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Referential actions are specialized triggers for automatically maintaining referential integrity in
databases. While the local effects of referential actions can be grasped easily, it is far from obvious
what the global semantics of a set of interacting referential actions should be. In particular, when
using procedural execution models, ambiguities due to the execution ordering can occur. No global,
declarative semantics of referential actions has yet been defined.

We show that the well-known logic programming semantics provide a natural global semantics
of referential actions that is based on their local characterization: To capture the global meaning
of a set RA of referential actions, we first define their abstract (but non-constructive) intended
semantics. Next, we formalize RA as a logic program Pry. The declarative, logic programming
semantics of Pr4 then provide the constructive, global semantics of the referential actions. So,
we do not define a semantics for referential actions, but we show that there exists a unique natu-
ral semantics if one is ready to accept (i) the intuitive local semantics of local referential actions,
(ii) the formalization of those and of the local “effect-propagating” rules, and (iii) the well-founded
or stable model semantics from logic programming as “reasonable” global semantics for local
rules.

We first focus on the subset of referential actions for deletions only. We prove the equivalence of
the logic programming semantics and the abstract semantics via a game-theoretic characterization,
which provides additional insight into the meaning of interacting referential actions. In this case
a unique maximal admissible solution exists, computable by a pTime algorithm.

Second, we investigate the general case—including modifications. We show that in this case
there can be multiple maximal admissible subsets and that all maximal admissible subsets can
be characterized as 3-valued stable models of Prs. We show that for a given set of user re-
quests, in the presence of referential actions of the form ON UPDATE CASCADE, the admissibility
check and the computation of the subsequent database state, and (for non-admissible updates) the
derivation of debugging hints all are in prime. Thus, full referential actions can be implemented
efficiently.
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1. INTRODUCTION

The notion of integrity constraints and their automated maintenance has been
an important research issue since the early days of relational databases [Codd
1970; Hammer and McLeod 1975; Eswaran 1976]. Integrity constraints in gen-
eral, and referential integrity constraints (rics) in particular, are central con-
cepts of database models and they are frequently used in real world applica-
tions. Many approaches use ECA (event-condition-action)-rules for monitoring
and enforcing integrity constraints: if some event (here, an update) occurs, a
set of actions is executed internally. Rules for integrity maintenance [Ceri and
Widom 1990] have been a starting point for the area of active databases and
their impact is documented by a recent 10-Year Paper Award [Ceri et al. 2000].
Triggers, a special kind of ECA-rules, have been part of database systems from
the beginning [Eswaran 1976] and are included in the SQL2 and SQL3 stan-
dards [ANSI/ISO 1992a, 1999]. However, even today, researchers still complain
about the difficulties in understanding the “subtle behavior” of multiple trig-
gers acting together [Ceri et al. 2000] and the limited progress that has been
made [Cochrane et al. 1996].

For enforcing referential integrity, each referential integrity constraint can
be associated with referential actions (racs) that provide a declarative, local
specification of how to automatically enforce referential integrity, thereby re-
lieving the user from the burden of enumerating all induced updates that arise
from an initial user request U.. While ECA-rules and triggers are procedu-
ral means to enforce integrity by locally reacting on an event, the idea be-
hind referential integrity and referential actions is a global one: the seman-
tics of referential actions is given declaratively in terms of local actions, but
with a global notion of “original state” (before the update) and “final state”
(after the update and all induced changes) in mind.

Date and Darwen [1994] and Date [1990] report the problem of unpredictable
behavior when realizing racs based on SQL triggers, that is, ambiguities in de-
termining the set of updates on the database and the final database state in
certain situations. The solution of the SQL2 standard [ANSI/ISO 1992a] (for
a more complete overview of related work, see Section 6) described a proce-
dural semantics that was subject to anomalies: since referential actions were
executed at the same time as the parent was updated, the outcome depends
on the order in which rows are modified or constraints are applied [Cochrane
et al. 1996]. Markowitz [1994] presents safeness conditions that aim at avoid-
ing ambiguities at the schema level. However, as shown in Reinert [1996], it is
in general undecidable whether a database schema with racs is ambiguous.

Horowitz [1992] proposes a marking algorithm in the style of a fixpoint
computation to define a global semantics that avoids these anomalies. An
extension of this semantics was later incorporated into the SQL3 standard
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[ANSI/ISO 1999]. Nevertheless, the global semantics is still—about 30 years
after the definition of the idea of referential integrity—given by a complex, not
very intuitive procedural algorithm, and only few commercial database systems
support referential actions in their full extent.

In contrast to the majority of the work on this topic, we present a framework
for maintenance of referential integrity based on logic rules. The user’s origi-
nal updates, together with the induced updates, yield a set of updates to the
database that must be applied instead of (only) the original updates. Thus, the
notions of “before” or “after” should be understood in a global, all-or-nothing
manner without considering intermediate states for defining the meaning of
updates.

The logic programming characterization given here demonstrates that the
problem of racs can be solved by specifying local behavior in manageable parts,
and exploiting the fact that the well-known logic programming semantics de-
fine an unambiguous, reasonable! global semantics of the “puzzle” that re-
sults from the interaction of multiple rics and racs. Moreover, this semantics
can be computed efficiently and thus can be implemented in actual database
systems. In contrast, the process of developing a procedural characterization
as has been done in ANSI/ISO [1992a]; Horowitz [1992]; Markowitz [1994];
Cochrane et al. [1996] and finally ANSI/ISO [1999] required about 20 years, in-
cluding intermediate solutions that have been proven to be incomplete and/or
incorrect.

The Problem. We consider the following problem: Given a database instance
D, a set of user-defined update requests U, and a set RA of racs, find the set
of updates A that (i) is complete with respect to U, (ii) preserves referential
integrity in the new database state D', and (iii) reflects the intended meaning
of RA, that is, how referential integrity should be enforced.

U. can be given as a single (set-oriented) statement, or as a sequence of
statements (including activated triggers) if such behavior is supported by the
underlying transaction model. In some examples we construct specific sets U,
in order to illustrate certain interferences. Sometimes, the updates in U, could
be induced via cascading from a single statement, sometimes not. Our investi-
gations not only provide the solution to a practically relevant problem, but also
address the basic research problem of interacting rics and racs—the search for
the above set A.

In case that no such A exists and U, is rejected, we investigate maximal
admissible subsets of U, and derive hints as to where the problems are located
and how they can possibly be solved. Assume that U, has been collected by
several statements (e.g., a subtransaction) that are intended to do a certain
amount of work. In case that it is rejected, something in the database (or its
specification) is obviously inconsistent with the intended behavior. This points
to problems in the design either of the database schema with its rics and racs,
or in the programming of the subtransaction, or the contents of the database in
the current situation is not as intended. Here, the additional information from

1Dix [1995] formally defines this notion using very general principles.
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the analysis of the rics and racs can be helpful for identifying the problem:

—the schema may be flawed, that is, there are missing racs (e.g., a forgotten
CASCADE, or a RESTRICT where a NO ACTION would have been correct),

—the definition of the subtransaction is incomplete (e.g., it should generate
some more update requests),

—the schema and the subtransaction are correct, but the database state is
incorrect due to an incomplete definition of an earlier transaction.

Our semantics can give useful hints about where exactly the problem is located,
that is, which rics are violated, and which tuples cause the problem.

Contributions. From a theoretical perspective, we aim at providing a better
understanding of referential actions: We formalize the semantics of referential
integrity constraints and referential actions as a logic program Pgs where

(1) the local behavior of an individual rac ra 2 RA is precisely specified, and
can be understood by solely looking at the corresponding rules P,, Pra,

(2) the (local) interaction between different update requests is precisely defined
by certain other rules,

(3) the global behavior is precisely specified and understandable from the
declarative logic programming semantics. So, we do not define a seman-
tics for racs, but we show that there exists a unique natural semantics if
one is ready to accept the local semantics (1) and (2), and the logic pro-
gramming semantics, that is, the well-founded model and the stable model
as “reasonable” semantics.

The logic-based characterization not only provides a natural semantics for ref-
erential actions, but also leads to efficient procedures for handling referential
actions in actual database systems.

From a practical perspective, we give polynomial time constructive charac-
terizations for the following tasks:

—checking if the set U,. is admissible, and

—in case that it is, computing the set of updates to be accomplished (implying
that ON UPDATE CASCADE which is currently not supported in most commercial
database systems can be implemented efficiently), and

—in case that it is not, giving hints what updates, rics, racs, and tuples caused
the problem.

