A set of user requests U C Uy is admissible if A(U) is admissible, and mazimal
admissible if there is no other admissible U’, s.t. U C U’ C Uys.

e The intended semantics are the maximal admissible subsets of U}. o

Proposition 1 (Correctness)
a) If U C Uy, then A(U) is founded and complete.
b) If A is complete and feasible, then D' := D + A(U) satisfies all rics. o

PrOOF a) A(U) is defined as the least complete set. It follows that A(U)
is founded. b) Completeness guarantees that all ric’s labeled with ON DELETE
CASCADE in RA are satisfied, feasibility guarantees that all ric’s labeled with ON
DELETE RESTRICT/NO ACTION are satisfied. u

Theorem 2 (Uniqueness)
Given RA, D, and Uy, there is exactly one mazimal admissible Upax C Us.

PROOF Observe that Uy UU, is admissible if Uy, Uy C Uy are admissible. Thus,
the union of all admissible subsets of Uy yields Upax. u

3.2 Logic Programming Characterization

We show how a set RA of rac’s is compiled into a logic program Pr4 whose
rules specify their local behavior. The advantage of this logical formalization is
that the declarative semantics of Pr4 defines a precise global semantics.

The following rule derives for every user request del:R(Z) € Uy an internal
delete request req-del: R(Z), provided there is no blocking blk_del: R(Z):

req.del: R(X) < del:R(X), -blk_del: R(X). (I)
Referential actions are specified as follows:

¢ Ro.F—-Rp.K ON DELETE CASCADE is encoded into two rules: the first one
propagates internal delete requests downwards from the parent to the child:

req_del: Ro(X) + req_del:Rp(Y), Rc(X), X[F] = Y[K]. (DCY)

Additionally, blockings are propagated upwards, i.e., when the deletion of a
child is blocked, the deletion of the referenced parent is also blocked:

blk_del: Rp(Y) + Rp(Y), blk_del:Re(X), X[F] = V[K]. (DCy)

¢ Ro.F—Rp.K ON DELETE RESTRICT blocks the deletion of a parent tuple if
there is a corresponding child tuple:

blk_del:Rp(¥) « Rp(Y), Ro(X), X[F] = Y[K]. (DR)

¢ Ro.F—Rp.K ON DELETE NO ACTION blocks the deletion of a parent tuple if
there is a corresponding child tuple which is not requested for deletion:

blk_del: Rp(Y) < Rp(Y), Ro(X), —reqdel:Rc(X), X[F] =Y[K]. (DN)

Due to the negative cyclic dependency req_del ~» blk_del ~» req_del , Pr4 is in
general not stratified.

Well-Founded Semantics. The well-founded model [VGRS91] is widely ac-
cepted as a (skeptical) declarative semantics for logic programs. The well-founded
model Wg4 of Pra U D U Uy assigns a third truth value undefined to atoms
whose truth cannot be determined using a “well-founded” argumentation.

Often, even if not all requested updates can be accomplished, it is still possible
to execute some of them while postponing the others. Thus, the information
which tuple or update really causes problems is valuable for preparing a refined
update that realizes the intended changes and is acceptable:

Example 2 Consider the database with rac’s in Fig. 2, and the user request
Us = {del:R;(a),del:R;(b)}. del:Ry(b) is not admissible since it is blocked by
R5(b). However, the other request, del:R; (a), can be executed without violating

R,
Ro.1—-R1.1 1 R3.1—R;.1 Rs.1—-R;.1
ON DELETE CASCADE_~ |a |---| ~ _ON DELETE CASCADE ON DELETE NO ACTION
-7 b |- S

112 |- 1 12] -- :
a |x |- a

Y b
b |x b |y

~
\\
~ 12 3 |- R4.(1,3)—>R3.(1,2)
R4.(1,2)—R2.(1,2) - 0N DELETE NO ACTION
ON DELETE CASCADE
b |z |y |-

Fig. 2. Extended database with modified rac’s

any ric by deleting Ry (a), Ra(a,), R3(a,y), and R4(a,z,y). Thus, the extended
set UL = {del:R;(a),del:R;(b),del:R5(b)} is a candidate for a refined update
request which accomplishes the deletion of Ry (a) and R (b).

