generate the ground instances of rules of the program that can be useful

basis: all ground instances. Let them, as they are (for copying)

collect all ground instances of the win(X) :- move(X,Y), not win(Y)
rule here that might beneeded (i.e., where the move(_,) fact will
be derived when running T_P(emptyset)):

win(a) :- move(a,b), not win(b).
a,f

win(a) :- move(a,f), not win(f).
win(b) :- move(b,c), not win(c).
win(b) :- move(b,g), not win(g).
win(b) :- move(b,k), not win(k).
win(c) :- move(c,d), not win(d).
win(c) :- move(c,l), not win(l).
win(d) :- move(d,e), not win(e).
win(e) :- move(e,a), not win(a).
win(g) :- move(g,h), not win(h).
win(g) :- move(q,i), not win(i).

win(h) :- move(h,m), not win(m).
win(i) :- move(i,j), not win(j).
win(l) :- move(l,d), not win(d).
win(m) :- move(m,h), not win(h).

first round:

H O = emptyset

win(a) :- move(a,b), notwin(b).
win(a) :- move(a,f), not-win{f).

win(b) :- move(b ,c), not-winte).
win(b) :- move(b,g), notwintg)}—
win(b) :- move(b, k) notwin(k).
win(c) :- move(c,d), notwin{d).—
win(c) :- move(c,l), not-win{l).
win(d) :- move(d,e), notwin(e).
win(e) :- move(e,a), notwin{a).
win(qg) :- move(g,h), netwin(h).
win(g) :- move(g,i), not win(i).

)
win(h) :- move(h,m), not win{m). 2
win(i) :- move(i,j), notwin{)~
win(l) :- move(l,d), notwin(d).
win(m) :- move(m,h), not-winth)~—

(P = the above + all "move"-facts)

new program P~H 0 = P_moves U {the above ground instances}

runT_P~H 0 ... \omega ... until it stops.

Here, it will stop after two T_P rounds:

T P HO”™1(emptyset) = {moves}
T P HO™2(emptyset) = {moves}
U { the instantiated heads of these rules }
= {moves} U {win(a), win(b), win(c), win(d), win(e), win(g),
win(h), win(i), win(l), win(m) }

=T P HO™3(emptyset) =: H 1

... consider this result:

H 1 = {the moves} U { the instantiated heads of these rules }
= {moves} U {win(a), win(b), win(c), win(d), win(e), win(g),
win(h), win(i), win(l), win(m) }

note: for win(f), win(k), win(n) and win(j) there were no rules, so they
have not been derived in H 1

=> we know that f,k,n,j.are definitely lost positions

=> from "nothing" , we got an overestimate of the win nodes
and a (safe!) underestimate of the not win/lost nodes

2nd round: H_1: win: abcdeghilm
(means: not win: fjkn)
again, build the reduct P H 1:
first step:
delete from P_H1 all rules that contain a negative literal —a in the body
such that a € H1,
- second step:

delete all remaining negative literals in the bodies of the remaining rules.
(because those are true ... fix them intermediately)

win(a) :.- moe(a,f), not-win{f).—
n(b) - b) in(c
win(b) :- move(b,k), notwin(k).”

win(i) :- move(i,j), notwin{j)=—
N vetl-dr :

’ ’

(P_H1 again contains all (ground) move facts)

run T_P_H1 -> omega ... finished after two rounds :

result: moves U {win(a), win(b), win(i)},
all other wins are false. =>H 2
=> underestimate of true atoms

3rd round: H 2 = {the moves} U {win(a), win(b), win(i)}

as befor, now build the reduct P_H 2:
first step:

delete from P_H2 all rules that contain a negative literal —a in the body
such that a € H2,

- second step:

delete all remaining negative literals in the bodies of the remaining rules.
(because those are true ... fix them intermediately)

win(a) :- move(a,f)

win(b) :- move(b,c), not-win{c)—

win(b) :- move(b,g), not-win{g)-
win(b) :- move(b,k), notwintk).
win(c) :- move(c,d), not-win{d)-
win(c) :- move(c,l), not-winh).~
win(d) :- move(d,e), not-winf{e).
win(g) :- move(g,h), notwin{h)—

win(h) :- move(h m), net-wintm)—
win(i) :- move(i,j), not win{j)-—
win(l) :- move(l,d), not-win(d).
win(m) :- move(m,h), not-winfh).

run T_P_H2 -> omega ... finished again after two rounds:
result: moves U {win: a,b,c,d,g,h,i,I,m}

.. what is missing: not win: e, f, j, k, n
=> overestimate of win, but some (more) are known to be definitively lost

) between:

g,h,m "alternating fixpoint"

definitely win: \

definitely not win:
a,b,c,d,i 4

e,fjkln

—H7 &

all except f,k,n,j,e, |

all except f.k,n,j, e

"1 ﬁs of T P_H1
underest: (a,b,i) wins of T_P_HO
(overestimate)
Qﬁ _rF_1 L (all except f,k,n,j)
{moves facts} =: H1

P H i always contains P moves and the reduct wrt H_i

H 6: win: a,b,i,d,c

win{a) - movela,b), not win(b).
win(a) :- move(a,f), not-win{f)—
win{b) :- move(b,c), not win(c).
win(b) :- move(b,g), net-win{g):
win(b) :- move(b,k), notwintk).—
win(c):-movelc,d), hot win(d).
win(c) :- move(c,l), notwinth).—
win(d) :- move(d,e), net-win{e)
win{e):=move{e;a), not win{a).

H . —~ A AN
win(l) :- move{t,d), not-win(d)

win(m) :- move(m,h), n

~

i

T P H571 (emptyset): move facts
T P_H5"2(emptyset) -> win: a,b,c,d,g,h,i,m
= all except e,f,j,k,1,n