The (complex) rule systems are not intended to be used by the designers of
the rics and racs; they encode the local semantic conditions that are naturally
induced by the application domain, and that the application designer has (cor-
rectly) in mind during the development process—so he implicitly relies on a
“correct” global semantics that is ensured by our characterization. The use of
the logic programming characterization in our approach is (i) in case of dele-
tions for deriving a procedural algorithm and proving its correctness, and (ii)
in case of modifications it can serve as a declarative internal implementation
of referential actions (we do not derive a procedural algorithm for this case
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as it would be excessively complex without providing any insight beyond the
logic programming semantics). In both cases, if U, is admissible, the database
silently executes it. Otherwise the problems are presented to the application
developer or the user in terms of tuples and foreign key constraints. Thus, the
user is not bothered with the actual formalization, presented here as a “black
box”—in the same way as he is not required to know about the details of the
algorithm given in Horowitz [1992] and ANSI/ISO [1999].

Audience. Thus, the audience is not the typical SQL application program-
mer from whose point of view the local effects of racs should be enough to
design an application, provided that the underlying DBMS assigns the cor-
rect global semantics to his specification. The relevance of our results for him
is the formal characterization of the “built-in” correctness of lifting his local
specification to the global behavior of the database system: A database that
acts according to the described global semantics implements the application
programmer’s intensions to the largest extent possible, based on his database
schema and referential actions. Then, the programmer can rely on the cor-
rect interaction of referential actions. In case that an application raises non-
admissible updates, something in this specification must be wrong, and the
database system—supported by the semantics—can give hints as to where the
problems come from. Thus, from the point of view of application programmers,
the possible features of an implementation (especially, the conclusions that are
drawn in case of rejected updates) based on our approach can be useful for
improving their database design.

For implementors of database systems, the presented algorithms and meth-
ods for computing the induced set A of internal updates could be of interest.
Moreover, the possibility of reacting on rejected updates by deriving hints for
the application designer as to how to cure the problems can be useful for pro-
viding enhanced error reporting messages to the user (see Sections 3.7 and 5).
The logical basis provided by three-valued logic and stable models facilitates
more flexible investigations than the procedural fixed-point algorithms that
are given in the SQL standards (and still only incompletely implemented by
database systems).

The theoretical body of the paper—the details of the logic-based specifica-
tions and the game-theoretic analysis that lead to a declarative, model-theoretic
characterization of the global semantics of referential actions—is directed at
researchers studying database fundamentals and theory. For this audience, the
paper provides (i) an elegant formal and “natural” (i.e., declarative) semantics
of referential actions, and (ii) an application of theoretical concepts to a prac-
tically relevant problem that exhibits several levels of complexity that have to
be handled by appropriate theoretical means.

Scope. Although our models and terminology are based on the relational
model, the underlying issues of a “justification-based,” declarative semantics
as proposed in this paper, are independent of the particular database model
chosen. For example, extensions to the (very limited) notion of referential in-
tegrity in XML (ID/IDREF) have been proposed [Fan and Siméon 2000], or are
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included as integral parts of new XML standards, like XML ScHema [2000]. It
should be clear that rule-based maintenance of referential integrity in XML
will face the same fundamental issues that are explained and resolved by our
global semantics.

Relationship with earlier publications. We provide a comprehensive and
uniform treatment of our previous work on declarative semantics for referen-
tial actions [Ludascher et al. 1997; Ludascher and May 1998]. First prelim-
inary results have been reported in Ludéascher et al. [1996b]. In Ludascher
et al. [1997], it is shown that for referential actions (racs) with modifications,
it may be intractable to compute all maximal admissible solutions (since the
interactions may lead to an exponential blow up in the number of solutions).
In Ludascher and May [1998], we restricted the investigation to racs without
modifications—deletions only. This guarantees the existence of a unique op-
timal solution, which can be efficiently computed. The present paper not only
provides a complete and uniform treatment of our previous results, but extends
them in various ways: We present a novel game-theoretic characterization of
racs that gives a more abstract account of referential actions for modifications
and shows that important aspects of this problem (admissibility of U., com-
putation the actual set of update operations, and deriving debugging hints)
are also in pTivME. Additionally, we explore the practical implications for actual
relational DBMS that result from the theoretical investigations.

Structure of the paper. The paper is organized as follows: In Section 2, we
introduce the basics of referential integrity. Then, we illustrate the problem
of ambiguity that arises from the local specification of referential actions, and
describe the disambiguation strategies of the SQL standard.

In Section 3, we investigate the class of racs without modifications (i.e., dele-
tions only). In Section 3.1, we identify and formalize desirable abstract prop-
erties of updates which lead to the intended (albeit non-constructive) global
semantics of racs. A constructive definition of this global semantics is ob-
tained by formalizing a set of referential actions RA as a logic program Pra
(Section 3.2). The correctness of this characterization is proven via an equiv-
alent game-theoretic characterization (Section 3.3) which allows intelligible
proofs on a less technical level (Section 3.4). An algorithm for computing the
maximal admissible solution is derived from the logic programming charac-
terization (Section 3.5). So far, Section 3 is based on and extends the previous
work [Ludéascher and May 1998]. The correctness of our characterization(s) and
of the derived algorithm with respect to the “intended” ECA-style semantics,
and the relationship with the SQL3 semantics is shown in Section 3.6. There,
we can completely rely on the correctness of the logic programming seman-
tics. The practical consequences of how to debug an application in case a set of
updates is rejected are described in Section 3.7.

In Section 4, we extend the investigations to include modifications. We again
start by giving an abstract characterization (Section 4.1). In Section 4.2 we
associate with every set RA of racs a logic program Pra whose rules capture
the local semantics of modifications with referential actions, and show that the
global declarative semantics of Pgs captures the abstract semantics, and thus
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solves the problem in an unambiguous and comprehensive way. In contrast to
the restricted deletions-only case, the characterization cannot be reformulated
in an efficient algorithm since stable model semantics is required for the logi-
cal characterization. Sections 4.1 and 4.2 provide a comprehensive treatment
of the results of the extended abstract [Ludascher et al. 1997]. An equivalent
game-theoretic characterization that abstracts from some details of the log-
ical characterization is described in Section 4.3. Its details and the proof of
the equivalence of all three characterizations can be found in Section B of the
electronic appendix.

Further results showing the practicability of our approach are developed
in Section 5: we show that the following tasks are computable in pTiME and
derivable from the well-founded model: (i) a check on whether a user request
is admissible, (ii) if so, computation of the subsequent database state, and (iii)
for non-admissible user requests, an approximation of a maximal admissible
subset, together with debugging hints. Section 6 reviews related work in the
area and concluding remarks can be found in Section 7.

2. REFERENTIAL INTEGRITY

2.1 Notation and Preliminaries

In the following, we introduce the necessary notions of the relational model and
calculus, which provide the basic formalism of our paper. We use a positional
and unnamed relational calculus/Datalog-style notation—unlike the relational
model with named attributes [Abiteboul et al. 1995]. In the unnamed Datalog-
style notation, each argument position of a predicate is (implicitely) associated
with an attribute. We follow this convention and regard attributes to be ordered
according to their argument positions. This is used when correlating foreign
keys with candidate keys.

Definition 2.1 Relational Schema, Keys. A relation schema R (&) consists
of a relation name R and a sequence of attributes AD(Ay, ..., A,). We iden-
tify attribute names A; of R with the integers 1, ..., n. Given 4, a (possibly
reordered) subsequence of & (e.g., a key) is a vector E D (4,,, ..., A;,) such that
k=nandi; Bij;, for j1 ® j,. Note that we have to allow that the attributes in
K may have a different order than in A.

A relation R consists of tuples: Tuples of R are denoted by first-order atoms
R(X) with an n-ary relation symbol R, and a vector X of variables or constants
from the underlying domain. To emphasize that such a vector is ground, that is,
comprises only constants, we write x instead of X . The projection of tuples X to
an attribute vector 4 is denoted by X [A]: for example, if x D (a, b, ¢), AD (1, 3),
then x[&] D (a, ¢).

For a relation schema R with attributes &, a minimal subset K of A whose
values uniquely identify each tuple in R is a candidate key. In general, the
database schema specifies which attribute vectors are keys. A candidate key
R .E has to satisfy the first-order formula @rey for every database instance D:

8X1, X» (R(X1)"R(X,)~X,[E]DX,[K] ¥ X,DX,). (©rey)
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Usually, in database design, for every relation one candidate key is selected
to be the primary key of the relation. Since the key values uniquely identify
a tuple of the corresponding parent relation, they can be used in other child
relations for referring to the parent tuple. The respective attributes of the child
relation are then called a foreign key of the child relation.

In this work, we assume that candidate and foreign keys do not contain null
values (considering null values would add much technical effort and problems
that are specific to null values, without giving additional insight).