The well-founded semantics reflects the different status of the single updates:

Given the user request U, = {del:Ri(a)}, the delete requests req-del for
Ry(a), Rz(a,x), R3(a,y), Ra(a,x,y), as well as the blockings blk_del for R;(a)
and R3(a,y) will be undefined in the well-founded model.

For the user request U, = {del:R;(b)}, blk_del is true for Ry(b) due to the
referencing tuple Rs(b). Thus, req_del:R; (b) is false, and del:R; (b) is not admis-
sible; hence there are no cascaded delete requests. Due to the referencing tuple
R4(b,z,y) which cannot be deleted in this case, blk_del:R3(b,y) is also true. g

Whra contains some ambiguities which can be interpreted constructively as
degrees of freedom: The blockings and deletions induced by Us = {del:R;(a)}
in Example 2 are undefined due to the dependency req_del ~» blk_del ~ req_del.
This freedom may be used to define different global policies by giving priority
either to deletions or blockings (cf. Theorems 10 and 11).

3.3 Triggers as Games

The following game-theoretic formalization provides an elegant characterization
of rac’s yielding additional insight into the well-founded model of Pr4 and the
intuitive meaning of rac’s.

The game is played with a pebble by two players, I (the “Deleter”) and IT
(the “Spoiler”), who argue whether a tuple may be deleted. The players move
alternately in rounds; each round consists of two moves. A player who cannot
move loses. The set of positions of the game is DUU}, U{restricted}. The possible
moves of T and II are defined below. Note that I moves from D to Uy, while IT
moves from Uy to D U {restricted}. Initially, the pebble is placed on some tuple
in D (or Us) and I (or II) starts to move. If II starts the game, the first round
only consists of the move by II.

By moving the pebble from R(Z) € D to some del:R'(Z') € U which cascades
down to R(Z), I claims that the deletion of R(Z) is “justified” (i.e., founded)
by del:R'(Z'). Conversely, II claims by her moves that del:R'(Z') is not feasible.
II can use two different arguments: Assume that the deletion of R'(Z') cascades
down to some tuple Rp(Zp). First, if the deletion of Rp(Zp) is restricted by
a referencing child tuple R¢(Z¢), then IT may force I into a lost position by
moving to restricted (since I cannot move from there). Second, II can move to
a child tuple R, (Z;,) which references Rp(Zp) with a NO ACTION trigger. With
this move, II claims that this reference to Rp(Zp) will remain in the database,
so Rp(Zp) and, as a consequence, R'(Z') cannot be deleted. In this case, I may
start a new round of the game by finding a justification to delete the referencing
child R¢(Z{). More precisely:

Player I can move from R(Z) to

del:R'(z') if (R(z),R'(z')) € Dc* | dek R (2')

and there is no Rc(z¢) € D st. | - * *\ i

(Re(@c), R(@)) € DR. e TP del-f(z)
Player II can move from del:R'(Z') (RP(:EP_) \)?p(a:p) \

e to restricted if there are Rp(Zp) and _ T . -
Re(ze) st. (Rp(p).R(&) € per |B® [H X PC
and (Rc(zc), Rp(zp)) € DR. DR DA(\

e to R.(Z.), if (Rp(Zp),R'(T')) € DC* Re(zc) restricted R (zl)

and (R, (%), Rp(ZTp)) € DN.

Lemma 3 (Claims of I and II)

1. If T can move from R(Z) to del:R'(Z'), then deletion of R'(Z') induces the
deletion of R(Z).

2. If IT can move from del:R(Z) to restricted, then deletion of R(T) is forbidden
in the original database state.

3. If I can move from del:R(Z) to R'(Z'), then deletion of R(Z) is only admissible
if R'(Z') is also deleted. o

PrOOF 1. The move of I implies that (R(Z), R'(Z')) € DC*.

The move of II means that either

2. there are Rp(Zp), Rc(Zc) s.t. (Rp(Zp), R(Z)) € DC* and (R (Zc), R'(F')) €
DR. Then, by (1), deletion of R(Z) induces the deletion of Rp(Zp), but the
deletion of Rp(Zp) is restricted by Re(Z¢), or

3. (R'(z'),R(%)) € DNoDC*, i.e., there is a Rp(Zp) s.t. (Rp(Zp), R(Z)) € DC*
and (R'(z'), Rp(Zp)) € DN. Hence, by (1), deletion of R(Z) induces deletion
of Rp(Zp), which is only allowed if R'(Z') is also deleted.! n

Lemma 4 The moves are linked with the logical specification as follows:

e The moves of I correspond to rule (DC4): I can move from R(Z) to del:R'(Z')
if, given the fact req_del:R'(Z'), req_del:R(Z) can be derived using (DC}).