Example 1 Primary Keys and Foreign Keys. Consider a database that de-
scribes countries and cities as depicted below. There, Name and Code are can-
didate keys of country (we chose Code to be the primary key). The attribute
tuple City(Name, Country) is the primary key of City; the attribute City.Country
references the key Country.Code and thus is a foreign key in City. Similar, Coun-
try(Capital, Code) references a city (identified by City(Name, Country)), thus the
attribute tuple (Capital, Code) is a foreign key of Country (note the change
of the order in the foreign key with respect to the original attribute list of
Country).

Country City
1:Name 2:.Code | 3:Capital | 4:Area 1:Name | 2:Country 3:Pop.
Germany D Berlin | 356910 Berlin D | 3472009
Austria A Vienna 83850 Munich D | 1244676
Utd. Kingdom GB London | 244820 Vienna A | 1583000
. . . . London GB | 6967500

Definition 2.2 Referential Integrity Constraints. A referential integrity
constraint (ric) is an expression of the form

Rc.EYRp K,

where .5E is a foreign key of the child relation R, referencing a candidate key
E of the parent relation Rp. Aric Rc.E ¥ Rp K is satisfied by a given database
D, if for every child tuple R¢(x) with foreign key values x[E], there exists a
tuple Rp(y) with matching key value, that is, x[E] D y[K]. Thus, for a database
instance D, a ric is satisfied if D D ¢,:

8X (Rc(X) ¥ 9Y (Rp(Y) ™ X[E]DY[E])). (@ric)
A ric is violated by D if it is not satisfied by D.

Example 2 Primary Keys and Foreign Keys (Cont'd). Consider again Ex-
ample 1. There, we have the rics City.Country ¥ Country.Code and Coun-
try.(Capital,Code) ¥ City.(Name,Country) or, in the numerical encoding, City.2
¥ Country.2 and Country.(3,2) ¥ City.(1,2).

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.
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Table I. Operations and Possible Repairs

| | Rp | Rc |
ins | del | mod | ins | del | mod
propagate | ok t t - ok
restrict ok T t T ok
wait ok t t T ok

ok =ric remains satisfied
t =ric may be violated, rac applicable
— =ric may be violated, rac not applicable

—+| —+| |

For example, changing the code GB into UK in Country would violate both
rics; this can be remedied by propagating the change, that is, applying the
same renaming in City. Changing the capital of Germany to Munich would be
allowed; changing it to Hamburg would violate the second ric (assuming that
Hamburg is not stored in the City table). This could be fixed by either insert-
ing a tuple for (Hamburg, Germany) into City, or by renaming, for example,
Berlin to Hamburg. This shows that propagation of a modification is not always
desired.

Definition 2.3 Updates. Update requests (updates) to a relation R are rep-
resented by auxiliary relations ins_R(X), del_R(X), and mod_R(M, X). Here,
M is a set of pairs i/c meaning that the i-th attribute of E(X) should be set to
the constant c¢. We say that a modification mod_R (M1, X') subsumes a modifica-
tion mod_R(M,, X) if M1 9] M,. As a shorthand for mod_R([1/d, 3/e], (a, b, ¢)),
we sometimes write mod_R(a/d, b, c/e).

2.2 Referential Actions

Rule-based approaches to referential integrity maintenance are attractive since
they describe how rics should be enforced using “local repairs”: Given a ric
Rc.E ¥ Rp.K and an update operation on Rp or R, a referential action (rac)
defines a local operation to be applied to R¢ or Rp, respectively. We call this
the locality principle. The problem with the locality principle is that the intu-
itive local repairs can lead to complex, “subtle behavior” [Ceri et al. 2000] with
different, more or less “reasonable” outcome. Thus, an unambiguous global
semantics for these local specifications is needed. As mentioned in the intro-
duction, such semantics have been developed in the history of SQL [ANSI/ISO
1992a; Horowitz 1992; Markowitz 1994; Cochrane et al. 1996] over the years,
including incomplete and incorrect intermediate solutions, now being specified
by a procedural, fixpoint-style algorithm in ANSI/ISO [1999]. In the sequel, we
start with a generic, abstract version of racs which is then related to the SQL
version in Section 2.4.

The updates insert, delete, and modify can be applied to Rp or R¢, leading to
six basic cases. It is easy to see from the logical implication in (¢,;.) above that
insert R p and delete R cannot introduce a referential integrity violation, while
the other four operations can. There are in general three possible strategies as
to how problems may be resolved; not all of them are applicable for all operations
(cf. Table I):
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—propagate: propagate (“cascade”) the update along the current ric by exe-
cuting actions on the other tuple. This means, to propagate an update at
the parent to all children (with respect to the current database state), or to
propagate an update at the child to the parent.

—restrict: reject an update if it may cause a problem: (i) reject an update on
the parent if there exists a child referencing the parent in the current (that
means, at the moment when the update is executed) database state, and (ii)
reject an update on the child if the referenced parent does not exist in the
current state.

—wait: no local action is executed. Instead, the referential integrity constraints
are checked—together with the other integrity constraints—after the end of
a certain unit of work (note that in contrast to propagate and restrict, this can
be seen as a kind of deferred restrict which is already a global strategy).

Each rac consists of the ric which should be maintained, the triggering up-
date on either the parent Rp or the child R¢, and the “local repair.” We use the
following notation, which should be self-explanatory:?

Rc.E 1 Rp. K on fdel jins j modgfparent j childg fpropagate j restrict j waitg

2.3 The Problem of Ambiguity

With this local specification of behavior where each rac triggers an action on
every child tuple (with respect to the respective ric) when an update to a parent
tuple is executed (see, e.g., Dayal [1988]; Eswaran [1976]), some nondetermin-
ism with respect to the outcome of a user operation may occur. If there are
different possible final states of a database instance D (depending on the exe-
cution order of referential actions), D is called ambiguous with respect to the
given referential actions.

There are several types of ambiguities leading to potentially different final
states that are described in the following. In Section 4.2.6, we show that these
ambiguities have a very natural and elegant representation in our framework:
“controversial” updates are undefined in the well-founded model; the different
possible results are characterized by certain stable models.

Example 3 Diamond. Consider the database with racs as depicted in
Figure 1. Solid arcs pointfrom R¢ to R p, racs are denoted by dashed (propagate)
or double (restrict) arcs. Let U, D f>del_R;(a)g be a user request to delete the
tuple R;(a). Depending on the order of execution of racs, one of two different
final states may be reached:

(1) If execution follows the path Ri~R3~ R4, the tuple R3(a,c) cannot be
deleted: Since Ry(a, b, c) references Rs(a, c), the rac for R, restricts the
deletion of R3(a, ¢). This in turn also blocks the deletion of R4(a). The user
request >del_R1(a) is rejected, and the database state remains unchanged,
that is, D'D D.

2As can be seen from Table I, not all combinations are meaningful: e.g., it is perfectly reasonable
to propagate (cascade) a modification from the parent to the referencing child, but not vice versa.
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Ry.1—R;.1 1. Rs.1—R;.1
on del parent propagate on del parent propagate
a |---
7 N
// e PR \\
112 |- 112 |-

a |b |- a

h 7
Rq.(1,2)—R2.(1,2) Ra.(1,3)—Ra.(1,2)
on del parent propagate 1 12 . on del parent restrict

Fig. 1. Database with referential actions.

(2) Ifexecution follows the path R1~ Ry~ R4, the tuples R(a, b) and R4(a, b, ¢)
are requested for deletion. Hence, the rac for R4.(1,3) ¥ R3.(1,2) can
assume that Ry4(a, b, ¢) is deleted, thus no referencing tuple exists in Ry,.
Therefore, all deletions can be executed, resulting in a new database state
D'®D.

In the above “diamond”, when choosing the “right” order of execution, the
update is possible, whereas when going the “wrong” way, it is impossible. The
reason is that the restrict action looks at the “current” database, and this de-
pends on the order of execution.

This type of ambiguity can be eliminated by specifying that restrictions are
always evaluated with respect to the original database state instead of the cur-
rent one (as it is done in SQL, see the following section). However, the situation
is more complex for racs of the type wait which have to look at the final database
state. As it turns out, in the presence of modifications, in general, there are still
several “equally justified” final states, each of which has to be considered:

Example 4 Mutex. Consider modifications >mod_R(a/b) and >mod_R
(a/c).® They are mutually exclusive, since they cannot be executed simulta-
neously. In our logical formalization, both will be undefined in the well-founded
model. Moreover, there will be two stable models, each of which makes one
modify request true, and the other false.