DN oDC* := {(z,y) | Iz : (z,2) € DN and (2,y) € DC*}.

e The moves by II are reflected by the rules (DC5) and (DR)/(DN):

— II can move from del:R(Z) to restricted if blk_del:R(Z) is derivable using (DR)
and (DC3) only, or

— IT can move from del:R(Z) to R'(Z') if blk_del:R(Z) is derivable using (DC5)
and an instance of (DN) if req_del:R'(Z") is assumed to be false.

e The negative dependencies in (I), req_del ~» —blk_del, and (DN), blk_del ~»
—req_del, mirror the alternation of moves between I and II, respectively. o

Definition 3 A position R(Z) € D is won (for I),if I can win the game starting
from R(Z) no matter how I moves; del:R(Z) € Uy is won for IT, if II can always
win the game starting from del: R(Z). If p € D U U} is won (lost) for a player, p
is lost (won) for the opponent. A position which is neither lost nor won is drawn.
In the sequel, “is won/lost” stands for “is won/lost for I”. o

Drawn positions can be viewed as ambiguous situations. For the game above,
this means that neither can I prove that R(Z) has to be deleted, nor can II prove
that it is infeasible to delete R(Z).

Example 3 Consider again Fig. 2 with Uy = {del:R;(a),del:R;(b)}. From each
of the “a”-tuples, { Ry (a), R2(a, x), R3(a,y), Ra(a, z,y)}, I can move to del: Ry (a),
while IT can move from del:R;(a) to R4(a,x,y). Thus, after I has started the
game moving to del: Ry (a), I will answer with the move to R4(a, b, ¢), so I moves
back to del:R; (a) again, etc. Hence the game is drawn for each of the “a”-tuples.

In contrast, for the “b”-tuples, there is an additional move from del:R; (b) to
R5(b) for II, who now has a winning strategy: by moving to R5(b), there is no
possible answer for I, so I loses. O

Theorem 5 (Game Semantics) For every tuple R(Z) € D:

o R(T) is won < there is a sequence of user requests from Uy which deletes
R(Z), and if this sequence is executed serially (independent from the order of
execution of cascaded deletions), at no stage any ric is violated.

e R(Z) is won or drawn & simultaneous execution of all user delete requests
del:R'(Z') which are won or drawn does not violate any ric and deletes R(T).

o R(T) is lost & it is not possible with the given set of user delete requests to
delete R(Z) without violating a ric.

PrOOF Note that if R(Z) is won or drawn, then (Rc(Z¢), R(Z)) ¢ DR for any
Rc(Zc) € D (otherwise, if T moves from R(Z) to some Rg4(Z4), II moves to
restricted since (Rco(Z¢), Ra(Z4)) € DR o DC* and wins). Thus, no ric of the
form ON DELETE RESTRICT is violated when deleting some won or drawn tuple.
e Let Uy pp :={u € Uy | u is won in n rounds}. Let R(Z) be won in n rounds:
— I can move from R(Z), thus there exists a del:R4(Z4) € Uy, such that
(R(Z), Ra(Z4)) € DC*. Hence, executing Uy ,, also deletes R(Z).
— For every R'(Z'): if (R'(Z'), R(Z)) € DC, then also (R'(Z'), R4(Z4)) € DC* and
R'(z') is won in n rounds, and will also be deleted. Thus, no rac ON DELETE
CASCADE is violated when executing Uy .

— For every R'(Z') s.t. (R'(%'), R(Z)) € DN, (R'(%'), Ra(Z4)) € DN oDC*, thus
II can move from del:R4(Z4) to R'(Z') which then must be won in n—1 rounds,
thus it is already deleted when executing Uy, ;1. Thus, no ric of the form 0N
DELETE NO ACTION is violated when executing Uy .

— Let E; be some enumeration of Uy, ;. (Ei, E»,. ..) can be executed sequentially
and at no stage any ric is violated.

e Let R(Z) be won or drawn. Then there is a user request del:R4(Z4) where
I can move to (i.e., (R(Z), R4(Tq)) € DC*), which is also won or drawn.
Thus, when executing del:R4(Z4), R(Z) is deleted. Since all tuples R'(z')
s.t. (R'(z'),R(%)) € DC U DN are also won or drawn (since II can move
from R4(Zq) to R'(Z')), they will also be deleted. Thus, no ric ON DELETE
CASCADE/NO ACTION is violated.

e A tuple R(Z) is lost in n rounds if either

— (n = 0) there is no user request del:R4(Z4) s.t. (R(Z), Ra(Zq)) € DC*, i.e., the
deletion of R(Z) is unfounded, or

— (n > 0) every user request del:R4(Z4) s.t. (R(Z), Rq(Zq)) € DC* is lost in < n
rounds, i.e., either II can move from del:R4(Z4) to restricted (in this case, by
Lemma 3(2), del:R4(Z4) is forbidden), or there is some tuple R'(Z') s.t. II
can move from del:R4(Z4) to R'(Z') and which is lost in < n—1 rounds. By
induction hypothesis, R'(Z') cannot be deleted, but by Lemma 3(3), it must
be deleted if R(Z) is be deleted. Thus, R(Z) cannot be deleted. n

Theorem 6 (Correctness)
The game-theoretic characterization is correct wrt. the abstract semantics:

o Uy :={ue€Us|uiswon} and Uy 4 := {u € Uy | u is won or drawn} are
admissible,

® Uw,d = Umax
o A(Uy) = {del:R(Z) | R(Z) is won} and
A(Unax) = A(Uy,qa) = {del:R(Z) | R(Z) is won or drawn}.

4 Equivalence and Correctness

We show that the logical characterization is equivalent to the game-theoretic one.
Thus, the correctness of the logical characterization reduces to the correctness
of the game-theoretic one proven above.

4.1 Well-Founded Semantics

The alternating fixpoint computation (AFP) is a method for computing the well-
founded model based on successive rounds [VG93]. This characterization finally
leads to an algorithm for determining the maximal admissible subset of a given
set Uy of user requests. We introduce AFP using

Statelog, a state-oriented extension of Datalog which allows to integrate active
and deductive rules [LML96]. It can be seen as a restricted class of logic programs
where every predicate contains an additional distinguished argument for state

10

terms of the form [S+k]. Here, S is the distinguished state variable ranging over
INy. Statelog rules are of the form

[S+ko] H(X) « [S+k1] Bi(X1), .., [S+kn] Bu(Xn) ,

where the head H(X) is an atom, B;(X;) are atoms or negated atoms, and
ko > ki, for alli € {1,...,n}. A rule is local, if ko = k;, for all i € {1,...,n}.

In Statelog, AFP is obtained by attaching state terms to the given non-
stratified program P such that all positive literals refer to [S+1] and all nega-
tive literals refer to [S]. The resulting program P4pp computes the alternating
fixpoint of P:

[S+1]reqdel: R(X) + del:R(X), [S] —blk_del: R(X). (1)
% Rc.F—Rp.K ON DELETE CASCADE:

[S+1] req_del: Rc(X) + Rc(, X), X[F] = Y[K], [S+1] req.del:Rp(Y). (DC{)
[S+1] blk_del:Rp(YV) + Rp(Y), X[F] = Y[K], [S+1] blk_del:Rc(X). (DC3)
% Rc.F—Rp. K ON DELETE RESTRICT:

[S+1] blk_del:Rp(Y) + Rp(Y), Rc(X), X[F] = Y[K]. (DR™)
% Rc.F—Rp.K ON DELETE NO ACTION: (DN4)
[S+1] blk_del:Rp(Y) < Rp(Y), Re(X), X[F] = Y[K], [S] —~req_del:Rc(X).

P4 pp is locally stratified, thus there is a unique perfect model [Prz88] M app of
Papp UDUUs. Mapp mimics the alternating fixpoint computation of Wg4:
even-numbered states [2n] correspond to the increasing sequence of underesti-
mates of true atoms, while odd-numbered states [2n+1] represent the decreasing
sequence of overestimates of true or undefined atoms. The final state ny of the
computation is reached if M[2ny] = M|[2n+2]. Then, for all relations R, the
truth value of atoms R(Z) in Wga can be determined from M 4pp as follows:

true if Marp = [2ny] req_del:R(Z) ,

undef if Marp |= [2ny] —req-del:R(Z) A
[2ny+1] req_del:R(z) ,

false if Marpp |= [2np+1] —req_del:R(Z) .