Another type of ambiguity may arise due to “self-attacking” requests:

Example 5 Self-Attack. Assume a database with racs (again a “diamond”
as in Example 3) such that >mod_R([1/b, 2/c](a, a)) triggers mod_R1([1/b], (a))
and mod_Rj([1/c], (@)); mod_R1([1/b], (a)) triggers mod_R3([1/6], (¢)), and
mod_R,([1/c], (a)) triggers mod_R3([1/c], (@)). Since the original request
>mod_R([1/b, 2/c], (a, a)) causes a conflict at R3, it cannot be executed. On
the other hand, no other request is in conflict with it, so there is no independent

3Here, (as the “I>" shows) the modifications come directly from an (already contradictory) user re-
quest. However, the Mutex scenario can also occur indirectly from a non-contradictory user request.
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justification not to execute it. Thus, the original request “attacks” itself. In our
formalization, there is no total stable model.

Example 6 Virgin Birth. This example shows that not every update which
does not violate any ric is also reasonable with respect to the intended
semantics:

Consider the following database schema: Rp(1) and R¢(1,2) with a ric
Rc.1 ¥ Rp.1 on del parent wait and a database instance Rp(a,b), Rp(d,e),
Rc(a, h). Suppose the user requests U, Df>del_Rp(a, b), >mod_Rp([1/a],
(d,e))g. Then, deletion of Rp(a, d) is blocked due to the tuple R¢(a, h).

On the other hand, one can argue that deleting Rp(a, b) is possible, since
after modifying Rp(d,e) to Rp(a, e), the child tuple R¢(a, k) gets a new parent,
sotheric Rc.1 ¥ Rp.1 remains satisfied.

Here, the semantical connection which is encoded in R¢.1 ¥ Rp.1 would be
broken: The child tuple R¢(a, k) gets a new parent although it is not modified,
and the new parent tuple Rp(a, e) “finds” a new child.

In this situation, U, D fi>del_Rp(a, b), >mod_Rp([1/a], (d, e))g is not feasible
according to our abstract semantics.

The underlying idea for treating this (and related) cases is based on the in-
tended semantics of a database and referential integrity: Each database can
be seen as a reference network (akin to the network database model), inducing
a reference graph. Thus, each set of updates also defines a mapping between
reference graphs. From the semantical point of view, references should only be
created when a child tuple is inserted or modified. Changes on parent tuples are
intended to either preserve references (by updating the child tuple accordingly)
or delete references.

The above examples showed that the local ECA-style characterization con-
sidered in Section 2.2 is ambiguous. This ambiguity is caused by considering the
current database state for applying referential actions. In the following section,
we describe the SQL specification of referential actions that solves this problem
on the specification level, but whose implementation aspects still suffered from
these problems as long as SQL’s trigger functionality was used.

2.4 Referential Actions in SQL and Global Disambiguation Strategies

In SQL [ANSI/ISO 1992a, 1999], referential actions for a referential integrity
constraint Rc.E ¥ Rp. K are specified with the definition of the child table.
SQL allows referential actions only for modifications at the parent tuple:

fCREATE j ALTERg TABLE R¢
(A
FOREIGN KEY F REFERENCES Rp K
[ON UPDATE fCASCADE j RESTRICT j SET NULL j SET DEFAULT j NO ACTIONg]
[ON DELETE fCASCADE j RESTRICT j SET NULL j SET DEFAULT j NO ACTIONg]
(A

Insertions and modifications on child tuples are handled in a straightfor-
ward way by rejecting updates which aim to generate a child tuple whose
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corresponding parent does not exist. In our work, we deliberately exclude
SET NULL/DEFAULT actions, since they are a special case of modifications.

In their abstract specification in SQL, these strategies correspond to the
abstract local strategies described in Section 2.2, solving the problems that
are caused by considering the current database state in our localized ECA-like
characterization:

—CASCADE is the same as our propagate and propagates the update from the
parent to the referencing tuples (evaluation is with respect to the original
database state).

—RESTRICT is similar to restrict, but refers to the database state before the
beginning of evaluation (instead of the current database state at the time
when the update actually occurs): reject an update on the parent if there
exists a child referencing it in the original database state,

—NO ACTION is the same as wait: no local action is executed. Instead, the ref-
erential integrity constraints are checked—together with the other integrity
constraints—after the end of a certain unit of work, thus, referring to the
database state after completing the updates.

Although this semantics is easy to understand on first sight, it is not a direct,
local semantics that can be implemented straightforwardly by ECA-rules or
triggers in the style of Dayal [1988] and Eswaran [1976]. Thus, its detailed
specification in the SQL standard and even more, its realization in actual data-
base systems has proven to be problematic.

Since the final state depends on the updates to be executed, and these may
in turn depend on the final state via NO ACTION, there is a (negative) cyclic
dependency in the global strategy. Thus, any straightforward implementation
via ECA-rules/triggers is bound to fail. On the other hand, logic programming
semantics provide a natural solution to this kind of problem and will be used
in Sections 3 and 4 for an unambiguous, elegant characterization of the global
semantics of racs.

The SQL2 standard [ANSI/ISO 1992a]—where RESTRICT did not yet exist—
used the “localized,” immediate specification for cascading updates: the for-
eign key values in all referencing tuples were immediately updated when
the parent was updated. Date and Darwen [1994] and Date [1990] already
report the problem of unpredictable behavior, that is, that the outcome de-
pends on the order in which tuples are updated. The same characterization
was given in the upcoming SQL3 drafts (e.g., the 1991 version [ANSI/ISO
1991] cited by Horowitz [1992] and ANSI/ISO [1994]). Concerning these spec-
ifications, Horowitz [1992] and Cochrane et al. [1996] complain about un-
predictable behavior since the outcome depends on the order in which rows
are modified or constraints are applied [Cochrane et al. 1996]. In Horowitz
[1992], a marking algorithm for a runtime execution model for referential in-
tegrity maintenance is presented for unary keys that does not exhibit these
problems.

Markowitz [1994] presents safeness conditions which aim at avoiding ambi-
guities at the schema level. However, as shown in Reinert [1996], it is in general
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undecidable whether a database schema with racs is ambiguous (if D and U,
are given, the problem becomes decidable).

This was the state-of-the-art when we started to investigate a logic-based
specification of referential actions in order to provide an unambiguous, natural,
and “correct” semantics that mirrors the SQL intension described above for
CASCADE, RESTRICT, and NO ACTION.

In the meantime, the SQL3 standard [ANSI/ISO 1999] solved the problem
of ambiguous semantics of racs by fixing an operational semantics using a
marking algorithm based on Horowitz [1992]:

—effectively perform integrity checking at the end of the statement [includes
NO ACTION],

—effectively determine and fix matching rows [concerning keys/foreign keys]
at the beginning of the statement [(“static matching™)],

—effectively determine update values at the beginning of the statement (in-
cludes marking tuples that will be deleted),

—rollback any attempt to update the same data item [in [Horowitz 1992], single
attributes] to representationally different values in the same statement,

—perform an update referential action iff the referenced column [Horowitz
[1992] was restricted to single-column keys] is updated to a representation-
ally different value,

—effectively perform all deletes at the end of the statement,

—perform a delete referential action if and only if the referenced row has not
already been marked for deletion.

Here, “effectively” means that this description specifies the intended semantics;
nevertheless, actual implementations can perform actions “on the fly"—if it is
guaranteed that this does not violate the above semantics. The actual specifi-
cation is given in terms of a complex encoding into BEFORE triggers whose inter-
actions are hard to understand. The algorithm associates a global semantics
with referential actions that will be shown to be equivalent to ours. Horowitz
[1992] proves correctness and termination of the algorithm.

Such a procedural specification in form of an algorithm deviates far from the
localized, ECA-style specification “ON event action” above, and gives no declar-
ative, easily accessible, semantics of referential actions. Our work shows that
the ECA-style specification has an immediate, declarative, “natural” global se-
mantics that is given by the logic programming meta-semantics of rule-based
specifications—and that the procedural semantics (developed over about 20
years) coincides with that semantics.

Moreover, in case a set of updates causes referential problems, the trans-
action is simply aborted. Often in these cases, most of the requested updates
are unproblematic, and only one or two are not allowed. Thus, it can be useful
to return hints on how to prepare a revised request that realizes the intended
changes and is accepted by the system, or for debugging the application. We
show how to derive such hints from our semantics, and we also sketch how it can
be used for deriving suggestions how to correct the behavior of an application
in that case.
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In Sections 3 (Deletions) and 4 (Modifications), we show how to characterize
and qualify the induced semantic problems using different (logical and game-
theoretic) characterizations of racs.

3. SEMANTICS OF REFERENTIAL ACTIONS WITH DELETIONS

We have shown that in order to avoid ambiguities and nondeterminism as in
Example 3, it is necessary to specify the intended global semantics of racs. In
this section, we investigate rics Rc.E ¥ Rp.E with corresponding racs of the
form

Rc.E ¥ Rp. K ONDELETE fCASCADEjRESTRICT jNO ACTIONg

according to the above global strategies in the SQL sense. For these we present
an efficient (pTivme) algorithm that computes the unique solution.