Wra(req_del:R(%)) =

Theorem 7 (Equivalence)
The well-founded model is equivalent to the game-theoretic characterization:

o R(Z) is won/lost/drawn < Wga(req_-del:R(Z)) = true/false /undef.
ProOF The proof is based on a lemma which is easy to prove from Lemma 4:

Lemma 8

o I wins at R(Z) within < n rounds iff Marp [[2n] req-del:R(Z).

e IT wins at R(Z) within < n rounds iff Marp = [2n+1] —req_del:R(Z). o
From this, Theorem 7 follows directly: The n'” overestimate excludes deletions
provably non-admissible in n rounds, whereas the n** underestimate contains
all deletions which can be proven in n rounds. Thus, there is an n such that
Muarp = [2n] req-del:R(Z) iff Wga(req-del:R(Z)) = true, and there is an n such
that Mapp | [2n+1] —req_del:R(Z) iff Wgra(req-del:R(Z)) = false.

11

The game is drawn at R(Z) if for every tuple R'(Z') which II chooses, I can
find a user request which deletes it, and conversely, IT has a witness against each
of those user requests. Thus, no player has a “well-founded” proof for or against
deleting those tuples. -

With Theorem 6, the correctness of the logic programming formalization follows:
Theorem 9 (Correctness)
The logic programming characterization s correct wrt. the abstract semantics:
o U; :={del:R(Z) € Us | Wga(req-del:R(Z)) = true} and

Uiy = {del:R(Z) € Uy | Wra(req_del:R(Z)) € {true, undef}} are admissible,
L4 Ut,u = Umax, and
¢ A(Unmax) = A(Upy) = {del:R(Z) | Wra(req-del:R(z)) € {true, undef}}.
In the following section, it is shown that the maximal admissible subset of Uy,
Ut ., also corresponds to a total semantics of P.

4.2 Stable Models

The undefined atoms in the well-founded model leave some scope for further
interpretation. This is carried out by stable models:

Definition 4 (Stable Model) [GL88] Let Mp denote the minimal model of
a positive program P. Given an interpretation I, and a ground-instantiated
program P, P/I denotes the reduction of P wrt. I, i.e., the program obtained by
replacing every negative literal of P by its truth-value wrt. I. An interpretation
I'is a stable model if Mp,; = 1. o

Every stable model S extends the well-founded model YW wrt. true and false
atoms: Strue D Wirve Sfalse 5 ypfalse Not every program has a stable model.

Theorem 10 Let Sp4 be defined by

Sra := D UUs U{req_del:R(Z) | Wra(req-del:R(Z)) € {true, undef }}
U {blk_del:R(z) | Wgra(blk_del:R(z)) = true} .

Then, Sra is a total stable model of Pry U D U Up.

Sra is the “maximal” stable model in the sense that it contains all delete requests
which are true in some stable model. Consequently, deletions have priority over
blockings (cf. Example 2).

Theorem 11 (Correctness) Let S be a stable model of Pra U D UUy. Then
o Us:={del:R(Z) | S = req_del:R(Z)} N Uy is admissible and

A(Us) = {del:R(Z) | S |= req-del:R(Z)}.
® Unax =Usp, and A(Unax) = {del:R(Z) | Sra [req-del:R(Z)}.
PROOF Foundedness: follows directly from the fact that S is stable (unfounded
req-del: R(Z) would not be stable).

Completeness: For every ric Ro.F—Rp. K ON DELETE CASCADE, if S = R (Z) A
req_del: Rp () A Z[F] = g[K], then, due to (DC1), S = Mp;s |= req_del: R (%).

12

Feasibility: Suppose a ric Rc.F—Rp.K ON DELETE RESTRICT or Rc.F—Rp.K ON
DELETE NO ACTION would be violated: Then S = req.-del. Rp(§) ARc(Z) AZ[F] =
g[K] (for NO ACTION also S |= —req-del:Rc(Z)), and thus because of (DR) resp.
(DN), § = Mp)s = blkdel:Rp(y). Thus, by (DC5), for the founding delete
request del:R(2z), S = blk_del:R(z), and by (I), S E —req-del:R(Z) which is a
contradiction to the assumption that del:R(Z) is the founding delete request.

As C A(Ug) follows from foundedness, and As O A(Us) follows from com-
pleteness. n

5 A Procedural Translation

Another, more “algorithmic” implementation in Statelog is obtained by “cut-
ting” the cyclic dependency at one of the possible points, i.e., at the rules (I)
and (DN).

Cutting in (DN) implements the definition of Sga, corresponding to the
observation that Sga takes exactly the blockings from the underestimate and
the internal delete requests from the overestimate.

The rules (DCy), (DC>) and (DR) are already local rules:

[S] req-del:Rc(X) + Rc(X), X[F] =Y[K], [S] req-del:Rp(Y). (DCY)
[S] blkdel:Rp(Y) + Rp(Y), X[F] =Y[K], [S] blk-del:Rc(X). (DCy)
[S] blkdel: Rp(Y) + Rp(Y), Rc(X), X[F]=Y[K]. (DRS)

The rule () is also translated into a local rule:
[S] req_del:R(X) + del:R(X), [S] —blk_del:R(X). (I%)
(DN) incorporates the state leap and is augmented to a progressive rule (DN*):
[S+1] blkdel:Rp(Y) < Rp(Y), Rc(X), X[F] =YI[K],[S] -req-del:Rc(X).

In the following, we refer to this program as Ps.

Pgs is state-stratified, which implies that it is locally stratified, so there is a
unique perfect model Mg of PsUD UU. The state-stratification {blk_del:R} <
{req_del:R}, mirrors the stages of the algorithm: First, the blockings are com-
puted by (DN¥) (the only progressive rule; for the initial state, this rule does not
fire) and (DR®), the induced blockings are derived by (DC5), also determining
the blocked user delete requests. The remaining user delete requests raise inter-
nal delete requests (1) which are cascaded by (DC}). From these, the resulting
blockings for the next iteration are computed.

Lemma 12 M pp corresponds to Mg as follows:
1. Marp |=[2n] blk_del:R(Z) & Mg [[n] blk_del:R(%).
2. Muarp E [2n+1] req_del:R(z) & Mg [[n] req-del:R(z). o

PROOF Ps and Papp differ in the rules (I°) and (I): In every iteration, Ps
takes the blockings from the underestimate and the delete requests from the
overestimates, resulting in Sg4. m

13

Theorem 13 (Termination) For every database D and every set Uy of user
delete requests, the program reaches a fixpoint, i.e., there is a least ny < |Us]|,
s.t. ./\/ls[nf] = ./\/ls[nf-l-l].

PROOF A fixpoint is reached if the set of blocked user delete requests becomes
stationary. Since this set is nondecreasing, there are at most |Up | iterations. m

From Lemma 12 and Theorem 10, the correctness of Pg follows:

Theorem 14 (Correctness)

The final state of Mg, Mg[ny], represents Umax and A(Umax):
» Mslns] = Sra,

® Unmax = {del:R(Z) | Ms[nys] |= req_del:R(Z)} N Uy, and

¢ A(Unmax) = {del:R(Z) | Ms[ny] |= req_del:R(Z)}.

5.1 Implementation in a Procedural Programming Language

The Statelog formalization Pg can be easily translated into the following algo-
rithm Algg:

Input: A consistent database D and a set Uy of user delete requests.

B := {all blockings which result from ON DELETE RESTRICT triggers}.

1. (Re)Compute the set of induced blockings B*, which result from B
by propagating blockings upwards the ON DELETE CASCADE chain.

2. (Re)Compute the set U* of internal requests which result from user
cascading delete requests U which are not blocked: U* := (U \ B*)*.
3. Add to B all blockings which are issued by ON DELETE NO ACTION

triggers from tuples not in U*, i.e., which are not requested for dele-
tion.

4. If B\ B* # () then goto 1 else execute requests from U*.
Output: The new consistent database after executing Upax and the sets
Umax of committed and Up \ Unax of aborted user requests.