First, we define an abstract, non-constructive semantics that formalizes the
SQL notions described in Section 2.4. This semantics then serves as the basis for
a notion of correctness. Next, we show how to translate a set of racs into a logic
program, whose declarative semantics then provides a constructive definition.
An equivalent game-theoretic characterization is developed which will be used
to prove the correctness of the logic programming semantics with respect to the
abstract semantics.

3.1 Abstract Semantics

Let D be a database represented as a set of ground atoms, RA a set of racs,
and U, Dfrdel_R1(x1), ..., >del_R,(x,)y a set of (external) user delete requests
which are passed to the system. D and RA define three graphs DC (ON DELETE
CASCADE), DR (ON DELETE RESTRICT), and DA (ON DELETE NO ACTION) corre-
sponding to the different types of references:

DC :Df(Rc(x), Rp(y)2DED]|
Rc.E ¥ Rp K ON DELETE CASCADE 2 RA and x[E]D y[K]g,

DR and DN are defined analogously. D&~ denotes the reflexive transitive clo-
sure of DC. Note that the graphs describe potential interactions due to racs,
independent of the given user requests U...

Definition 3.1 Abstract Properties. Given RA, D, and U, as above, a set
A Dfdel_R1(x1), ...,del_R,(x,)g of delete requests is called

—founded, if for all del_.R(x)2 A, there is a >del_ R'(x")2U. s.t. (R(x),
R'(x") 2 D€ (note that here, we need reflexivity for covering R'(x") itself),

—complete, if del_Rp(y)2 A and (Rc(x), Rp(¥)) 2 DC implies del_R¢(x)2 A,

—feasible, if (i) (Rc(x), Rp(y)) 2 DR implies del_Rp(y) 2 A, and
(ii) del_Rp(y)2 A and (R¢(x), Rp(y)) 2 DN implies del_R¢(x)2 A,
—admissible, if it is founded, complete, and feasible.

(for individual updates, we also write “del_R(x) is admissible” instead of
“fdel_R (x)g is admissible”; analogous for “founded.”)
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Foundedness guarantees that all deletions are “justified” by some user request,
completeness guarantees that no cascading deletions are “forgotten” (see the
next lemma), and feasibility ensures that RESTRICT/NO ACTION racs are “obeyed.”

For given external updates, the induced internal updates are characterized
by the transitive closure of DC:

Definition 3.2 Induced Updates. For given RA, D,U,,andU U,
A(U) :D fdel_R(x) j thereis a>del_R'(y)2U s.t. (R(x), RY(y))2D¢e 7y
is called the set of induced updates of U.

Lemma 3.3 INDuceD UppATES. For given RA, D, U, and U U, A(U)is the
least set* A which contains the updates given by U and is complete.

Proor. D€ isthe reflexive, transitive closure of DC. Hence A(U) contains all
user requested updates and all cascaded updates (completeness) and nothing
else (least set). O

Definition 3.4 Admissibility and Application of U.. Let RA, D, and U, be
given. U U, is admissible if A(U) is admissible, and maximal admissible if
there is no other admissible U, such that U C U’ U,. For a set A of user
requests, D' D D 8§ A denotes the database obtained by applying A to D.

This definition provides a precise and elegant characterization of the intended
semantics. However, it is non-constructive in the sense that it does not lend
itself to a computation of the intended semantics.

From the above fundamental definitions, we derive the following:

ProprosiTioNn 3.5 CORRECTNESS.

a)IfU U., then A(U) is founded and complete.
b) If A is complete and feasible, then D' :D D 8§ A(U) satisfies all rics.
Proor. a) A(U) is defined as the least complete set. Since U U, A(U) is
founded.
b) Completeness guarantees that all rics labeled with ON DELETE CASCADE

in RA are satisfied, feasibility guarantees that all rics labeled with
ON DELETE RESTRICT/NO ACTION are satisfied. O

ProprosiTioN 3.6 UNIQuENEss. For given RA, D, and U,

(i) if Uy, U, U, are admissible, then Uy [ U, is also admissible,
(i) thus, there is exactly one maximal admissible Upnax U..

Proor. (i) is obvious. (ii) follows from (i) together with the fact that ; is al-
ways admissible. Thus, the union of all admissible subsets of U, yields Unax. O

Note that for an admissible set U, not necessarily each subset is also admissible
(there can be updates that “need” each other to be feasible).

4i.e., there is no proper subset that satiesfies the required properties, and it is the only minimal
set.
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3.2 Logic Programming Characterization

We show how a set RA of racs can be translated into a logic program Pga whose
rules specify their local behavior. The advantage of this logical formalization is
that the declarative semantics of P4 defines a precise global semantics. More-
over, by choosing an appropriate evaluation strategy, this logical specification
can be executed as well, yielding the desired constructive semantics.

Unblocked requests. The following rule derives for every user request
>del_R(x)2U. an internal delete request req._del_R(x), provided there is no
blocking blk_del_R (x).

req.del_R(X) — rdel_R(X), R(X), = blk_del_R(X). ()

Referential actions. Each referential action is specified by an appropriate
rule:

—Rc.E ¥ Rp.JE ON DELETE CASCADE is encoded into two rules: the first one
propagates internal delete requests downwards from the parent to the child:

req_del_Rc(X) ™ req.del_Rp(Y), Rc(X), X[E]DY[E]. (DCy)
Additionally, blockings are propagated upwards, that is, when the deletion
of a child is blocked, the deletion of the referenced parent is also blocked:
blk_del_Rp(Y) ™ Rp(Y), blkdel_R¢(X), X[E]DY[K]. (DC>)
Note that the atom Rp(f') can be added to the body of (DC,;), and Rc()_() can
be added to the body of (DC,), but are redundant since delete requests and
blockings are only derived for tuples that actually exist.
—Rc.E ¥ Rp K ON DELETE RESTRICT blocks the deletion of a parent tuple if
there is a corresponding child tuple:
blk_del_Rp(Y) ™ Rp(Y), Rc(X), X[E1DY [K]. (DR)
—R¢.E ¥ Rp K ON DELETE NO ACTION blocks the deletion of a parent tuple if
there is a corresponding child tuple that is not requested for deletion:
blk_del_Rp(Y) ™ Rp(Y), Rc(X), :req.del_Rc(X), X[E1DY[EK]. (DN)

Note that (i) the local semantics of each individual rac is precisely specified by
one or two logic rules, and (ii) Pr4 is in general not stratified due to the negative

cyclic dependency req-del ~~ blk_del ~~ req.del. Therefore, the global semantics
is not necessarily unique. We first consider a “skeptical” global semantics: the
unique well-founded model of the generated logic program. The more “brave”
stable models are considered in Section 3.4.2.

First, we add two rules that define an auxiliary relation pot_del, which con-
tains all tuples that are potentially deleted when executing U, and cascading
deletions. This relation is not used for checking the admissibility of U, but,
as shown in Section 3.7, is useful to locate the problems in case U. is not
admissible:

pot_del_R(X) ™ del_R(X), R(X).
for each R¢.F ¥ Rp. K ON DELETE CASCADE (analogous to (DCy)): (P)
pot_del_R¢(X) ™ pot.del_.Rp(Y), Rc(X), X[F]DY[E].
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(note that the atom pot_del_R p(f’) can be added to the body of (DC5), (DR), and
(DN) as an optimization.)
We have the following simple lemma:

Lemma 3.7. Given a database D and a set of user requests U, for the mini-
mal model M :D M(fPg, D, U.) of rule (P) alone,

U o :Dfdel_R(x) j M(pot_del_R (x)) D trueg
D fdel R ()  there is a >del.R'(x") 2 U. and (R(x), R'(x")) 2D 4D A(U..)

contains exactly the deletions that are obtained when cascading all deletions
inU..

Well-Founded Semantics. The well-founded model [Van Gelder et al. 1991]
is widely accepted as a (skeptical) declarative semantics for logic programs
containing negation. Given a database D and a set of user requests U., the
well-founded model W :D W(Pra, D, U.) assigns truth-values true and false to
all uncontroversial update requests—those that are true or false under any rea-
sonable semantics of Pra [Dix 1995]. W assigns a third truth value undefined
to atoms whose truth cannot be determined using a “well-founded” argumen-
tation. The atoms that are undefined in W are controversial due to some kind
of ambiguity (cf. Section 2.3). In Section 3.4.1, we will prove the following:

THeOREM 3.8 CORRECTNESS.
The logic programming characterization is correct with respect to the abstract

semantics (for an atom at, Let W(at) denote the value of at in the model VW :D
W(PRAI D! U\>)):

—U; :.Df>del R(x)2U, j W( req-del_R (x)) D trueg and

U;. D fdel R(x)2U, j W( req_del_R(x)) 2 firue, undef 93 are admissible,
—U; ., DUmax, and
—A(Umax) D A(U; ) D del_R(x) j W( reg_del_R (x)) 2 ftrue, undef gg.

CoroLLARY 3.9. In case that U. is admissible, we have U. D Unmax and
Uyt DA(UL).

Often, even if not all requested updates can be accomplished, a subset of them
is admissible. Thus, the information as to which tuple or update really causes
problems is valuable for preparing a refined update that realizes the intended
changes and is acceptable. In Section 3.7, we will systematically investigate
the information that is available in case U, is not admissible.

Example 7. Consider the database depicted in Figure 2 (ignoring R, for
now) and the user request U, D fi>del_R;(a), >del_R1(b)g. Here, del_R,(d) is
not admissible since it is blocked by Rs(b). The other request, del_R;(a), can
be executed without violating any ric by deleting R;(a), R2(a, x), R3(a, y), and
R4(av X, y)

The well-founded semantics reflects the different status of the single updates:

Given the user request U, D fr-del_R;(a)g, the delete requests req-del for
Ri(a), R2(a, x), R3(a, ), R4(a, x, ), as well as the blockings blk_del for Ri(a)
and R3z(a, y) will be undefined in the well-founded model.
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Fig. 2. Extended database with modified racs.

For the user request U, D f-del_R(b)g, blk_del is ¢rue for R1(b) due to the
referencing tuple Rs5(b). Thus, req-del_R;(d) is false, and del_R,(b) is not ad-
missible; hence there are no cascaded delete requests. Due to the referencing
tuple R4(b, x, ), which cannot be deleted in this case, blk_del_R3(b, y) is also
true.

Note that the extended set U! D fi>del_Ri(a), >del_R1(b), >del_Rs(b)g is a
candidate for a refined request which accomplishes the deletion of R1(a) and
R(b).

W contains some ambiguities that can be interpreted constructively as de-
grees of freedom: The blockings and deletions induced by U. D fdel_R;(a)g
in Example 7 are undefined due to the dependency req_del ~~ blk_del ~~ req_del.
This may be used to define different global policies by giving priority either to
deletions or blockings, as will be done in Section 3.4.2.

3.3 Game-Theoretic Characterization

The following game-theoretic formalization provides an elegant characteriza-
tion of racs which yields additional insight into the well-founded model of Pra
and the intuitive meaning of racs.

The game is played with a pebble by two players, I (the “Deleter”) and I
(the “Spoiler”), who argue whether a tuple may be deleted. The players move
alternately in rounds; each round consists of two moves. A player who cannot
move loses. The set of positions of the game is D [ U, [ frestrictedg. The possible
moves of I and II are defined below. Note that T moves from D to U., while IT
moves from U, to D [ frestrictedy. Initially, the pebble is placed on some tuple in
D (or U,) and I (or II) starts to move. If IT begins, the first round only consists
of the move by II.
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Fig. 3. Possible Moves.

The possible moves are illustrated in Figure 3: By moving the pebble from
R(x) 2 D to some >del_R(x") 2 U, which cascades down to R(x), I claims that
the deletion of R(x) is “justified” (i.e., founded) by >del_R'(x"). Conversely, I
claims by her moves that del_R'(x") is not feasible. II can use two different
arguments: Assume that the deletion of R'(x") cascades down to some tuple
Rp(xp). First, if the deletion of Rp(xp) is restricted by a referencing child tuple
Rc(xc), then I may force I into a lost position by moving to restricted (since I
cannot move from there). Second, assume that the deletion of R'(x") cascades
down to some other tuple R%(x%). Then, I can move to a child tuple R%(x%),
which references R%(x%) with a NO ACTION rac. With this move, II claims that
this reference to R%(x%) will remain in the database, so R%(x%) and, as a con-
sequence, R'(x") cannot be deleted. In this case, I may start a new round of
the game by finding a justification to delete the referencing child R%(x%). More
precisely:

Player I can move from R (x) to >del_R'(x") 2 U, if (R (x), R'(x"))2 D¢
Player II can move from >del_R'(x?)

* to restricted if there are Rp(xp) and Rc¢(xc) such that (Rp(xp), R'(x")2DE”
and (Rc(xc), Rp(p)) 2 DR.

. to RL@&L), if (RL(%), R'(x") 2D and (RL(xL), Rb(x})) 2 DA

LemmA 3.10 CrLAaivs oF I AND II.

(1) If Ican move from R(x) to >del_R'(x"), then deletion of R"(x") is founded by
U. and induces the deletion of R(x).

(2) If II can move from >del_R(x) to restricted, then deletion of R(x) is not
feasible due to the existence of a referencing tuple.

(3) If IT can move from >del_R(x) to R'(x"), then deletion of R(x) is admissible
only if R"(x") is also deleted.

Proor. (1) The move of I implies that (R(x), R'(x") 2 D¢".
The move of II means that either

(2) there are Rp(xp), Rc(xc) such that (Rp(xp), R(x))2D¢” and (Rc(xc),
Rp(xp)) 2 DR. Then, deletion of R(x) induces the deletion of Rp(xp), but
the deletion of Rp(xp) is restricted by R¢(x¢), or
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(3) (RL(x}), R(x))2 DN -DE, that is, there is a R%(x%) such that (R%(x%),
R(x))2D¢” and (R%(x%), R (x%)) 2 DN Hence, by (1), deletion of R(x) in-
duces deletion of R% (x%), which is only allowed if R%(x%) is also deleted.® O

Lemma 3.11. The moves are correlated with the logical specification as
follows:

—The moves of I correspond to rule (DCy): I can move from R (x) to >del_R"(x")
if, given the fact req.del_R'(x"), req.del_R(x) can be derived using (DC1).

—The moves by IT are reflected by the rules (DC,) and (DR)/(DN):

— IT can move from 1>del_R(x) to restricted if blk_del_R(x) is derivable using
(DR) and (DC5) only, or

—II can move from >del_R(x) to Ri(xL) if blk_del R (x) is derivable using (DC?)
and an instance of (DN) if req.del R (xL) is assumed to be false.

—The negative dependencies in (1), req.del~ :blk_del, and (DN), blk_del~~
zreq_del, mirror the alternation of moves between I and II, respectively.

Definition 3.12. A position R(x)2 D is won (for I), if I can win the game
starting from R (x) no matter how IT moves. If p is won (lost) for a player, p is
lost (won) for the opponent. A position which is neither lost nor won is drawn. In
the sequel, “is won/lost” stands for “is won/lost for I.” An update >del_R(x) 2 U,
is won if R(x)2 D is won.

Drawn positions can be viewed as ambiguous situations. For the game above,
this means that neither can I prove in finitely many moves that R(x) has to be
deleted, nor can II prove that it is infeasible to delete R (x).

Example 8. Consider again Figure 2 with U, D fi>del_Ri(a), >del_R1(b)g.
From each of the “a”-tuples Ri(a), R2(a, x), R3(a, y), R4(a, x, ¥), I can move
to >del_R;(a), while IT can move from >del_R;(a) to R4(a, x, ). Thus, after I
has started the game moving to >del_R;(a), IT will answer with the move to
Ry(a, x, ), so I moves back to >del_R;(a) again, and so forth. Hence the game
is drawn for each of the “a”-tuples.

In contrast, for the “b”-tuples, there is an additional move from >del_R(b)
to R5(d) for I, who now has a winning strategy: by moving to Rs5(b), there is no
possible answer for I, so I loses.

THeOREM 3.13 GAME SEMANTICS. For every tuple R(x)2 D:

—R(x) is lost , it is not possible with the given set of user delete requests to
delete R(x) without violating a ric.

—R(x) is won or drawn , simultaneous execution of all user delete requests
>del_R'(x") that are won or drawn does not violate any ric and deletes R(x).

Proor. Note that if R(x) is won or drawn, then there is no R¢(x¢) 2 D such
that (R¢(xc), R(x)) 2 DR (otherwise, if I moves from R (x) to some >del_R;(xq),
II moves to restricted since (Rc(x¢), Rq(x4)) 2 DR -DE  and wins). Thus, no ric
of the form ON DELETE RESTRICT is violated when deleting a won or drawn tuple.

SDN =D :Df(x, y)j9 : (x,2)2DN and (z, y) 2 DET.
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“»”: A tuple R(x) is lost in n rounds if either

—(nDO0) there is no user request >del_R;(xy) such that (R(x), Rq(xq)) 2 D€,
i.e., the deletion of R(x) is unfounded, or

—(n > 0) for every user request >del_Ry(xg) such that (R(x), Rq(xq)) 2 D¢E",
>del_Rg(xq) is lostin < n rounds, that is, either II can move from >del_R; (x4)
to restricted (in this case, by Lemma 3.10(2), >del_R; (x4 ) is not feasible), or
there is some tuple R'(x") such as I can move from ~del_R;(x4) to R'(x") and
which is lost in = n j 1 rounds. By induction hypothesis, R'(x") cannot be
deleted, but by Lemma 3.10(3), it must be deleted if R(x) is deleted. Thus,
R(x) cannot be deleted.