Initially, it is assumed that there are only those blockings which result directly
from ON DELETE RESTRICT triggers. Then, blockings are propagated upwards the
ON DELETE CASCADE chains, finally blocking the triggering user requests. For the
remaining unblocked user requests, the cascaded requests are recomputed. Thus,
some more tuples will remain in the database, which could block other requests.
In the next step, all blockings are computed which are caused by ON DELETE
NO ACTION triggers from tuples which are not reachable via cascaded deletions.
These steps are repeated until a fixpoint is reached. Observe that each iteration
corresponds to the evaluation of a query with PTIME data complexity. Moreover,
since the fixpoint is reached after at most |Us| iterations (Theorem 13), the
overall algorithm also has polynomial data complexity.

Theorem 15 Algorithm Algs is correct: Umax = U*NUs and A(Umax) = U*.

14

PROOF In the n'” iteration, B* = {blk_del:R(Z) | Mg [[n] blk_del:R(Z)}, and
U* = {req_del:R(Z) | Ms = [n] req_del:R(Z)}. n

For given D, Uy, and RA, the above algorithm computes the maximal subset
Umax of Uy which can be executed without violating any ric, and the set U* of
internal deletions which are induced by it. In case Uy, is not admissible, Uy \ Unax
contains the rejected update requests, and by following the chains of blockings
from them, the tuples which cause the rejection can be determined. Additionally,
by investigating the stages of the algorithm, it can be determined if the blocking
is due to the rejection of another request.

References

[CPM96] R. Cochrane, H. Pirahesh, and N. Mattos. Integrating Triggers and Declar-
ative Constraints in SQL Database Sytems. In Proc. VLDB, pp. 567578,
Mumbai (Bombay), India, 1996.

[Dat90] C. Date. Relational Database Writings 1985-1989. Addison-Wesley, 1990.

[DD94] C. Date and H. Darwen. A Guide to the SQL Standard: A User’s Guide to
the Standard Relational Language SQL. Addison-Wesley, 1994.

[GL88] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Pro-
gramming. In Proc. ICLP, pp. 1070-1080, 1988.

[Hor92] B. M. Horowitz. A Run-Time Execution Model for Referential Integrity
Maintenance. In Proc. Intl. Conf. on Data Engineering, pp. 548-556, 1992.

[ISO92] ISO/IEC JTC1/SC21. Information Technology — Database Languages —
SQL2, July 1992. ANSI, 1430 Broadway, New York, NY 10018.

[ISO95] ISO/ANSI Working draft. Database Languages — SQL3, October 1995.

[LML96] B. Ludéscher, W. May, and G. Lausen. Nested Transactions in a Logical
Language for Active Rules. In Proc. Intl. Workshop on Logic in Databases
(LID), LNCS 1154, pp. 196-222, 1996. Springer.

[LML97a] B. Luddscher, W. May, and G. Lausen. Referential Actions as Logical
Rules. In Proc. PODS’97, pp. 217-224, 1997.

[LML97b] B. Ludascher, W. May, and G. Lausen. Triggers, Games, and Stable Mod-
els. Technical report, Institut fiir Informatik, Universitat Freiburg, 1997.

[LMR96] B. Ludascher, W. May, and J. Reinert. Towards a Logical Semantics for Ref-
erential Actions in SQL. In Proc. 6th Intl. Workshop on Foundations of Mod-
els and Languages for Data and Objects: Integrity in Databases, Dagstuhl,
Germany, 1996.

[Mar94] V. M. Markowitz. Safe Referential Integrity and Null Constraint Structures
in Relational Databases. Information Systems, 19(4):359-378, 1994.

[Prz88] T. C. Przymusinski. On the Declarative Semantics of Deductive Databases
and Logic Programs. In J. Minker, editor, Foundations of Deductive
Databases and Logic Programming, pp. 191-216. Morgan Kaufmann, 1988.

[Rei96] J. Reinert. Ambiguity for Referential Integrity is Undecidable. In Con-
straint Databases and Applications, LNCS 1034, pp. 132-147. Springer, 1996.

[VG93] A. Van Gelder. The Alternating Fixpoint of Logic Programs with Negation.
Journal of Computer and System Sciences, 47(1):185-221, 1993.

[VGRS91] A. Van Gelder, K. Ross, and J. Schlipf. The Well-Founded Semantics for
General Logic Programs. Journal of the ACM, 38(3):620 — 650, July 1991.

This article was processed using the BTEX macro package with LLNCS class.

15