“: If R(x) cannot be deleted without violating a ric, then either,

—deletion of R(x) is unfounded—therefore it is lost immediately since I cannot
move,

—or deletion of R(x) is founded, but none of its founding user delete requests
del_R'(x) is executable. This can be either due to a D&” - DR chain to a tuple
R{(xL)—then >del_R'(x’) is lost in one round since II moves to restricted—
or due to a D€ - DA chain to a tuple RL(x%) that must be deleted, but
cannot. Then, I can move there and will win (the detailed proof would argue
with induction over the length of the proof why >del_R'(x’) is not executable,
analogous to the proof of “) ™).

—The second statement follows from the first by contraposition. O

The correspondence between the game semantics and the abstract semantics
yields the following:

CoroLLARY 3.14 CorrRecTNEss. The game-theoretic characterization is cor-
rect with respect to the abstract semantics:

—Uy, Dfu2U, juiswongand U, 4 :D fu2U, ju is won or drawng are ad-
missible,

—VYuwd D Umax,
—A(Uy,)Dfdel.R(x) j R(x) is wong and A(Umax) D A(Uy 4) Dfdel_R(x) j R(x) is
won or drawnyg.

3.4 Equivalence and Correctness

We show that the logical characterization is equivalent to the game-theoretic
one. Thus, the correctness of the logical characterization reduces to the correct-
ness of the game-theoretic one proven above.

3.4.1 Well-Founded Semantics. The alternating fixpoint computation
(AFP) is a method for computing the well-founded model based on successive
rounds [Van Gelder 1993]. This characterization finally leads to an algorithm for
determining the maximal admissible subset of a given set U, of user requests.
We introduce the AFP by using Statelog, a state-oriented extension of Data-
log which allows the integration of active and deductive rules Ludascher et al.
[1996a]; Ludascher [1998]. It can be seen as a restricted class of logic programs
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where every intensional predicate contains an additional distinguished argu-
ment for state terms of the form [S Ck]. EDB predicates and built-in predicates
are state-independent. Here, S is the distinguished state variable ranging over
INo. Statelog rules are of the form

[S Ckol H(X) — [S Cki] Bi(X1),...,[S Cky] Bu(X,),

where the head H(X) is an atom, B;(X;) are atoms or negated atoms, and
ko , ki, forall:2f1,...,ng. Aruleislocal if ko DE; foralli 2f1, ..., ng.

In Statelog, the AFP is obtained by attaching state terms to the program P
such that all positive IDB literals refer to [S C 1] and all negative IDB literals
refer to [S]. The resulting program Psrp computes the alternating fixpoint of
P:

[S C1] req.del.R(X) ™ del_.R(X), R(X), [S] : blk_del_R(X). (I4)
% Rc.E U Rp KON DELETE CASCADE : ) .
[SC1]reqdel_Rc(X) — Re(X), )g[ﬁ] le[lE], [SC1]req.del_Rp(Y). (DC
[SC1] bk del Rp(Y) ™ Rp(Y), X[E]DY[K], [SC1]blkdel Rc(X). (DC3)
% Rc.E ¥ RP.IEUN_DELETERE.gTRICT: o )

[SC1] blkdel.Rp(Y) ™ Rp(Y), Re(X), X[E]DY[E]. (DR4)
% Rc.E W Rp KON DELETE NOACTION: ) (DN4)
[SC1] blkdel_Rp(Y) ™ Rp(Y), Rc(X), X[E]1DY[K], [S] zreq_del_R¢(X).
Papp is locally stratified, thus there is a unique perfect model [Przymusinski
1988] Magp of Pagp [ D [ U.. Mapp mimics the alternating fixpoint compu-
tation of W: even-numbered states [2n] correspond to the increasing sequence
of underestimates of true atoms, while odd-numbered states [2n C 1] represent
the decreasing sequence of overestimates of true or undefined atoms. The final

state n ¢ of the computation is reached if M[2n ] D M[2n C 2]. Then, the truth
value of atoms A in W can be determined from Mugp as follows:

true if MappD[2n/] A,
W(A) D < undef if MarpD[2ns] zA ™ [2ny C1] A,
false if MarpPD[2n, C1] A
THeOREM 3.15 EqQuIvALENCE. The well-founded model is equivalent to the
game-theoretic characterization:

—R(x)iswon , W(reqg.del_R(x))D true.
—R(x)islost , W(req.del_R(x))D false.
—R(x) is drawn , W(req_del_R(x))D undefined.

Proor. The proof is based on a lemma which follows from the corre-
spondence between moves and reference chains that has been established in
Lemma 3.11 (using the same argumentation as in the proof of Theorem 3.13):

Lemma 3.16.

—R(x) is won (for I) within = n rounds iff Marp D[2n] reg.del_R(x).
—R(x) is lost within < n rounds iff Mapp D[2n C 1] = reqg.del_R(x).
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From this, Theorem 3.15 follows immediately: The nth overestimate excludes
deletions provably non-admissible in n rounds, whereas the nth underestimate
contains all deletions which can be proven in n rounds. Thus, there is an n such
that Mapp D [2n] req.del_R(x) iff Wga(req-del_R(x)) D true, and there is an n
such that Mapp D [2n C 1] -req_del_R (x) iff W( req_del_R(x)) D false.

A position R(x) is drawn if for every user request ~del_R'(x’) that I uses for
deleting it, IT can find a witness against >del_R'(x"), and conversely, I claims to
be able to delete the witness. Thus, no player has a “well-founded” proof for or
against deleting those tuples (caused by NO ACTION links that introduce cycles
into the argumentation). O

From Corollary 3.14 and Theorem 3.15, the correctness of the logic program-
ming formalization (and thus the proof of Theorem 3.8) follows. In the fol-
lowing section, it is shown that the maximal admissible subset Unax U, (by
Theorem 3.8, Unax D Uy,,,) also corresponds to a total (i.e., not involving atoms
with an undefined truth value) semantics of P.

3.4.2 Stable Models. The undefined atoms in the well-founded model leave
some scope for further interpretation. This “freedom of choice” can often be used
to obtain alternative solutions, given by stable models:

Definition 3.17 Stable Model [Gelfond and Lifschitz 1988]. Let M p denote
the minimal model of a positive program P. Given a ground-instantiated pro-
gram P and an interpretation I of the atoms of P, P /I denotes the reduction of
P with respect to I—the program obtained by replacing every negative literal
of P by its truth-value with respect to I. An interpretation I is a stable model
if Mp,yDI.

Every stable model S extends the well-founded model W with respect to true
and false atoms: S«e g Wirue  Sfalse qrypfalse However, not every program has a
two-valued stable model (e.g., the “self attack” in Example 5).

THEOREM 3.18. Let Spa be defined by

Sra :D D [ U, [ freq_del_R(x) j W( req_del_R (x)) 2 ftrue, undef gg
[ folk_del_R(x) j W( blk_del_R (x)) D trueg .

Then, Sgra is a total stable model of Pra [ D [ U..

Sra is the “maximal” stable model in the sense that it contains all delete re-
quests that are true in some stable model. Consequently, deletions have priority
over blockings (cf. Example 7). For the diamond example, there are two stable
models:

Example 9 Diamond—Stable Models. Consider Example 3 and the “dia-
mond” in Figure 1. Assume the rac R4.(1,3) ¥ R3.(1,2) ON DELETE RESTRICT
to be replaced by R4.(1,3) ¥ R3.(1,2) ON DELETE NO ACTION. From the rules of
Pry4 it can be derived that the deletion of R(a) is blocked (via R4~ Rz~ R;)
if R4(a, b, c) cannot be deleted. R4(a, b, ¢) can be deleted (via R; ~ Ry ~ Ry) if
the deletion of R;(a) is not blocked. Hence there is a negative cycle of the form
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fblock ~— zexec, exec ~ :blockg. Setting all requests in the diamond to true
(as done in Sgya) or all to false results each in a stable model.

THEOREM 3.19 CORRECTNESS.

—Let S be a stable model of Pra [ D [ U.. Then Us :D f>delR(x)2
U.jSD req.delR(x)y is admissible and A(Us)D As:Dfdel R(x)jSD
reqg_del_R(x)q.

Proor. Foundedness: follows directly from the fact that S is stable (an un-
founded req_del_R(x) would not be stable).

Completeness: For every ric Rc.E ¥ Rp K ON DELETE CASCADE, if SD R¢(x) ™
req.del_Rp(y) ™ x[E]D y[K], then, due to (DC;), SD Mp,s D req.del Rc(x).

Feasibility: Suppose a ric Rc.FE ® Rp.E ON DELETE RESTRICT or R¢.E ¥
Rp.K ON DELETE NO ACTION would be violated—Then SJD req.del_.Rp(y)
~Re(x) N x[F]1D y[K] (for NO ACTION also SD :zreg.del_R¢(x)), and thus be-
cause of (DR) or (DN), respectively, SDMp,sD blkdel_.Rp(y). Thus, by
(DC5), for the founding delete request del_R(z), SD blk_del_R(z), and by (I),
S D :req_del_R(z), which is a contradiction to the assumption that del_R(z)
is the founding delete request. As A(Us) follows from foundedness, and
As T A(Ug) follows from completeness. O

3.5 A Procedural Translation

The declarative semantics of the well-founded model is translated into a more
“algorithmic” implementation in Statelog by “cutting” the cyclic dependency at
one of the possible points—at the rules (I) and (DN) (cf. the AFP characteriza-
tion). From Theorem 3.15 and Corollary 3.14, the undefined deletions (which
are drawn in the game-theoretic characterization) are also admissible (Theo-
rem 3.19). Cutting in (DN) implements the definition of Sga (giving priority
to deletions over blockings), corresponding to the observation that Sgs takes
exactly the blockings from the underestimate and the internal delete requests
from the overestimate.

The rules (DC,), (DC5), and (DR) are already local rules:

[S] req.del Re(X) ™ Rc(X), X[E]DY[K], [S] req.del Rp(Y).  (DCY)
[S] blk.del Rp(Y) ™ Rp(Y), X[E]DY[K], [S] bk del Rc(X). (DC5)

[S] blk.del_Rp(Y) ™ Rp(Y), Re(X), X[E]DY [E]. (DR®)
The rule (1) is also translated into a local rule:
[S] req.del_R(X) ™ >del_.R(X), R(X), [S] = blk_del_.R(X). (I5)

(DN) incorporates the state leap and is augmented to a progressive rule (DNS ):
[SC1] blkdel.Rp(Y) ™ Rp(Y), Re(X), X[E]DY[E], [S] :req.-del_R¢(X).

In the following, we refer to this program as Psg.
Ps is state-stratified, which implies that it is locally stratified, so there
is a unique perfect model Mg of Ps [ D [ U.. The state-stratification
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folk_del_Rg ~ freqg_del_Rg, mirrors the stages of the algorithm: First, only block-
ings resulting from ON DELETE RESTRICT racs are considered (local rules (DRS)
and (DC3))). Based on these, the first maximal overestimate of internal delete
requests is computed by (I°) and (DCf). Then, the blockings resulting from oN
DELETE NO ACTION racs whose child nodes are not deleted (by (DNS), the only
progressive rule; it does not derive anything for the initial state) are derived in
the step to the subsequent state. (DRS) contributes the blockings resulting from
ON DELETE RESTRICT racs. Again, the induced blockings are derived by (DCY).
The second stratum, consisting of (I5) and (DC?) determines the remaining
non-blocked user delete requests and its induced delete requests. Then, the
next iteration is started, calculating a decreasing sequence of overestimates
which leads to Sga.

LEmMmA 3.20. Mapp corresponds to Mg as follows:

1. MuppP[2n] blkdelR(x) , MsD[n] blk.delR(x).
2. MarpD[2nC1] req.del R(x) , MsD[n] req.del R(x).

Proor. Pg and Pagp differ in the rules (I°) and (I4): In every iteration, Pg
takes the blockings from the latest underestimate, and the delete request from
the latest overestimate, resulting in Sga. O

THEOREM 3.21 TERMINATION. For every database D and every set U, of user
delete requests, the program reaches a fixpoint, that is, thereis a least ny = jU.j,
such that Mg[nr]D Mg[ny C 1].

Proor. A fixpoint is reached if the set of blocked user delete requests
becomes stationary. Since this set is nondecreasing, there are at most jU.j
iterations. O

The correctness of Pg follows from Lemma 3.20 and Theorem 3.18:

THeorem 3.22 CorrecTNEss.  The final state of Ms, Mg[ny], represents Umax
and A(Umax):

—Mg[nr]D Sga,
—UmaxDf>del R(x)2U, j Mg[ns]1D req_del_R(x)y, and
—A(Umax) Dfdel_R(x) j Ms[ns]D req-del_R(x)g.

3.5.1 Implementation in a Procedural Programming Language. The
Statelog formalization Pgs above is translated into the algorithm given in
Figure 4. Initially, it is assumed that there are only those blockings which re-
sult directly from ON DELETE RESTRICT racs. Then, blockings are propagated up-
wards along the ON DELETE CASCADE chains, finally blocking the triggering user
requests. For the remaining unblocked user requests, the cascaded requests
are recomputed. Thus, some more tuples will remain in the database, which
can block other requests. In the next step, all blockings are computed that are
caused by ON DELETE NO ACTION racs from tuples that are not reachable via cas-
caded deletions. These steps are repeated until a fixpoint is reached. Observe
that each iteration corresponds to the evaluation of a query with pTime data
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Input: A consistent database D and a set Uy of user delete requests.
B := {all blockings which result from ON DELETE RESTRICT racs}.

v
1.  (Re)Compute the set of induced blockings B*
that result from B by propagating blockings up-

1

3. Add to B all blockings that are issued by ON
DELETE NO ACTION racs from tuples not in U*,
(that are not requested for deletion).

v

Tuples in B\ B*?

No l Uv* = A(Umax)
| Execute requests from U™.

\

nd the Output: The new consistent database after executing Umax a
sets Umax of committed and Us \ Umax of aborted user requests

Fig. 4. Algorithm for executing all admissible deletions.

complexity. Since the fixpoint is reached after at most jU..j iterations (Theorem
3.21), the overall algorithm also has polynomial data complexity.

THeoreM 3.23.  The algorithm in Figure 4 is correct:
—Unmax Df>del R(x)2U. j req.del.R(x) 27y, and A(Umax) DU

Proor. In the nth iteration, B D folk_del_R(x) j Mg D [n] blk_del_R (x)g,
and "Dfdel_R(x) j Ms D [n] reqdel_.R(x)y. O

For given D, U., and RA, the algorithm in Figure 4 computes the maximal
subset Unax of U, that can be executed without violating any ric, and the set
A(Unmax) of “internal deletions” that are induced by it. For cases when U, is not
admissible, troubleshooting is described in Section 3.7.

3.6 Relationship with the SQL Semantics

The SQL semantics as presented in Horowitz [1992] and specified in the SQL3

standard [ANSI/ISO 1999] (see also Section 2.4) coincides with ours:

—matching rows (i.e., Rc.E(x) and Rp.K(y)) are selected with respect to the
original database state,
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—the tuples to be deleted are fixed with respect to the original state, RESTRICT
is also evaluated with respect to the original state,

—NOACTION is evaluated against the (prospective) result.
—an update referential action is executed whenever the parent is updated.
—effectively, A is applied after the computation is completed.

In the logic programming characterization, these “correctness” requirements
are directly encoded into the rules (each individual rule corresponding to a
single ric with rac), thus the application of the logic programming seman-
tics cannot destroy them (provided one accepts the declarative logic pro-
gramming semantics). Thus, a correctness proof with respect to the intended
semantics—except that the specification of the individual rules is correct—is
redundant.

Moreover, if a set of updates causes referential problems, the SQL semantics
simply rejects the updates. Roughly speaking, it corresponds to the (P) rules
and a simple RESTRICT test, and then checks the NO ACTION rics. In case of a
rejection, it is hard to find which update caused the problem. Since the SQL
semantics has no notion of the semantics of the racs, it cannot return useful
details to the user as to how to prepare a revised request, or for debugging the
application. Next, we show how the logic-based semantics directly incorporates
this information, and how it can be used.

3.7 Troubleshooting in Case of Rejected Deletions

If >del_R4(x4) 2 U. is not admissible, there are local “situations” that cause the
problem. Each such situation consists of a parent tuple that should be deleted,
and a child tuple that references it. Thus, the problem is caused by

—a parent tuple Rp(y) that is reachable by a chain of ON DELETE CASCADE
references from R;(xg). Correctly, Rp(y) is potentially deleted (and must be
deleted when R;(xg) is deleted),

—a child tuple R¢(x) that references Rp(y),

—a ric that concerns the reference from R¢(x) to Rp(y), associated with a rac
(either RESTRICT or NO ACTION, and the child is not requested for deletion).

In a correct application—is where the database schema, containing the rics
and racs is correct with respect to the semantics of the application domain, and
where the program itself that computes U